Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf
Abstract
:1. Introduction
2. Results
2.1. Phytochemistry
2.2. Alpha Glucosidase Inhibition
2.3. Alpha Amylase Inhibition
2.4. Antioxidant Assay
2.5. In Vivo Results
2.6. Molecular Docking Studies
3. Materials and Methods
3.1. Phytochemistry
3.2. Alpha-Glucosidase Inhibition
3.3. Alpha-Amylase Inhibition
3.4. Antioxidant Assay
3.5. Molecular Docking Studies
3.6. In Vivo Experiments
3.6.1. Experimental Animals and Ethical Approval
3.6.2. Acute Toxicity
3.6.3. Induction of Diabetes
3.6.4. Experimental Design
3.6.5. Lipid Profile
3.6.6. Renal Functions Tests
3.6.7. Liver Functions Tests
3.6.8. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booth, G.; Lipscombe, L.; Butalia, S.; Dasgupta, K.; Eurich, D.; Goldenberg, R.; Khan, N.; MacCallum, L.; Shah, B.; Simpson, S.; et al. Pharmacologic Management of Type 2 Diabetes: 2016 Interim Update. Can. J. Diabetes 2016, 40, 484–486. [Google Scholar] [CrossRef] [PubMed]
- Huneif, M.A.; Alqahtani, S.M.; Abdulwahab, A.; Almedhesh, S.A.; Mahnashi, M.H.; Riaz, M.; Ur-Rahman, N.; Jan, M.S.; Ullah, F.; Aasim, M.; et al. α-glucosidase, α-amylase and antioxidant evaluations of isolated bioactives from wild strawberry. Molecules 2022, 27, 3444. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Sun, Z. Current views on type 2 diabetes. J. Endocrinol. 2010, 204, 1–11. [Google Scholar] [CrossRef]
- Ahmed, F.; Urooj, A. Antihyperglycemic activity of Ficus glomerata stem bark in streptozotocin-induced diabetic rats. Global J. Pharmacol. 2008, 2, 41–45. [Google Scholar]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
- Labazi, H.; Trask, A.J. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome. Pharmacol. Res. 2017, 123, 114–121. [Google Scholar] [CrossRef]
- Konig, M.; Lamos, E.M.; Stein, S.A.; Davis, S.N. An insight into the recent diabetes trials: What is the best approach to prevent macrovascular and microvascular complications? Curr. Diabetes Rev. 2013, 9, 371–381. [Google Scholar] [CrossRef]
- Chillarón, J.J.; Le-Roux, J.A.; Benaiges, D.; Pedro-Botet, J. Type 1 diabetes, metabolic syndrome and cardiovascular risk. Metabolism 2014, 63, 181–187. [Google Scholar] [CrossRef]
- DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. 2004, 88, 787–835. [Google Scholar] [CrossRef]
- Thomas, C.C.; Philipson, L.H. Update on Diabetes Classification. Med. Clin. N. Am. 2015, 99, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.J.; Boucher, J.L.; Rutten-Ramos, S.; VanWormer, J.J. Lifestyle Weight-Loss Intervention Outcomes in Overweight and Obese Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Acad. Nutr. Diet. 2015, 115, 1447–1463. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Parida, P. Drug Discovery and Development of Type 2 Diabetes Mellitus: Modern-Integrative Medicinal Approach. Curr. Cancer Drug Targets 2016, 13, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Phung, O.J.; Scholle, J.M.; Talwar, M.; Coleman, C.I. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA 2010, 303, 1410–1418. [Google Scholar] [CrossRef]
- Van Staa, T.; Abenhaim, L.; Monette, J. Rates of hypoglycemia in users of sulfonylureas. J. Clin. Epidemiol. 1997, 50, 735–741. [Google Scholar] [CrossRef]
- Gin, H.; Rigalleau, V. Post-prandial hyperglycemia. post-prandial hyperglycemia and diabetes. Diabetes Metab. 2000, 26, 265–272. [Google Scholar]
- He, L.; Wang, H.; Gu, C.; He, X.; Zhao, L.; Tong, X. Administration of traditional Chinese blood circulation activating drugs for microvascular complications in patients with type 2 diabetes mellitus. J. Diabetes Res. 2016, 2016, 1081657. [Google Scholar] [CrossRef]
- Pang, B.; Zhou, Q.; Li, J.L.; Zhao, L.H.; Tong, X.L. Treatment of refractory diabetic gastroparesis: Western medicine and traditional Chinese medicine therapies. World J. Gastroenterol. 2014, 20, 6504. [Google Scholar] [CrossRef]
- Xie, W.; Du, L. Diabetes is an inflammatory disease: Evidence from traditional Chinese medicines. Diabetes Obes. Metab. 2011, 13, 289–301. [Google Scholar] [CrossRef]
- Shah, S.M.M.; Sadiq, A.; Ullah, F. Antioxidant, total phenolic contents and antinociceptive potential of Teucrium stocksianum methanolic extract in different animal models. BMC Complement. Altern. Med. 2014, 14, 181. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Jan, M.S.; Rashid, U.; Sadiq, A.; Alqarni, A.O. Phytochemical profiling of bioactive compounds, anti-inflammatory and analgesic potentials of Habenaria digitata Lindl.: Molecular docking based synergistic effect of the identified compounds. J. Ethnopharmacol. 2021, 273, 113976. [Google Scholar] [CrossRef] [PubMed]
- Huneif, M.A.; Alshehri, D.B.; Alshaibari, K.S.; Dammaj, M.Z.; Mahnashi, M.H.; Majid, S.U.; Javed, M.A.; Ahmad, S.; Rashid, U.; Sadiq, A. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed. Pharmacother. 2022, 150, 113038. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J.; Day, C. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989, 12, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, P.K.; Doble, M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr. Diabetes Rev. 2008, 4, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Maeda, K.; Murayama, R.; DiMagno, E. Character of a wheat amylase inhibitor preparation and effects on fasting human pancreaticobiliary secretions and hormones. Gastroenterology 1996, 111, 1313–1320. [Google Scholar] [CrossRef]
- Sadiq, A.; Mahnashi, M.H.; Rashid, U.; Jan, M.S.; Alshahrani, M.A.; Huneif, M.A. 3-(((1 S, 3 S)-3-((R)-Hydroxy (4-(trifluoromethyl) phenyl) methyl)-4-oxocyclohexyl) methyl) pentane-2, 4-dione: Design and Synthesis of New Stereopure Multi-Target Antidiabetic Agent. Molecules 2022, 27, 3265. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alam, W.; Huneif, M.A.; Abdulwahab, A.; Alzahrani, M.J.; Alshaibari, K.S.; Rashid, U.; Sadiq, A.; Jan, M.S. Exploration of Succinimide Derivative as a Multi-Target, Anti-Diabetic Agent: In Vitro and In Vivo Approaches. Molecules 2023, 28, 1589. [Google Scholar] [CrossRef]
- Ajaib, M.; Ali, S.; Khan, Z. Antioxidant and antimicrobial activities of an ethnobotanically important plant Notholirion thomsonianum from district Kotli, Azad Jammu & Kashmir. J. Anim. Plant Sci. 2014, 24, 774–780. [Google Scholar]
- Sadiq, A.; Ahmad, S.; Ali, R.; Ahmad, F.; Ahmad, S.; Zeb, A.; Ayaz, M.; Ullah, F.; Siddique, A.N. Antibacterial and antifungal potentials of the solvents extracts from Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum. BMC Complement. Altern. Med. 2016, 16, 478. [Google Scholar] [CrossRef]
- Mahmood, F.; Ali, R.; Jan, M.S.; Chishti, K.A.; Ahmad, S.; Zeb, A.; Ayaz, M.; Ullah, F.; Aasim, M.; Khan, N.Z.; et al. Chemical characterization and analgesic potential of Notholirion thomsonianum extract. Lat. Am. J. Pharm. 2019, 38, 807–812. [Google Scholar]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alqarni, A.O.; Alyami, B.A.; Jan, M.S.; Ayaz, M.; Ullah, F.; Rashid, U.; Sadiq, A. Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: In-vitro and molecular docking approaches. BMC Complement. Med. Ther. 2021, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.; Zeb, A.; Ullah, F.; Ahmad, S.; Ayaz, M.; Rashid, U.; Muhammad, N. Chemical Characterization, Analgesic, Antioxidant, and Anticholinesterase potentials of essential oils from Isodon rugosus Wall. ex. Benth. Front. Pharmacol. 2018, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.M.; Ahmad, Z.; Yaseen, M.; Shah, R.; Khan, S.; Khan, B. Phytochemicals, in vitro antioxidant, total phenolic contents and phytotoxic activity of Cornus macrophylla Wall bark collected from the North-West of Pakistan. Pak. J. Pharm. Sci. 2015, 28. [Google Scholar]
- Huneif, M.A.; Mahnashi, M.H.; Jan, M.S.; Shah, M.; Almedhesh, S.A.; Alqahtani, S.M.; Alzahrani, M.J.; Ayaz, M.; Ullah, F.; Rashid, U.; et al. New Succinimide–Thiazolidinedione Hybrids as Multitarget Antidiabetic Agents: Design, Synthesis, Bioevaluation, and Molecular Modelling Studies. Molecules 2023, 28, 1207. [Google Scholar] [CrossRef] [PubMed]
- Underwood, W.; Anthony, R. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition; American Veterinary Medical Association: Schaumburg, IL, USA, 2020. [Google Scholar]
- Sadiq, A.; Rashid, U.; Ahmad, S.; Zahoor, M.; AlAjmi, M.F.; Ullah, R.; Noman, O.M.; Ullah, F.; Ayaz, M.; Khan, I.; et al. Treating hyperglycemia from Eryngium caeruleum M. Bieb: In-vitro α-glucosidase, antioxidant, in-vivo antidiabetic and molecular docking-based approaches. Front. Chem. 2020, 8. [Google Scholar] [CrossRef]
- Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P.; Selvaraj, J. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol. Mech. Methods 2019, 29, 276–290. [Google Scholar] [CrossRef]
- Hasan, M.; Mohieldein, A. In vivo evaluation of anti diabetic, hypolipidemic, antioxidative activities of Saudi date seed extract on streptozotocin induced diabetic rats. J. Clin. Diagn. Res. 2016, 10, FF06. [Google Scholar] [CrossRef]
- Galli, A.; Crabb, D.W.; Ceni, E.; Salzano, R.; Mello, T.; Svegliati–Baroni, G.; Ridolfi, F.; Trozzi, L.; Surrenti, C.; Casini, A. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 2002, 122, 1924–1940. [Google Scholar] [CrossRef]
- Aslam, H.; Khan, A.-U.; Naureen, H.; Ali, F.; Ullah, F.; Sadiq, A. Potential application of Conyza canadensis (L) Cronquist in the management of diabetes: In vitro and in vivo evaluation. Trop. J. Pharm. Res. 2018, 17, 1287–1293. [Google Scholar] [CrossRef]
- Farooq, U.; Naz, S.; Shams, A.; Raza, Y.; Ahmed, A.; Rashid, U.; Sadiq, A. Isolation of dihydrobenzofuran derivatives from ethnomedicinal species Polygonum barbatum as anticancer compounds. Biol. Res. 2019, 52, 1. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Alqarni, A.O.; Jan, M.S.; Hussain, F.; Zafar, R.; Rashid, U.; Abbas, M.; Tariq, M.; et al. Antioxidant molecules isolated from edible prostrate knotweed: Rational derivatization to produce more potent molecules. Oxidative Med. Cell. Longev. 2022, 2022, 3127480. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.; Day, C. Metformin: Its botanical background. Pract. Diabetes Int. 2004, 21, 115–117. [Google Scholar] [CrossRef]
- Buttermore, E.; Campanella, V.; Priefer, R. The increasing trend of Type 2 diabetes in youth: An overview. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102253. [Google Scholar] [CrossRef] [PubMed]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alqarni, A.O.; Alyami, B.A.; Alqahtani, O.S.; Jan, M.S.; Hussain, F.; Islam, Z.U.; Ullah, F.; Ayaz, M.; et al. Phytochemistry, anti-diabetic and antioxidant potentials of Allium consanguineum Kunth. BMC Complement. Med. Ther. 2022, 22, 154. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Khan, Z.; Jan, M.S.; Ahmad, S.; Ahmad, A.; Rashid, U.; Ullah, F.; Ayaz, M.; Sadiq, A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorganic Chem. 2019, 91, 103128. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.S.; Ande, C.; Moremen, K.W.; Crich, D. Influence of side chain conformation on the activity of glycosidase inhibitors. Angew. Chem. 2023, 135, e202217809. [Google Scholar] [CrossRef]
- Compain, P.; Martin, O.R. (Eds.) Iminosugars: From Synthesis to Therapeutic Applications; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Rajasekaran, P.; Ande, C.; Vankar, Y.D. Synthesis of (5,6 & 6,6)-oxa-oxa annulated sugars as glycosidase inhibitors from 2-formyl galactal using iodocyclization as a key step. Arkivoc 2022, 2022, 5–23. [Google Scholar] [CrossRef]
Comp/Standard | Conc (μg/mL) | Percent Inhibition (Mean ± SEM) | IC50 (μg/mL) |
---|---|---|---|
NtSt01 | 500 250 125 62.50 31.25 | 85.00 ± 1.52 *** 81.52 ± 1.85 *** 77.63 ± 1.56 *** 68.78 ± 1.02 *** 61.22 ± 0.85 *** | 7.34 |
NtSt02 | 500 250 125 62.50 31.25 | 77.56 ± 3.22 *** 70.63 ± 2.45 *** 64.52 ± 3.15 *** 59.98 ± 1.88 *** 52.63 ± 1.52 *** | 22.87 |
Standard Drug | 500 250 125 62.50 31.25 | 92.65 ± 0.55 89.53 ± 1.45 83.89 ± 2.65 78.63 ± 1.98 70.52 ± 2.63 | 2.14 |
Comp/Standard | Conc (μg/mL) | Percent Inhibition (Mean ± SEM) | IC50 (μg/mL) |
---|---|---|---|
NtSt01 | 500 250 125 62.50 31.25 | 80.03 ± 2.11 ** 75.52 ± 0.96 ** 71.63 ± 0.92 ** 67.63 ± 2.51 ** 62.35 ± 1.78 ** | 4.17 |
NtSt02 | 500 250 125 62.50 31.25 | 74.99 ± 1.53 *** 64.32 ± 1.85 *** 60.04 ± 0.86 *** 53.10 ± 2.05 *** 46.84 ± 0.67 *** | 46.73 |
Standard Drug | 500 250 125 62.50 31.25 | 91.01 ± 1.36 87.79 ± 1.27 82.33 ± 1.00 75.63 ± 0.86 71.07 ± 1.82 | 1.96 |
Comp/Standard | Conc (μg/mL) | Percent Inhibition (Mean ± SEM) | IC50 (μg/mL) |
---|---|---|---|
NtSt01 | 500 250 125 62.50 31.25 | 61.05 ± 2.05 *** 55.79 ± 0.92 *** 47.08 ± 2.41 *** 42.53 ± 0.69 *** 37.25 ± 2.66 *** | 142.76 |
NtSt02 | 500 250 125 62.50 31.25 | 59.12 ± 1.96 *** 52.01 ± 1.07 *** 42.99 ± 2.70 *** 33.08 ± 1.17 *** 28.52 ± 2.63 *** | 223.43 |
Standard Drug | 500 250 125 62.50 31.25 | 91.52 ± 2.52 85.04 ± 0.63 81.54 ± 1.28 77.87 ± 1.49 75.37 ± 1.69 | 0.74 |
Groups | Day 1 | Day 7 | Day 14 | Day 21 | Day 28 |
---|---|---|---|---|---|
Normal control | 102 ± 2.36 | 106 ± 0.98 | 105 ± 1.77 | 110 ± 0.91 | 109 ± 1.07 |
Diabetic control | 521 ± 1.28 | 517 ± 2.06 | 526 ± 1.00 | 524 ± 2.66 | 529 ± 2.80 |
Glibenclamide (0.5 mg/kg) | 517 ± 0.77 | 398 ± 2.08 | 302 ± 1.38 | 207 ± 1.91 | 103 ± 1.70 |
NtSt01 (1.0 mg/kg) | 519 ± 3.98 | 413 ± 1.87 | 325 ± 1.62 | 219 ± 2.87 | 116 ± 1.33 |
Groups | Day 1 | Day 7 | Day 14 | Day 21 | Day 28 |
---|---|---|---|---|---|
Normal control | 226 ± 0.98 | 227 ± 1.27 | 228 ± 0.63 | 229 ± 1.67 | 233 ± 0.48 |
Diabetic control | 232 ± 2.69 | 229 ± 1.98 | 225 ± 1.39 | 217 ± 2.69 | 214 ± 3.09 |
Glibenclamide (0.5 mg/kg) | 235 ± 1.36 | 236 ± 1.37 | 239 ± 0.67 | 244 ± 2.38 | 249 ± 3.18 |
NtSt01 (1.0 mg/kg) | 238 ± 0.33 | 240 ± 0.49 | 242 ± 1.04 | 245 ± 1.11 | 246 ± 0.11 |
Groups | Liver | Kidney | Pancreas | Heart |
---|---|---|---|---|
Normal control | 9.16 ± 0.45 | 0.97 ± 0.13 | 0.88 ± 0.02 | 1.02 ± 0.11 |
Diabetic control | 6.38 ± 0.10 | 1.26 ± 0.37 | 0.71 ± 0.13 | 0.83 ± 0.08 |
Glibenclamide (0.5 mg/kg) | 9.21 ± 0.66 | 0.99 ± 0.16 | 0.84 ± 0.21 | 0.90 ± 0.02 |
NtSt01 (1.0 mg/kg) | 9.83 ± 0.92 | 1.01 ± 0.15 | 0.92 ± 0.12 | 1.04 ± 0.13 |
Test | N.Control | D.Control | Standard | NtSt01 (1.0 mg/kg) | Unit | Reference Range |
---|---|---|---|---|---|---|
S.Creatinine | 0.42 ± 0.02 | 0.96 ± 0.10 | 0.43 ± 0.01 | 0.6 ± 0.02 | mg/dL | 0.4–0.8 |
Blood Urea | 19.1 ± 0.17 | 187 ± 3.65 | 20.2 ± 0.33 | 19.1 ± 2.36 | mg/dL | 15–22 |
S.bilurubin | 0.71 ± 0.24 | 0.96 ± 0.01 | 0.81 ± 0.03 | 0.72 ± 0.77 | mg/dL | Up to 1.0 |
SGPT(ALT) | 29.4 ± 1.07 | 268 ± 1.37 | 37 ± 1.11 | 32 ± 0.25 | U/L | 17–30 |
S.ALK.Phosphatase | 114.7 ± 0.39 | 159 ± 1.07 | 125 ± 1.22 | 134 ± 2.33 | U/L | 30–130 |
Groups | S.Cholesterol | S.Triglycerides | HDL | LDL |
---|---|---|---|---|
Normal control | 52.06 ± 1.04 | 93.54 ± 1.37 | 43.50 ± 2.35 | 23.88 ± 0.82 |
Diabetic control | 280.63 ± 2.33 | 456 ± 3.21 | 40.76 ± 1.49 | 165.5 ± 3.65 |
Glibenclamide (0.5 mg/kg) | 59.98 ± 0.99 | 112 ± 0.99 | 32.55 ± 2.35 | 34.16 ± 2.66 |
NtSt01 (1.0 mg/kg) | 77.45 ± 1.72 | 125 ± 3.65 | 38.10 ± 1.64 | 48.85 ± 1.08 |
References Range | 10–54 | 26–145 | Up to 50 | 10–54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huneif, M.A.; Fahad, S.; Abdulwahab, A.; Alqahtani, S.M.; Mahnashi, M.H.; Nawaz, A.; Hussain, F.; Sadiq, A. Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf. Plants 2023, 12, 3591. https://doi.org/10.3390/plants12203591
Huneif MA, Fahad S, Abdulwahab A, Alqahtani SM, Mahnashi MH, Nawaz A, Hussain F, Sadiq A. Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf. Plants. 2023; 12(20):3591. https://doi.org/10.3390/plants12203591
Chicago/Turabian StyleHuneif, Mohammad A., Shah Fahad, Alqahtani Abdulwahab, Seham M. Alqahtani, Mater H. Mahnashi, Asif Nawaz, Fida Hussain, and Abdul Sadiq. 2023. "Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf" Plants 12, no. 20: 3591. https://doi.org/10.3390/plants12203591
APA StyleHuneif, M. A., Fahad, S., Abdulwahab, A., Alqahtani, S. M., Mahnashi, M. H., Nawaz, A., Hussain, F., & Sadiq, A. (2023). Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf. Plants, 12(20), 3591. https://doi.org/10.3390/plants12203591