Callus Type, Growth Regulators, and Phytagel on Indirect Somatic Embryogenesis of Coffee (Coffea arabica L. var. Colombia)
Abstract
:1. Introduction
2. Results
2.1. Effect of Culture Medium and Phytagel Concentration on Embryogenic Callus Formation
2.2. Formation of Somatic Embryos
2.2.1. Effect of Phytagel Concentration
2.2.2. Effect of Culture Medium
2.2.3. Effect of Callus Type
2.2.4. Effect of Callus Type and Phytagel Interaction
2.2.5. Effect of the Interaction of Culture Medium and Callus Type
2.2.6. Effect of the Interaction of the Medium, Phytagel, and Type of Callus
2.3. Histological Analysis of Embryogenic Calli
2.4. Development and Germination of Somatic Embryos
3. Discussion
4. Materials and Methods
4.1. Disinfestation
4.2. Embryogenic Callus Induction
4.3. Differentiation of Somatic Embryos
4.4. Statistic Analysis
4.5. Histology
4.6. Development and Germination of Somatic Embryos
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, A.P. Psilanthus Mannii, the Type Species of Psilanthus, Transferred to Coffea. Nord. J. Bot. 2011, 29, 471–472. [Google Scholar] [CrossRef]
- Flores, D. Mexico Coffee Annual Production Flat with Quality Exports and Robusta Bean Imports Both Rising; Global Agricultural Information Network: MX 2029 Mexico Coffee Annual; USDA Foreign Agricultural Service: Washington, DC, USA, 2012; pp. 1–10. [Google Scholar]
- Wintgens, J.N. Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders, and Researchers; WILEY-VCH Verlag GMBH & Co. KGaA: Weinheim, Germany, 2004; ISBN 3527307311. [Google Scholar]
- Etienne, H.; Breton, D.; Breitler, J.-C.; Bertrand, B.; Déchamp, E.; Awada, R.; Marraccini, P.; Léran, S.; Alpizar, E.; Campa, C.; et al. Coffee Somatic Embryogenesis: How Did Research, Experience Gained and Innovations Promote the Commercial Propagation of Elite Clones From the Two Cultivated Species? Front. Plant Sci. 2018, 9, 1630. [Google Scholar] [CrossRef]
- Flores, D.; Harrison, T. Mexico Launches New Policies as Rust Continues to Impact Production; Global Agricultural Information Network: MX6019 Mexico Coffee Annual Report; USDA Foreign Agricultural Service: Washington, DC, USA, 2016; pp. 1–10. [Google Scholar]
- Alvarado, G. Atributos de Calidad de la Semilla de Café de las Variedades Colombia y Tabi; Cenicafé: Manizales, Colombia, 2004; pp. 1–4. [Google Scholar]
- Quiroz-Figueroa, F.; Fuentes-Cerda, C.; Rojas-Herrera, R.; Loyola-Vargas, V. Histological Studies on the Developmental Stages and Differentiation of Two Different Somatic Embryogenesis Systems of Coffea arabica. Plant Cell Rep. 2002, 20, 1141–1149. [Google Scholar] [CrossRef]
- Barry-Etienne, D.; Bertrand, B.; Vasquez, N.; Etienne, H. Comparison of Somatic Embryogenesis-derived Coffee (Coffea arabica L.) Plantlets Regenerated in Vitro or Ex Vitro: Morphological, Mineral and Water Characteristics. Ann. Bot. 2002, 90, 77–85. [Google Scholar] [CrossRef]
- De Feria, M.; Jiménez, E.; Barbón, R.; Capote, A.; Chávez, M.; Quiala, E. Effect of Dissolved Oxygen Concentration on Differentiation of Somatic Embryos of Coffea arabica Cv. Catimor 9722. Plant Cell Tissue Organ Cult. 2003, 72, 1–6. [Google Scholar] [CrossRef]
- López-Gómez, P.; Iracheta-Donjuan, L.; Castellanos-Juárez, M.; Méndez-López, I.; Sandoval-Esquivez, A.; Aguirre-Medina, J.F.; Carmen Ojeda-Zacarías, M.; Gutiérrez-Díez, A. Influencia Del Explante y Medio de Cultivo En La Embriogénesis Somática En Hojas de Café. Rev. Fitotec. Mex 2010, 33, 205–213. [Google Scholar] [CrossRef]
- Etienne, H.; Bertrand, B.; Georget, F.; Lartaud, M.; Montes, F.; Dechamp, E.; Verdeil, J.-L.; Barry-Etienne, D. Development of Coffee Somatic and Zygotic Embryos to Plants Differs in the Morphological, Histochemical and Hydration Aspects. Tree Physiol. 2013, 33, 640–653. [Google Scholar] [CrossRef]
- Pádua, M.S.; Paiva, L.V.; da Silva, L.C.; do Livramento, K.G.; Alves, E.; Castro, A.H.F. Morphological Characteristics and Cell Viability of Coffee Plants Calli. Ciência Rural 2014, 44, 660–665. [Google Scholar] [CrossRef]
- Shajahan, A.; Raju, C.S.; Thilip, C.; Varutharaju, K.; Faizal, K.; Mehaboob, V.M.; Aslam, A. Direct and Indirect Somatic Embryogenesis in Mango Ginger (Curcuma Amada Roxb.). In Somatic Embryogenesis: Fundamental Aspects and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 367–379. ISBN 9783319337050. [Google Scholar]
- Fehér, A. The Initiation Phase of Somatic Embryogenesis: What We Know and What We Don’t. Acta Biol. Szeged. 2008, 52, 53–56. [Google Scholar]
- Méndez-Hernández, H.A.; Ledezma-Rodríguez, M.; Avilez-Montalvo, R.N.; Juárez-Gómez, Y.L.; Skeete, A.; Avilez-Montalvo, J.; De-la-Peña, C.; Loyola-Vargas, V.M. Signaling Overview of Plant Somatic Embryogenesis. Front. Plant Sci. 2019, 10, 414470. [Google Scholar] [CrossRef]
- Nic-Can, G.I.; Avilez-Montalvo, J.R.; Aviles-Montalvo, R.N.; Márquez-López, R.E.; Mellado-Mojica, E.; Galaz-Ávalos, R.M.; Loyola-Vargas, V.M. The Relationship between Stress and Somatic Embryogenesis. Somat. Embryog. Fundam. Asp. Appl. 2016, 121–170. [Google Scholar] [CrossRef]
- López-Escamilla, A.L.; López-Herrera, M.; Loaiza-Alanís, C.; López-Escamilla, A.L.; López-Herrera, M.; Loaiza-Alanís, C. Efecto de Diferentes Agentes Gelificantes En La Germinación y Desarrollo in Vitro de Plántulas de Echinocactus Platyacanthus Link et Otto (Cactaceae). Polibotánica 2016, 42, 153–166. [Google Scholar] [CrossRef]
- Fehér, A. Somatic Embryogenesis—Stress-Induced Remodeling of Plant Cell Fate. Biochim. Biophys. Acta-Gene Regul. Mech. 2015, 1849, 385–402. [Google Scholar] [CrossRef]
- Berthouly, M.; Michaux-Ferriere, N.M. High Frequency Somatic Embryogenesis in Coffea Canephora: Induction Conditions and Histological Evolution. Plant Cell Tissue Organ Cult. 1996, 44, 169–176. [Google Scholar] [CrossRef]
- Ahmed, W.; Feyissa, T.; Disasa, T. Somatic Embryogenesis of a Coffee (Coffea arabica L.) Hybrid Using Leaf Explants. J. Hortic. Sci. Biotechnol. 2013, 88, 469–475. [Google Scholar] [CrossRef]
- Bartos, P.M.C.; Gomes, H.T.; Gomes, S.M.; Vasconcelos Filho, S.C.; Teixeira, J.B.; Scherwinski-Pereira, J.E. Histology of Somatic Embryogenesis in Coffea arabica L. Biologia 2018, 73, 1255–1265. [Google Scholar] [CrossRef]
- Avila-Victor, C.M.; Ordaz-Chaparro, V.M.; Arjona-Suárez, E.d.J.; Iracheta-Donjuan, L.; Gómez-Merino, F.C.; Robledo-Paz, A. In Vitro Mass Propagation of Coffee Plants (Coffea arabica L. Var. Colombia) through Indirect Somatic Embryogenesis. Plants 2023, 12, 1237. [Google Scholar] [CrossRef]
- Corredoira, E.; Merkle, S.A.; Martínez, M.T.; Toribio, M.; Canhoto, J.M.; Correia, S.I.; Ballester, A.; Vieitez, A.M. Non-Zygotic Embryogenesis in Hardwood Species. CRC. Crit. Rev. Plant Sci. 2019, 38, 29–97. [Google Scholar] [CrossRef]
- Gatica-Arias, A.M.; Arrieta-Espinoza, G.; Espinoza Esquivel, A.M. Plant Regeneration via Indirect Somatic Embryogenesis and Optimisation of Genetic Transformation in Coffea arabica L. Cvs. Caturra and Catuaí. Electron. J. Biotechnol. 2008, 11, 101–112. [Google Scholar] [CrossRef]
- Pasternak, T.P.; Prinsen, E.; Ayaydin, F.; Miskolczi, P.; Potters, G.; Asard, H.; Van Onckelen, H.A.; Dudits, D.; Fehér, A. The Role of Auxin, PH, and Stress in the Activation of Embryogenic Cell Division in Leaf Protoplast-Derived Cells of Alfalfa. Plant Physiol. 2002, 129, 1807–1819. [Google Scholar] [CrossRef]
- Rica Chacón, C.; Gabriela, A. El tipo de gelificante en el desarrollo in vitro v la aclimatizacion de plantas de yampi (Dioscorea trifida) v ñame (Dioscorea alata). Agron. Costarric. 2000, 24, 57–64. [Google Scholar]
- Veitía, N.; Collado, R.; García, L.R.; Bermúdez-caraballoso, I.; Torres, D. Influencia Del Agente Gelificante En La Regeneración de Plantas de Phaseolus vulgaris L. a Partir de Callos Organogénicos. Biotecnol. Veg. 2012, 12, 143–148. [Google Scholar]
- Santana-Buzzy, N.; Rojas-Herrera, R.; Galaz-Ávalos, R.M.; Ku-Cauich, J.R.; Mijangos-Cortés, J.; Gutiérrez-Pacheco, L.C.; Canto, A.; Quiroz-Figueroa, F.; Loyola-Vargas, V.M. Advances in Coffee Tissue Culture and Its Practical Applications. Vitr. Cell Dev. Biol.-Plant 2007, 43, 507–520. [Google Scholar] [CrossRef]
- Silva, A.T.; Barduche, D.; do Livramento, K.G.; Paiva, L.V. A Putative BABY BOOM-like Gene (CaBBM) Is Expressed in Embryogenic Calli and Embryogenic Cell Suspension Culture of Coffea arabica L. Vitr. Cell Dev. Biol.-Plant 2015, 51, 93–101. [Google Scholar] [CrossRef]
- Fernandez-Da Silva, R.; Menendez-Yuffa, A. Viability in Protoplasts and Cell Suspensions of Coffea arabica Cv. Catimor. Electron. J. Biotechnol. 2006, 9, 593–597. [Google Scholar] [CrossRef]
- Ramakrishna, D.; Shasthree, T. High Efficient Somatic Embryogenesis Development from Leaf Cultures of Citrullus colocynthis (L.) Schrad for Generating True Type Clones. Physiol. Mol. Biol. Plants 2016, 22, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Yuffá, A.; García de García, E. Morphogenic Events during Indirect Somatic Embryogenesis in Coffee “Catimor”. Protoplasma 1997, 199, 208–214. [Google Scholar] [CrossRef]
- Furuta, K.M.; Hellmann, E.; Helariutta, Y. Molecular Control of Cell Specification and Cell Differentiation During Procambial Development. Annu. Rev. Plant Biol. 2014, 65, 607–638. [Google Scholar] [CrossRef]
- Sugimoto, K.; Jiao, Y.; Meyerowitz, E.M. Arabidopsis Regeneration from Multiple Tissues Occurs via a Root Development Pathway. Dev. Cell 2010, 18, 463–471. [Google Scholar] [CrossRef]
- Fehér, A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Front. Plant Sci. 2019, 10, 442509. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Figueroa, F.R.; Rojas-Herrera, R.; Galaz-Avalos, R.M.; Loyola-Vargas, V.M. Embryo Production through Somatic Embryogenesis Can Be Used to Study Cell Differentiation in Plants. Plant Cell Tissue Organ Cult. 2006, 86, 285–301. [Google Scholar] [CrossRef]
- Van Hengel, A.J.; Van Kammen, A.; De Vries, S.C. A Relationship between Seed Development, Arabinogalactan-Proteins (AGPs) and the AGP Mediated Promotion of Somatic Embryogenesis. Physiol. Plant. 2002, 114, 637–644. [Google Scholar] [CrossRef]
- Letarte, J.; Simion, E.; Miner, M.; Kasha, K.J. Arabinogalactans and Arabinogalactan-Proteins Induce Embryogenesis in Wheat (Triticum aestivum L.) Microspore Culture. Plant Cell Rep. 2006, 24, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Begum, M.; Chapman, B.; Hocking, A.D. Effect of Reduced Water Activity and Reduced Matric Potential on the Germination of Xerophilic and Non-Xerophilic Fungi. Int. J. Food Microbiol. 2010, 140, 1–5. [Google Scholar] [CrossRef]
- Fehér, A.; Pasternak, T.P.; Dudits, D. Transition of Somatic Plant Cells to an Embryogenic State. Plant Cell Tissue Organ Cult. 2003, 74, 201–228. [Google Scholar] [CrossRef]
- Fehér, A. Why Somatic Plant Cells Start to Form Embryos? In Somatic Embryogenesis; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2, pp. 85–101. [Google Scholar]
- Klimaszewska, K.; bernier-Cardou, M.; Cyr, D.R.; Sutton, B.C.S. Influence of Gelling Agents on Culture Medium Gel Strength, Water Availability, Tissue Water Potential, and Maturation Response in Embryogenic Cultures of Pinus strobus L. Vitr. Cell Dev. Biol.-Plant 2000, 36, 279–286. [Google Scholar] [CrossRef]
- Meneses, A.; Flores, D.; Muñoz, M.; Arrieta, G.; Espinoza, A.M. Effect of 2,4-D, Hydric Stress and Light on Indica Rice (Oryza sativa) Somatic Embryogenesis. Rev. Biol. Trop. 2005, 53, 361–368. [Google Scholar] [CrossRef]
- Song, Y. Insight into the Mode of Action of 2,4-Dichlorophenoxyacetic Acid (2,4-D) as an Herbicide. J. Integr. Plant Biol. 2014, 56, 106–113. [Google Scholar] [CrossRef]
- Karami, O.; Saidi, A. The Molecular Basis for Stress-Induced Acquisition of Somatic Embryogenesis. Mol. Biol. Rep. 2010, 37, 2493–2507. [Google Scholar] [CrossRef]
- Quiroz-Figueroa, F.; Méndez-Zeel, M.; Sánchez-Teyer, F.; Rojas-Herrera, R.; Loyola-Vargas, V.M. Differential Gene Expression in Embryogenic and Non-Embryogenic Clusters from Cell Suspension Cultures Of Coffea arabica. J. Plant Physiol. 2002, 159, 1267–1270. [Google Scholar] [CrossRef]
- Campos, N.A.; Panis, B.; Carpentier, S.C. Somatic Embryogenesis in Coffee: The Evolution of Biotechnology and the Integration of Omics Technologies Offer Great Opportunities. Front. Plant Sci. 2017, 8, 282888. [Google Scholar] [CrossRef]
- Bai, B.; Su, Y.H.; Yuan, J.; Zhang, X.S. Induction of Somatic Embryos in Arabidopsis Requires Local YUCCA Expression Mediated by the Down-Regulation of Ethylene Biosynthesis. Mol. Plant 2013, 6, 1247–1260. [Google Scholar] [CrossRef] [PubMed]
- Toonen, M.A.J.; Schmidt, E.D.L.; van Kammen, A.; de Vries, S.C. Promotive and Inhibitory Effects of Diverse Arabinogalactan Proteins on Daucus carota L. Somatic Embryogenesis. Planta 1997, 203, 188–195. [Google Scholar] [CrossRef]
- Martins, J.F.; Correia, S.I.; Canhoto, J.M. Somatic Embryogenesis Induction and Plant Regeneration in Strawberry Tree (Arbutus unedo L.). Methods Mol. Biol. 2016, 1359, 329–339. [Google Scholar] [PubMed]
- Tonietto, Â.; Sato, J.H.; Teixeira, J.B.; de Souza, E.M.; Pedrosa, F.O.; Franco, O.L.; Mehta, A. Proteomic Analysis of Developing Somatic Embryos of Coffea arabica. Plant Mol. Biol. Report. 2012, 30, 1393–1399. [Google Scholar] [CrossRef]
- Kubalt, K.; Leszczyńska, J. Antioxidants as a Defensive Shield in Thyme (Thymus vulgaris L.) Grown on the Soil Contaminated with Heavy Metals. Biotechnol. Food Sci. 2016, 75, 109–117. [Google Scholar]
- Luo, J.-P.; Jiang, S.-T.; Pan, L.-J. Enhanced Somatic Embryogenesis by Salicylic Acid of Astragalus Adsurgens Pall.: Relationship with H2O2 Production and H2O2-Metabolizing Enzyme Activities. Plant Sci. 2001, 161, 125–132. [Google Scholar] [CrossRef]
- Filonova, L.H.; Bozhkov, P.V.; Brukhin, V.B.; Daniel, G.; Zhivotovsky, B.; Arnold, S. von Two Waves of Programmed Cell Death Occur during Formation and Development of Somatic Embryos in the Gymnosperm, Norway Spruce. J. Cell Sci. 2000, 113, 4399–4411. [Google Scholar] [CrossRef]
- Thibaud-Nissen, F.; Shealy, R.T.; Khanna, A.; Vodkin, L.O. Clustering of Microarray Data Reveals Transcript Patterns Associated with Somatic Embryogenesis in Soybean. Plant Physiol. 2003, 132, 118–136. [Google Scholar] [CrossRef]
- Redway, F.A.; Vasil, V.; Lu, D.; Vasil, I.K. Identification of Callus Types for Long-Term Maintenance and Regeneration from Commercial Cultivars of Wheat (Triticum aestivum L.). Theor. Appl. Genet. 1990, 79, 609–617. [Google Scholar] [CrossRef]
- Fei, Y.; Wang, L.-X.; Fang, Z.-W.; Liu, Z.-X. Somatic Embryogenesis and Plant Regeneration from Cotyledon and Hypocotyl Explants of Fagopyrum Esculentum Moench Lpls Mutant. Agronomy 2019, 9, 768. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Yasuda, T.; Fujii, Y.; Yamaguchi, T. Embryogenic Callus Induction from Coffea arabica Leaf Explants by Benzyladenine. Plant Cell Physiol. 1985, 26, 595–597. [Google Scholar] [CrossRef]
- Márquez Guzmán, J.; Wong, R.; Pérez Pacheco, M.; Lopez Curto, L.; Murguía Sánchez, G. Tecnicas Para El Estudio Del Desarrollo En Angiospermas. Libro de Laboratorio; UNAM, Facultad de Ciencias: Ciudad de México, México, 2016; ISBN 9789703227488. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila-Victor, C.M.; Arjona-Suárez, E.d.J.; Iracheta-Donjuan, L.; Valdez-Carrasco, J.M.; Gómez-Merino, F.C.; Robledo-Paz, A. Callus Type, Growth Regulators, and Phytagel on Indirect Somatic Embryogenesis of Coffee (Coffea arabica L. var. Colombia). Plants 2023, 12, 3570. https://doi.org/10.3390/plants12203570
Avila-Victor CM, Arjona-Suárez EdJ, Iracheta-Donjuan L, Valdez-Carrasco JM, Gómez-Merino FC, Robledo-Paz A. Callus Type, Growth Regulators, and Phytagel on Indirect Somatic Embryogenesis of Coffee (Coffea arabica L. var. Colombia). Plants. 2023; 12(20):3570. https://doi.org/10.3390/plants12203570
Chicago/Turabian StyleAvila-Victor, Consuelo Margarita, Enrique de Jesús Arjona-Suárez, Leobardo Iracheta-Donjuan, Jorge Manuel Valdez-Carrasco, Fernando Carlos Gómez-Merino, and Alejandrina Robledo-Paz. 2023. "Callus Type, Growth Regulators, and Phytagel on Indirect Somatic Embryogenesis of Coffee (Coffea arabica L. var. Colombia)" Plants 12, no. 20: 3570. https://doi.org/10.3390/plants12203570
APA StyleAvila-Victor, C. M., Arjona-Suárez, E. d. J., Iracheta-Donjuan, L., Valdez-Carrasco, J. M., Gómez-Merino, F. C., & Robledo-Paz, A. (2023). Callus Type, Growth Regulators, and Phytagel on Indirect Somatic Embryogenesis of Coffee (Coffea arabica L. var. Colombia). Plants, 12(20), 3570. https://doi.org/10.3390/plants12203570