Comparison of Phenolic Compounds and Evaluation of Antioxidant Properties of Porophyllum ruderale (Jacq.) Cass (Asteraceae) from Different Geographical Areas of Queretaro (Mexico)
Abstract
:1. Introduction
2. Results
2.1. Identification and Characterization of the Polyphenolic Content of Porophyllum ruderale Samples and Antioxidant Capacity
2.2. Bioinformatic Analysis of Health-Associated Pathways Linked to Polyphenolic Composition
2.3. Principal Components Analysis (PCA) and Correlations between the Polyphenolic Composition and the Antioxidant Capacity of the Samples
3. Discussion
4. Materials and Methods
4.1. Geographical Location of Porophyllum ruderale Sampling Sites
4.2. Plant Material Collection and Processing
4.3. Preparation of Plant Extracts, Identification, and Quantification of Free Phenolic Compounds
4.4. Antioxidant Capacity Quantification
4.5. In Silico Analysis of Metabolic Pathways and Potential Beneficial Effects
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conde-Hernández, L.A.; Guerrero-Beltrán, J.Á. Total Phenolics and Antioxidant Activity of Piper Auritum and Porophyllum Ruderale. Food Chem. 2014, 142, 455–460. [Google Scholar] [CrossRef]
- Santiago-Saenz, Y.O.; Monroy-Torres, R.; Rocha-Amador, D.O.; Hernández-Fuentes, A.D. Effect of a Supplementation with Two Quelites on Urinary Excretion of Arsenic in Adolescents Exposed to Water Contaminated with the Metalloid in a Community in the State of Guanajuato, Mexico. Nutrients 2020, 12, 98. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Domínguez, F.; Maldonado-Miranda, J.J.; Castillo-Pérez, L.J.; Carranza-Álvarez, C.; Solano, E.; Isiordia-Espinoza, M.A.; del Carmen Juárez-Vázquez, M.; Zapata-Morales, J.R.; Argueta-Fuertes, M.A.; et al. Use of Medicinal Plants by Health Professionals in Mexico. J. Ethnopharmacol. 2017, 198, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Fukalova-Fukalova, T.; García-Martínez, M.D.; Raigón, M.D. Nutritional Composition, Bioactive Compounds, and Volatiles Profile Characterization of Two Edible Undervalued Plants: Portulaca Oleracea L. and Porophyllum Ruderale (Jacq.) Cass. Plants 2022, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables. Plant Foods Hum. Nutr. 2015, 70, 357–364. [Google Scholar] [CrossRef]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- SAGARPA Crece 21 Por Ciento Producción de Pápalo, El Tradicional Acompañante de Los Tacos. Available online: https://www.gob.mx/agricultura/prensa/crece-21-por-ciento-produccion-de-papalo-el-tradicional-acompanante-de-los-tacos?idiom=es (accessed on 1 September 2023).
- Colmenero-Robles, J.A.; Rodríguez-Jiménez, C.; Fernandes-Nava, R. Consideraciones Sobre El Origen de La Flora Arvense y Ruderal Del Estado de Querétaro. SIDA Contrib. Bot. 2001, 19, 1123–1145. [Google Scholar]
- Vargas-Madriz, Á.F.; Kuri-García, A.; Vargas-Madriz, H.; Chávez-Servín, J.L.; Ferriz-Martínez, R.A.; Hernández-Sandoval, L.G.; Guzmán-Maldonado, S.H. Phenolic Profile and Antioxidant Capacity of Pithecellobium Dulce (Roxb) Benth: A Review. J. Food Sci. Technol. 2020, 57, 4316–4336. [Google Scholar] [CrossRef]
- Kabtni, S.; Sdouga, D.; Rebey, I.B.; Save, M.; Trifi-farah, N.; Fauconnier, M.; Marghali, S. Influence of Climate Variation on Phenolic Composition and Antioxidant Capacity of Medicago Minima Populations. Sci. Rep. 2020, 10, 8293. [Google Scholar] [CrossRef]
- Pratyusha, S. Phenolic Compounds in the Plant Development and Defense: An Overview. In Plant Stress Physiology: Perspectives in Agriculture; Hasanuzzaman, M., Nahar, K., Eds.; IntechOpen: Rijeka, Croatia, 2022; pp. 125–140. ISBN 978-1-83969-867-5. [Google Scholar]
- INEGI. Uso de Suelo y Vegetación. Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 3 September 2023).
- Misra, D.; Dutta, W.; Jha, G.; Ray, P. Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus. Agronomy 2023, 13, 280. [Google Scholar] [CrossRef]
- INEGI. Normales Climatológicas Por Estado. Available online: https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=qro (accessed on 20 July 2023).
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Santiago-Saenz, Y.O.; Hernández-Fuentes, A.D.; Monroy-Torres, R.; Cariño-Cortés, R.; Jiménez-Alvarado, R. Physicochemical, Nutritional and Antioxidant Characterization of Three Vegetables (Amaranthus Hybridus L., Chenopodium Berlandieri L., Portulaca Oleracea L.) as Potential Sources of Phytochemicals and Bioactive Compounds. J. Food Meas. Charact. 2018, 12, 2855–2864. [Google Scholar] [CrossRef]
- De Athayde, A.E.; Richetti, E.; Wolff, J.; Lusa, M.G.; Biavatti, M.W. “Arnicas” from Brazil: Comparative Analysis among Ten Species. Rev. Bras. Farmacogn. 2019, 29, 401–424. [Google Scholar] [CrossRef]
- Pawłowska, K.A.; Baracz, T.; Skowrońska, W.; Piwowarski, J.P.; Majdan, M.; Malarz, J.; Stojakowska, A.; Zidorn, C.; Granica, S. The Contribution of Phenolics to the Anti-Inflammatory Potential of the Extract from Bolivian Coriander (Porophyllum Ruderale Subsp. Ruderale). Food Chem. 2022, 371, 131116. [Google Scholar] [CrossRef]
- Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting Network Activity from High Throughput Metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [Google Scholar] [CrossRef]
- Martínez-Rosell, G.; Giorgino, T.; De Fabritiis, G. PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations. J. Chem. Inf. Model. 2017, 57, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Mitjavila, M.T.; Moreno, J.J. The Effects of Polyphenols on Oxidative Stress and the Arachidonic Acid Cascade. Implications for the Prevention/Treatment of High Prevalence Diseases. Biochem. Pharmacol. 2012, 84, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Catalán, Ú.; Barrubés, L.; Valls, R.M.; Solà, R.; Rubió, L. In Vitro Metabolomic Approaches to Investigating the Potential Biological Effects of Phenolic Compounds: An Update. Genom. Proteom. Bioinform. 2017, 15, 236–245. [Google Scholar] [CrossRef]
- Vargas-Madriz, Á.F.; Luzardo-Ocampo, I.; Moreno-Celis, U.; Roldán-Padrón, O.; Chávez-Servín, J.L.; Vergara-Castañeda, H.A.; Martínez-Pacheco, M.; Mejía, C.; García-Gasca, T.; Kuri-García, A. Comparison of Phytochemical Composition and Untargeted Metabolomic Analysis of an Extract from Cnidoscolus Aconitifolius (Mill.) I. I. Johnst and Porophyllum Ruderale (Jacq.) Cass. and Biological Cytotoxic and Antiproliferative Activity in Vitro. Plants 2023, 12, 1987. [Google Scholar] [CrossRef]
- Caicedo-Lopez, L.H.L.H.; Luzardo-Ocampo, I.; Cuellar-Nuñez, M.L.L.; Campos-Vega, R.; Mendoza, S.; Loarca-Piña, G. Effect of the in Vitro Gastrointestinal Digestion on Free-Phenolic Compounds and Mono/Oligosaccharides from Moringa Oleifera Leaves: Bioaccessibility, Intestinal Permeability and Antioxidant Capacity. Food Res. Int. 2019, 120, 631–642. [Google Scholar] [CrossRef] [PubMed]
- INEGI. Compendio de Información Geográfica Municipal 2010 Landa de Matamoros Querétaro; INEGI: Mexico City, Mexico, 2010; p. 8. [Google Scholar]
- INEGI. Áreas Geográficas. Sistema de Consultas INEGI de Tlacote El Bajo. Available online: https://www.inegi.org.mx/app/areasgeograficas/?ag=220140114#collapse-Resumen (accessed on 2 July 2023).
- Comisión Estatal de Aguas (CEA). Centro Hidrometeorológico Reporte de Precipitación; CEA: Querétaro, Mexico, 2022. [Google Scholar]
- Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. Available online: http://sweetgum.nybg.org/science/ih/ (accessed on 2 July 2023).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 9780121822002. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Feregrino-Pérez, A.A.; Berumen, L.C.; García-Alcocer, G.; Guevara-Gonzalez, R.G.R.G.; Ramos-Gomez, M.; Reynoso-Camacho, R.R.; Acosta-Gallegos, J.A.; Loarca-Piña, G. Composition and Chemopreventive Effect of Polysaccharides from Common Beans (Phaseolus Vulgaris L.) on Azoxymethane-Induced Colon Cancer. J. Agric. Food Chem. 2008, 56, 8737–8744. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Quezada, V.; Gaytán-Martínez, M.; Recio, I.; Loarca-Piña, G. Avocado Seed By-Product Uses in Emulsion-Type Ingredients with Nutraceutical Value: Stability, Cytotoxicity, Nutraceutical Properties, and Assessment of in Vitro Oral-Gastric Digestion. Food Chem. 2023, 421, 136118. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Recillas, E.; Campos-Vega, R.; Pérez-Ramírez, I.F.; Luzardo-Ocampo, I.; Cuéllar-Núñez, M.L.; Vergara-Castañeda, H.A. Garambullo (Myrtillocactus Geometrizans): Effect of in Vitro Gastrointestinal Digestion on the Bioaccessibility and Antioxidant Capacity of Phytochemicals. Food Funct. 2022, 13, 4699–4713. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, L.R.R.; Mazza, G. Assessing Antioxidant and Prooxidant Activities of Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Van den Berg, R.; Haenen, G.R.M.M.; van den Berg, H.; Bast, A. Applicability of an Improved Trolox Equivalent Antioxidant Capacity (TEAC) Assay for Evaluation of Antioxidant Capacity Measurements of Mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
Parameter | Queretaro | Landa de Matamoros | Arroyo Seco |
---|---|---|---|
Spectrophotometric total phenolic compounds content | |||
TPC (mg GAE/100 g) | 5555.00 ± 242.10 c | 7382.00 ± 233.70 b | 8687.00 ± 259.50 a |
TF (mg CE/100 g) | 4579.00 ± 275.50 b | 9291.00 ± 702.60 a | 4748.00 ± 262.50 b |
CT (mg CE/100 g) | 2.70 ± 0.10 b | 2.90 ± 0.06 b | 3.00 ± 0.10 a |
Antioxidant capacity (mg TE/100 g) | |||
DPPH | 254.00 ± 3.40 b | 561.00 ± 4.30 a | 256.00 ± 2.70 b |
FRAP | 511.00 ± 35.50 c | 698.00 ± 28.60 a | 635.00 ± 47.10 b |
ABTS | 422.00 ± 35.60 c | 573.00 ± 13.30 a | 485.40 ± 3.70 b |
Ionization Mode | Compound Name | RT (min) | Expected Mass (Da) | Observed m/z | Mass Error (ppm) | Adducts | Fragments |
---|---|---|---|---|---|---|---|
Hydroxycinnamic acids and derivatives | |||||||
ESI– | Trans-cinnamic acid | 6.99 | 148.0524 | 148.0523 | –0.5 | [M-H]− | 147.04447, 103.0553, 101.02457 |
ESI– | p-Coumaric acid | 7.91 | 167.0574 | 164.0473 | 0.08 | [M-H]+ | 119.05035, 145.03, 117.03462 |
ESI- | Isoferulic acid | 8.16 | 194.0579 | 194.058 | 0.3 | [M-H]− | 135.04484, 134.03711, 133.02948, 132.02168 |
ESI– | Ferulic/trans ferulic acid | 8.5 | 194.0579 | 194.058 | –0.6 | [M-H]− | 149.02377, 175.00367, 121.02954, 193.01372 |
ESI– | Sinapic acid | 9.26 | 224.0685 | 224.0685 | –0.3 | [M-H]− | 193.01372, 164.01078, 149.0238, 163.03919 |
ESI– | Protocatechuic acid | 7.8 | 154.0262 | 154.0267 | –2.7 | [M-H]− | 109.02928, 108.0216, 81.03493 |
ESI– | Chlorogenic acid | 7.76 | 354.095 | 354.0954 | –0.2 | [M-H]− | 191.05603, 161.02435, 135.04497, 93.03474, 85.02967 |
Flavonols | |||||||
ESI– | Quercetin-3-O-rhamnosyl-galactoside | 8.55 | 610.1533 | 610.1525 | –2.1 | [M-H]− | 301.03408, 609.14196, 300.02701, 255.0301 |
ESI+ | Fisetin | 10.18 | 286.0475 | 286.0474 | –0.8 | [M+H]+ | 285.03998, 286.0435, 163.00372, 135.008 |
ESI– | Rutin | 9.08 | 610.1534 | 610.1545 | –0.7 | [M+H]− | 271.0968, 609.14334 |
ESI– | Quercetin | 11.01 | 302.0421 | 302.0428 | 0.4 | [M-H]− | 301.03454, 151.00371, 178.99852, 121.02931, 107.01382 |
ESI– | Epigallocatechin | 6.99 | 306.0725 | 306.0725 | –4.8 | [M-H]− | 165.07467, 125.02448, 109.02842, 139.08699 |
ESI– | Myricetin | 7.45 | 318.0379 | 318.0379 | 1 | [M-H]− | 137.02512, 109.02808, 178.02227 |
ESI+ | Kaempferol-3-O-rutinoside (Nicotiflorin) | 9.96 | 594.1571 | 594.1586 | –2.3 | [M+H]+ | 255.02954, 285.03945, 284.03225, 593.43848, 227.03464 |
ESI– | Kaempferol-3-O-β-D-glucoside (Astragalin) | 9.64 | 448.1005 | 448.1009 | 0.1 | [M-H]− | 255.02962, 447.09349, 284.03251, 227.03474 |
ESI+ | Kaempferol | 11.9 | 286.0477 | 286.0481 | −0.3 | [M+H]+ | 285.04007, 117.03515, 159.04569, 143.05101, 93.03499 |
ESI+ | Morin | 11.01 | 302.0428 | 303.0499 | 0.4 | [M+H]+ | 151.00266, 148.053, 149.02465 |
Flavones | |||||||
ESI– | Apigenin | 8.4 | 270.0528 | 270.0528 | −0.2 | [M-H]− | 149.0454, 269.0455, 151.004 |
ESI+ | Luteolin | 9.65 | 286.0474 | 286.0477 | −1.2 | [M+H]+ | 151.00371, 133.02939, 107.01382, 175.03984 |
ESI– | Hyperoside | 9.21 | 464.0956 | 464.0951 | 0.2 | [M-H]− | 300.02724, 271.0244, 301.0343, 255.02955, 302.03781 |
Flavanones | |||||||
ESI– | Pinocembrin | 11.05 | 256.0733 | 256.0733 | −1 | [M-H]− | 255.02989, 227.03493, 151.00418 |
ESI– | Naringenin | 11.77 | 272.0683 | 272.0684 | −0.5 | [M-H]− | 271.06095, 119.05018, 151.00262, 177.01914 |
Other compounds and other polyphenols | |||||||
ESI– | Glucuronic acid | 0.76 | 194.0426 | 194.0423 | −1.7 | [M-H]− | 113.02403, 85.02986, 71.01426, 59.01395 |
ESI– | Phenylacetic acid | 9.67 | 136.0524 | 136.0522 | −0.8 | [M-H]− | 135.04485, 134.03748, 107.05043, 136.04749, 109.02961 |
ESI– | Resveratrol | 9.12 | 228.0781 | 228.0784 | −2.3 | [M-H]− | 225.1599, 227.07066, 183.02924 |
ESI– | Catechol | 9.67 | 110.0365 | 110.0365 | −2.6 | [M-H]− | 109.02961, 108.02031, 91.01858 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Madriz, Á.F.; Luzardo-Ocampo, I.; Chávez-Servín, J.L.; Moreno-Celis, U.; Roldán-Padrón, O.; Vargas-Madriz, H.; Vergara-Castañeda, H.A.; Kuri-García, A. Comparison of Phenolic Compounds and Evaluation of Antioxidant Properties of Porophyllum ruderale (Jacq.) Cass (Asteraceae) from Different Geographical Areas of Queretaro (Mexico). Plants 2023, 12, 3569. https://doi.org/10.3390/plants12203569
Vargas-Madriz ÁF, Luzardo-Ocampo I, Chávez-Servín JL, Moreno-Celis U, Roldán-Padrón O, Vargas-Madriz H, Vergara-Castañeda HA, Kuri-García A. Comparison of Phenolic Compounds and Evaluation of Antioxidant Properties of Porophyllum ruderale (Jacq.) Cass (Asteraceae) from Different Geographical Areas of Queretaro (Mexico). Plants. 2023; 12(20):3569. https://doi.org/10.3390/plants12203569
Chicago/Turabian StyleVargas-Madriz, Ángel Félix, Ivan Luzardo-Ocampo, Jorge Luis Chávez-Servín, Ulisses Moreno-Celis, Octavio Roldán-Padrón, Haidel Vargas-Madriz, Haydé Azeneth Vergara-Castañeda, and Aarón Kuri-García. 2023. "Comparison of Phenolic Compounds and Evaluation of Antioxidant Properties of Porophyllum ruderale (Jacq.) Cass (Asteraceae) from Different Geographical Areas of Queretaro (Mexico)" Plants 12, no. 20: 3569. https://doi.org/10.3390/plants12203569
APA StyleVargas-Madriz, Á. F., Luzardo-Ocampo, I., Chávez-Servín, J. L., Moreno-Celis, U., Roldán-Padrón, O., Vargas-Madriz, H., Vergara-Castañeda, H. A., & Kuri-García, A. (2023). Comparison of Phenolic Compounds and Evaluation of Antioxidant Properties of Porophyllum ruderale (Jacq.) Cass (Asteraceae) from Different Geographical Areas of Queretaro (Mexico). Plants, 12(20), 3569. https://doi.org/10.3390/plants12203569