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Abstract: Low temperature and soil salinization during cotton sowing and seedling adversely affect
cotton productivity. Exogenous melatonin (MT) can alleviate the damage caused to plants under non-
biological stress; thus, applying MT is a means to improve the growth condition of crops under stress.
However, achieving this goal requires a thorough understanding of the physiological regulatory
mechanisms of MT on cotton seedlings under low temperature and salinity stress. This study could
bring new knowledge on physio-biochemical mechanisms that improve the tolerance of cotton
seedlings to combined effects of low temperature and salt stress using an exogenous foliar application
of MT. The phytotron experiment comprised two temperature levels of cold stress and control and five
MT treatments of 0, 50, 100, 150, and 200 µM and two salinity levels of 0 and 150 mM NaCl. Compared
with the control treatments (non-salinity stress under cold stress and control), the combined stress
of salt and low temperature reduced cotton seedlings’ biomass and net photosynthetic rate (Pn),
aggravated the membrane damage, reduced the potassium (K+) content, and increased the sodium
(Na+) accumulation in the leaves and roots. Under NaCl stress, exogenously sprayed 50–150 µM
MT increased the biomass and gas exchange parameters of cotton seedlings under salt and low
temperature combined with salt stress, reduced the degree of membrane damage, and regulated the
antioxidant enzyme, ion homeostasis, transport, and absorption of cotton seedlings. The pairwise
correlation analysis of each parameter using MT shows that the parameters with higher correlation
with MT at cold stress are mainly malondialdehyde (MDA), peroxidase (POD), and catalase (CAT).
The highest correlation coefficient at 25 ◦C is observed between the K+ and Na+ content in cotton
seedlings. The conclusion indicates that under salt and low-temperature stress conditions, exogenous
application of MT primarily regulates the levels of Pn, superoxide dismutase (SOD), andPOD in cotton
seedlings, reduces Na+ and MDA content, alleviates damage to cotton seedlings. Moreover, the most
significant effect was observed when an exogenous application of 50–150 µM of MT was administered
under these conditions. The current study’s findings could serve as a scientific foundation for salinity
and low-temperature stress alleviation during the seedling stage of cotton growth.

Keywords: cotton seedlings; ion homeostasis; foliar melatonin; membrane damage; low temperature;
salt stress
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1. Introduction

Plants are often exposed to various environmental stresses, including drought, heavy-
metal contamination, heat stress, low temperature, and soil salinization. Among these
stresses, salinity and low temperature are important abiotic factors that are consequently
associated with limited plant growth and productivity [1–3]. Moreover, over 50% of the
world’s arable land is predicted to be affected by salinity by 2050 [4,5], and 15% of the
suitable agricultural areas are affected by temperature stress worldwide [6]. Soil salinization
is often accompanied by temperature stress because changes in ambient temperature are
more frequent than changes in other abiotic factors. On the other hand, changes in ambient
temperature rapidly aggravate other environmental stresses, including salinity [1,6].

Salinity is a worldwide concern that reduces agricultural output and imposes sub-
stantial revenue losses [7]. Salinity caused by NaCl has become a focus of environmental
research investigations. NaCl-associated salinity leads to a wide range of changes in
plant metabolism [8,9]. An increasing NaCl concentration affects plants in several ways.
It causes nutrient deficiencies, osmotic stress, and specific ion toxicity, affecting several
physiological mechanisms involved in plant metabolism [10]. Salt stress affects a range of
important mechanisms, including photosynthesis, energy and lipid metabolism, and pro-
tein synthesis [11,12]. Low-temperature stress generally affects plant growth and induces
reactive oxygen species production, damaging cell membrane structure [13]. Previous
studies reported that low-temperature stress rapidly increases antioxidant activities, such
as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) [14,15].

Melatonin (N-acetyl-5-methoxytryptamine; MT), which was initially identified and
isolated from the pineal glands of cows, is an important multifunctional hormone that is
involved in modulating a wide range of animal physiological processes, such as sleep [16],
immunity [17], circadian rhythm and antioxidant activity [18]. Melatonin was discovered
for the first time in 1995 in vascular plants as an indoleamine hormone [19]. MT plays a
key role in plant growth and development by exerting an auxin-like function [20,21]. The
first plant phytomelatonin receptor (CAND2/PMTR1) was recently detected in Arabidopsis
thaliana, allocating to melatonin the concept of phytohormone [22,23]. A new phytome-
latonin receptor (named ZmPMTR1) that plays a key role in plant osmotic and drought
stress tolerance was also identified in Zea mays [24]. Several studies revealed the impor-
tance of MT in mitigating biotic and abiotic stresses [25–33]. Known as an antioxidant and
free radical scavenger, exogenously applied MT improved plants’ tolerance to biotic and
abiotic stresses, which confers to plant stress resistance by enhancing photosynthesis, ion
homeostasis, and antioxidant enzyme activities [34,35]. Exogenous foliar application of
MT is involved in numerous physiological processes to improve plant resistance to salinity
stress [36]. A recent study demonstrated that exogenously applied MT could sustain a high
photosynthetic rate in tea plants, which enhances salt tolerance via its effects on antioxi-
dant response against environmental stress [37]. Exogenous application of MT under salt
stress showed alleviating effects on horticultural crops, such as an increase in primary root
length and antioxidant activity in sunflower [38], an increase in net photosynthetic rate and
stomatal conductance in tomato [39], and improving photosynthetic efficiency, endogenous
melatonin content, and ion homeostasis in upland cotton [40]. On the other hand, exoge-
nous application of melatonin was found to improve the resistance capacity of horticultural
crops to low-temperature stress by increasing photosynthetic rate, antioxidant activity,
and decreasing malondialdehyde (MDA) content in tea plants [41], increasing endogenous
MT content, antioxidant activity, and decreasing MDA content in bermudagrass [42]; and
increasing photosynthetic carbon assimilation, activities of antioxidant enzymes, levels
of non-enzymatic antioxidants, anddecreasing the impact of cold on tomato membrane
damage and ROS accumulation [39].

Cotton is the world’s most important natural textile fiber with an impressive economic
value and is considered the backbone of the textile industry. Despite the capacity of cotton
plants to tolerate environmental stress, exposure to stress conditions could negatively affect
cotton growth, development, and yield [43,44]. When cotton is grown in arid/semiarid re-
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gions, seedlings are often exposed to both low-temperature and salinity stresses. Therefore,
several investigations have aroused keen interest in improving cotton resilience. Previous
studies revealed the mechanism of exogenous melatonin on crop resilience improvement
under a single stress of either salinity or low temperature. Understanding the signifi-
cance of exogenous MT on cotton seedlings’ physio-biochemical characteristics under the
combined stress of salt and low temperature would have great theoretical and practical
meaning. Therefore, the main purpose of this study was to determine the physiological
and biochemical responses of low-temperature and NaCl-stressed cotton seedlings sprayed
with exogenous melatonin.

2. Results
2.1. The Effect of MT on Cotton Seedling Biomass under Low Temperature and Salt Stress

Compared with the control, low temperature and salt stress, as well as their combined
stress, significantly reduced the shoot dry weight, while root difference did not significantly
affect it. Compared with the control (CK) at 15 ◦C, the coupled stress of salt and low
temperature insignificantly affected the dry weights of the shoot and root of cotton seedlings
(Figure 1). Under the salt stress condition at 25 ◦C, although the aboveground dry weight
of cotton seedlings treated with exogenous MT increased slightly (compared with 0 µM
MT), it was not significant, and there was no significant difference between different MT
treatments. Under 25 ◦C, when compared to the 0 µM MT-saline treatment, exogenous
MT significantly increased root dry weight, except for 200 µM MT; the highest value was
obtained with 150 µM MT.
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trend of increase firstly and then decreased in the 200 μM MT treatment compared with 
the non-MT treated saline treatment. Except for Ci, the highest values of gas exchange 
parameters appeared in the 150 μM MT treatment. Under the combined stress of low 
temperature and salinity when compared to the MT-untreated saline, the application of 
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increasing and then decreasing. The highest value of Pn was obtained with the 100 μM MT 
treatment. 

Figure 1. Effects of exogenous melatonin (MT) on shoot dry weight and root dry weight of 150 mM
NaCl−stressed cotton seedlings under temperatures of 15 ◦C and 25 ◦C. Note: CK = Control (0 µM
salt0 µM MT), T1 = 150 mM NaCl+0 µM (MT), T2 = 150 mM NaCl+50 µM (MT), T3 = 150 mM
NaCl+100 µM (MT), T4 = 150 mM NaCl+150 µM (MT), T5 = 150 mM NaCl+200 µM (MT). Values are
means ± standard deviation (n = 3). Different letters represent significant differences at p < 0.05 level
between the experimental treatments.
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2.2. Effects of MT on Gas Exchange Parameters of Cotton Seedling Leaves under Low Temperature
and Salt Stress

Leaf gas exchange parameters, including the net photosynthetic rate (Pn), stomatal
conductance (gs), intercellular carbon dioxide concentration (Ci), and transpiration rate
(Tr), were measured for evaluating the physiological responses of cotton seedlings to MT
under the combined stress. Salinity (0 µM at 25 ◦C) or low temperature (control at 15 ◦C)
stress alone have significantly reduced Pn, gs, Tr, and Ci of cotton seedlings, in comparison
with the control treatment at 25 ◦C. Compared with control at 15 ◦C, the combined stress
reduced the Pn, gs, Tr, and Ci of cotton seedlings (Figure 2). Under the salt stress condition
at 25 ◦C, with the increase in exogenous MT concentration, Pn, gs, Tr, and Ci all showed a
trend of increase firstly and then decreased in the 200 µM MT treatment compared with
the non-MT treated saline treatment. Except for Ci, the highest values of gas exchange
parameters appeared in the 150 µM MT treatment. Under the combined stress of low
temperature and salinity when compared to the MT-untreated saline, the application of
different concentrations of exogenous MT insignificantly increased Pn, gs, and Tr of cotton
seedlings, and with the increase in MT concentration, Pn, gs, and Tr also showed a trend of
increasing and then decreasing. The highest value of Pn was obtained with the 100 µM MT
treatment.
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concentrations of MT, compared with saline treatment in the absence of MT, the 
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treated with 100–200 μM MT. 

Figure 2. Effects of exogenous melatonin (MT) on (A) net photosynthetic (Pn), (B) stomatal
conductance(gs), (C) transpiration rate (Tr), and (D) intracellular CO2 concentration (Ci) of cot-
ton seedlings under the condition of 150 mM NaCl and temperatures of 15 ◦C and 25 ◦C. Note:
CK = Control (0 µM salt+0 µM MT), T1 = 150 mM NaCl+0 µM (MT), T2 = 150 mM NaCl+50 µM (MT),
T3 = 150 mM NaCl+100 µM (MT), T4 = 150 mM NaCl+150 µM (MT),T5 = 150 mM NaCl+200 µM
(MT). Values are means ± standard deviation (n = 3). Different letters represent significant differences
at p < 0.05.

2.3. The Effect of MT on Cotton Seedling Lipid Peroxidationunder Low Temperature and Salt Stress

Compared with control at 15 ◦C, low temperature plus salt stress did not significantly
affect lipid peroxidation, measured as MDA content, nor the production rate of superoxide
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anion in leaves (Figure 3). All the concentrations of exogenous MT significantly decreased
the MDA content under the combined stress of salt plus low temperature in comparison
with the saline treatment in the absence of MT. Only the concentration of 100 µM MT
significantly decreased the superoxide anion production rate under the combined stress
of salt plus low temperature in comparison with the MT-untreated saline. At 25 ◦C,
the exogenously applied MT (150 µM) significantly reduced both the superoxide anion
production rate and MDA content in cotton seedling leaves under salt stress. At the
same time (under 25 ◦C), compared with the saline treatment in the absence of MT, the
superoxide anion production rate was insignificantly reduced by 29.6–4.4% under the
50–100 µM MT treatment, and the MDA content was significantly reduced by 43.3–67.7%
under the 100–200 µM MT treatments, respectively. Under the combined stress of low
temperature and saline conditions, spraying different concentrations of MT, compared with
saline treatment in the absence of MT, the superoxide anion production rate significantly
dropped to the value of 0.0034 µmol min−1 mg−1 port under the 150 µM MT treatment.
With the increase in exogenous MT concentration, the content of MDA in leaves gradually
decreased under the combined stress of low temperature and salt, and it significantly
decreased to become stable when treated with 100–200 µM MT.
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of 15 °C and 25 °C and salt stress. Values are means ± standard deviation. 

 Antioxidant Enzyme Activities in Leaf Tissues 

Treatment 
SOD/U × g−1 × FW POD/U × g−1 × FW CAT/U × g−1 × FW 

15 °C 25 °C 15 °C 25 °C 15 °C 25 °C 
CK 67.32 cd 108.32 b 13.32 a 7.38 b 0.46 a 0.01 b 
T1 69.27 cd 78.52 c 4.38 d e 5.09 cd 0.11 b 0.02 b 
T2 147.18 a 45.32 f 5.17 cd 5.95 c 0.03 b 0.07 b 
T3 137.57 a 51.96 ef 4.46 de 3.55 ef 0.04 b 0.02 b 
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T5 101.91 b 63.78 de 3.14 f 3.95 ef 0.03 b 0.04 b 

Temp 11.79 ** 1.43 29.48 ** 

Figure 3. Effects of exogenous melatonin (MT) on (A) Superoxide anion content and (B) malondialde-
hyde (MDA) content of cotton seedlings under 150 mM NaCl-stressed and temperatures of 15 ◦C
and 25 ◦C. Note: CK = Control (0 µM salt+0 µM MT), T1= 150 mM NaCl+0 µM (MT), T2 = 150 mM
NaCl+50 µM (MT), T3 = 150 mM NaCl+100 µM (MT), T4 = 150 mM NaCl+150 µM (MT),T5 = 150 mM
NaCl+200 µM (MT). Values are means ± standard deviation (n = 3). Different letters represent
significant differences at p < 0.05.

2.4. Effect of MT on Antioxidant Enzyme Activities under Low Temperature and Salt Stress

Table 1 shows the effect of exogenously applied MT on the antioxidant enzymes of
cotton under salt stress alone or combined. Compared with controls at 15 ◦C, combined
stress significantly reduced the contents of POD and CAT in leaves, and salt stress alone
reduced SOD and POD activities. The combined stress of low temperature and salt did not
affect the SOD activity in comparison with the control treatment. Compared with the saline
treatment in the absence of MT at 25 ◦C, exogenously sprayed MT significantly reduced the
SOD and POD activity and did not affect CAT activity in leaves. Compared with the saline
treatment in the absence of MT under the combined stress of low temperature and salt,
spraying 50–100 µM MT increased SOD and POD activity and decreased that of CAT; salt
stress alone showed the same trend. Using an interactive analysis between the treatments,
it was found that different temperature conditions had a significant effect on the SOD
and CAT activities, but the POD of leaves under salt stress did not significantly affect
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them. Different MT concentrations significantly impacted POD and CAT while having an
insignificant effect on the SOD of cotton seedlings under salt stress. The POD and CAT
activities in cotton seedling leaves were affected by the interaction of temperature and MT.

Table 1. Response of antioxidant enzymes activities to MT in cotton seedlings under temperatures of
15 ◦C and 25 ◦C and salt stress. Values are means ± standard deviation.

Antioxidant Enzyme Activities in Leaf Tissues

Treatment
SOD/U × g−1 × FW POD/U × g−1 × FW CAT/U × g−1 × FW

15 ◦C 25 ◦C 15 ◦C 25 ◦C 15 ◦C 25 ◦C

CK 67.32 cd 108.32 b 13.32 a 7.38 b 0.46 a 0.01 b

T1 69.27 cd 78.52 c 4.38 d e 5.09 cd 0.11 b 0.02 b

T2 147.18 a 45.32 f 5.17 cd 5.95 c 0.03 b 0.07 b

T3 137.57 a 51.96 ef 4.46 de 3.55 ef 0.04 b 0.02 b

T4 140.41 a 58.09 d ef 4.45 de 3.79 ef 0.04 b 0.02 b

T5 101.91 b 63.78 de 3.14 f 3.95 ef 0.03 b 0.04 b

Temp 11.79 ** 1.43 29.48 **
MT 2.60 1.46 ** 20.29 **

Temp× MT 1.35 9.90 ** 33.43 **

Note: CK = Control (0 µM salt + 0 µM MT), T1 = 150 mM NaCl + 0 µM (MT), T2 = 150 mM NaCl + 50 µM (MT),
T3 = 150 mM NaCl + 100 µM (MT), T4 = 150 mM NaCl + 150 µM (MT), T5 = 150 mM NaCl + 200 µM (MT).
Treatments: 15 ◦C, 25 ◦C; CK, control. Temp is temperature; MT is melatonin. Values are means ± standard
deviation (n = 3). Different letters represent significant differences at p < 0.05. ** p < 0.01.

2.5. Effect of MT on Ion Homeostasis and Absorption under Different Temperatures and Salt Stress

Results (Figure 4) show that compared with the control treatment at 25 ◦C, salt-stressed
treatment alone significantly reduced the potassium (K+) ion content in the leaves and roots
by 15% and 50% and increased the sodium (Na+) ion by 4.2 and 2.5 times-, respectively.
The combined stress reduced the K+ content in the roots and significantly increased the
accumulation of Na+ in the leaves and roots. After foliar spraying of different concentrations
of MT, the K+ content in the roots was significantly increased when compared with the
saline treatment in the absence of MT at 25 ◦C, and the K+ content in the leaves significantly
increased with the exogenous foliar application of 150 µM when compared with the saline
treatment in the absence of MT at 15 ◦C. The Na+ content in the leaves and roots was
significantly reduced, but the difference between different concentrations of MT was
insignificant. Under the combined stress conditions, compared with the saline treatment in
the absence of MT, the application of exogenous MT to the K+ content in the leaves and
roots of cotton seedlings did not significantly affect. Different concentrations of exogenous
MT significantly reduced the content of Na+ in the leaves and roots of cotton seedlings
when compared with the saline treatment in the absence of MT at 25 ◦C.

Compared with the control treatment, the coupled stress of low temperature and
salt significantly increased the Na+/K+ ratio in the leaves and roots of cotton seedlings
(5.4 and 2.9 times, respectively) (Figure 5A,B), and significantly increased the Na+ uptake
roots (5.9 times) (Figure 5D). Exogenous foliar spraying of different MT concentrations
significantly reduced the Na+/K+ ratio in the leaves and roots under the salt stress at
25 ◦C and correspondingly reduced the Na+ absorption. Under the combined stress,
the exogenous foliar supplementation with MT, the Na+/K+ ratio in the leaves did not
significantly affect. The Na+/K+ ratio in the roots significantly decreased with the foliar
application of MT at 200 µM under the combined stress. On the other hand, compared
with the control, the combined stress significantly increased the transfer of K+ ions from
roots to shoots and then from shoots to leaves. After exogenously foliar spraying of
different concentrations of MT, the low temperature plus salt stress significantly increased
K+ transport from roots to aboveground parts. Compared with the saline treatment in the
absence of MT, different concentrations of MT slightly reduced the transport of K+ from
roots to shoots.
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3. Discussion

Abiotic stresses such as salinity and low temperature severely limit the growth and
development of plants. Moreover, nearly 50% of the annual yield loss of major crops
worldwide is related to abiotic stresses [45]. The combined effect of low temperature and
salt stress reduces leaf area, relative water content, water potential, transpiration rate, fresh
weight, and dry weight of plant stems and roots [46]. To gain new knowledge of cotton
seedling responses to exogenously applied MT under combined low temperature and salt
stress, seedlings in a phytotron were foliar sprayed with MT to identify their physiological
and biochemical responses. In this study, the combined effect of low temperature and
salt stress significantly and negatively affected seedlings’ physiological and biochemical
mechanisms (Table 1, Figures 1–6). In agreement with our findings, previous studies
have concluded that the effects of combined stress on crop growth and productivity may
be devastating [47,48]. For example, drought and high temperature, salinity and high
temperature, ozone and salinity, ozone and high temperature, nutrient stress and drought,
nutrient stress and salinity, ultraviolet light and high temperature, ultraviolet light and
drought, strong light and heat, drought or low temperature and other stress interactions
showed significant negatives impacts on crop yield [48,49]. Literature reported It has been
reported that combined stress such as drought plus high-temperature stress has a more
serious negative impact on the number of wheat tillers, chlorophyll content, yield, and
harvest index than a single stress of drought or high temperature [50,51]. In this study,
the combination of low temperature plus salinity stress has a greater impact on cotton
seedling biomass when compared to the control treatment (Figure 1). This is mainly related
to the senescence and dehydration of plant cells under abiotic stress, and salinity limits cell
elongation and division, which leads to a decrease in the growth rate of roots and shoots
and a decrease in dry matter accumulation [52]. After exogenous foliar supplementation
with MT under the different stresses of low temperature and salinity plus low temperature,
the aboveground and underground biomass remained unaffected, while the underground
biomass was significantly increased by the foliar supplementation with MT (50, 100 and
150 µM) under salt stress at 25 ◦C in comparison with the saline treatment in the absence of
MT (Figure 1). This is related to the ability of MT to regulate the physical process of cell wall
extension to induce plant root growth and promote the accumulation of dry matter [53].

Photosynthesis is the basis of plant growth and development, but it is susceptible
to environmental stresses (particularly sensitive to low-temperature stress). The main
components of photosynthesis (electron transport, Calvin cycle, stomatal conductance) are
negatively affected under low-temperature stress [46]. In a previous study, we observed
that sustained leaf gas exchange parameters, including Pn, gs, Tr, and Ci are essential for
cotton seedlings’ survival under salt stress conditions [43]. Regulation of leaf gas exchange
parameters is reported to be an important aspect of improving crop resilience to different
biotic and abiotic stress conditions [54]. In this study, gs and Tr decreased in response
to salinity alone, low temperature alone, and salinity plus low temperature, and plants
reduced water loss by closing their stomata. The closing of stomata leads to insufficient
CO2 and inhibits photosynthesis (Figure 2). This is consistent with the research results of
Chatrath et al. [55] who reported that plants may close their stomata under saline conditions
to reduce water loss. As shown in Figure 7B, under the combined stress of salinity plus
low temperature the antioxidant enzyme activity of cotton seedlings unilaterally affects
photosynthetic parameters. Biomass is not directly affected by photosynthetic parameters;
membrane damage and other parameters have no mutual influence. After the foliar
application of MT (100 and 150 µM) under salt stress at 25 ◦C, the gs and Tr of cotton
seedlings were increased, thereby increasing their Pn, but the foliar application of MT
did not alter photosynthesis parameters under the combined effect of salinity plus low
temperature (Figure 2). This is in contradiction with the research results of Irshad et al. [56]
and Zhang et al. [33], who observed that exogenous MT significantly improved Pn under
low-temperature stress and salt stress, respectively. This difference between our findings
and those of previous studies is probably due to (1) the different species used as plant
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material (Medicago truncatula in a previous study and Gossypium hirsutum L. in the current
study), (2) the MT application mode (previous studies applied MT by seed priming and or
hand MT application one week before cold stress induction, while foliar MT treatment and
low-temperature stress were conducted simultaneously in this study).
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The translocation of substances and ions in plants mainly depends on the integrity of
the structure and function of the cellular membranes. When the plant is subjected to abiotic
stress, the plant’s cellular membrane system is the first to be impacted and damaged. One
of the damages caused by abiotic stress on cell membranes is lipid peroxidation. The final
product of peroxidation damage to cell membranes by reactive oxygen species is MDA.
The production of reactive oxygen species (ROS) such as H2O2, superoxide anion, hydroxyl
anion, and MDA under salt conditions severely destroys chlorophyll content, destroys
lipids and mitochondria, and causes plant necrosis [33]. In this study, under the combined
stress, cotton seedlings’ MDA content increased compared with the control, although the
superoxide anion production rate remained unchanged compared with the control, which
led to membrane lipid peroxidation (Figure 3). The research results are consistent with
those of Parveen et al. [57]. Abiotic stress causes an increase in the level of active oxygen
in the plant body and simultaneously activates the defense system to reduce the harm of
active oxygen. SOD, CAT, and POD are the key enzymes to remove active oxygen in cells,
and the ability to remove active oxygen depends on the coordination of these enzymes [58].
As the first line of defense for ROS removal, SOD can disproportionate superoxide anions
into O2 and H2O2, and POD and CAT can remove H2O2 in peroxisomes [59]. In this
experiment, compared with the control at 15 ◦C, salt stress alone as well as the coupled
stress of salt plus low temperature decreased the CAT and POD activities. Furthermore,
the low-temperature stress increased the POD and CAT activities and decreased the SOD
activity when compared to the control treatment at 25 ◦C (Table 1). MT can increase
the activity of antioxidant enzymes to alleviate the damage caused by abiotic stress on
plants. Studies have shown that the application of exogenous MT can increase the SOD,
POD, and CAT activities in cucumber under salt-stress environments [60] and increase the
SOD activity in wheat [61] and cucumber [62] under low-temperature stress. In addition,
under salt and heat stress, applying MT increased tomato CAT activity and reduced SOD
activity [63]. In this experiment under the combined stress of salinity plus low temperature,
after applying the exogenous MT, compared with the salt treatment without the exogenous
MT, the exogenous spraying of MT at a concentration of 200 µM decreased the POD activity
of cotton seedlings. In contrast, under the combined stress of salinity plus low temperature,
spraying of different concentrations of MT significantly increased the SOD activity of cotton
seedlings (Table 1). Using interactive analysis, it is known that temperature has a very
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significant impact on SOD and CAT, and MT has a very significant impact on POD and
CAT. At the same time, POD and CAT are affected by the interaction of temperature and MT.

Under salt stress, the excessive accumulation of Na+ in plant cells leads to the pro-
duction of ROS, which breaks the dynamic balance of the scavenging system and initiates
membrane lipid peroxidation and degreasing. The membrane structure is destroyed, and
the MDA content increases [58]. In this study, after MT under salt stress, the opposite con-
clusion was reached and found that the Na+ content in cotton seedlings was reduced, the
activity of antioxidant enzymes, the degree of lipid peroxidation was increased, the degree
of lipid peroxidation damage was reduced, and the photosynthetic parameters and dry
matter content were increased. Previous studies reported that the high accumulation of Na+

in the apoplasts of roots and stems easily triggers osmotic stress [64]. The higher accumula-
tion of Na+ leads to an increase in the ratio of Na+/K+ ratio and promotes ion imbalance,
thereby hindering metabolic functions and destroying plant activities [33]. For example,
photosynthesis declines, and dry matter accumulation decreases, which ultimately leads to
reduced crop growth [53], production of reactive oxygen species [65], and plant damage.
The results of this study showed that, compared with the control at 25 ◦C, salinity reduced
the K+ accumulation in the leaves and roots of cotton seedlings and significantly increased
the accumulation of Na+, resulting in a significant increase in the ratio of Na+/K+ and at
the same time increased the absorption of Na+ (Figures 4 and 5). However, after spraying
exogenous MT at 25 ◦C under saline conditions, Na+ accumulation in leaves and roots
was significantly reduced. The K+ accumulation in the leaves was increased, and the
Na+/K+ ratio was reduced. Since the K+ dynamic balance is affected by the accumulation
of Na+, an appropriate Na+/K+ should be maintained to improve the salt tolerance of
crops [66]. Studies have found that under abiotic stress, plants, by closing stomata and
reducing transpiration, may limit the transport of Na+ to plant tissues [67]. The results
of this study indicate that compared to salt stress, the stomatal conductance is reduced
under the combined stress of low temperature and salt, and the Na+/K+ ratio is lower than
that of salt stress. In the current study, using interactive analysis, temperature was shown
to significantly affect K+, Na+, Na+/K+ ratio, Na+ absorption, and K+ transport in roots
and leaves, whereas Na+ content in leaves was not affected. The influence of exogenous
MT on K+ content is insignificant. The Na+ content in root removal is not affected by the
interaction of temperature and MT, and the others are all affected by the interaction of
temperature and MT.

Studies have shown that low-temperature stress can enhance the antioxidant defense
ability by regulating the metabolic and photosynthetic reactions of tea plants, wheat, Ara-
bidopsis, and other plants, thereby improving the cold tolerance of plants [37,68]. The
results of this study showed that when exogenous MT is applied under low temperature
plus salt stress, the ion content directly affects the protective enzymes, photosynthetic
parameters, membrane damage, and biomass, while the protective enzymes and photosyn-
thetic parameters negatively affect the ion content. Protective enzymes affect membrane
damage in one direction and have a two-way effect on photosynthesis (Figure 7). In sum-
mary, using interactive analysis, we have shown that temperature has a significant effect
on the shoots and root biomasses under salt stress conditions. Exogenous MT successfully
increased the biomass and physiological and biochemical indexes of cotton seedlings under
the combined stresses. In addition, reducing the absorption of ROS and Na+ in plants
is the focus of this study, indicating that exogenous MT has the potential to restore crop
growth under salt stress. The relationships between various parameters of cotton seedlings
at 15 ◦C and 25 ◦C under salt stress conditions are shown in Figure 6 and Table 2. It was
observed that improving antioxidant enzyme activities with exogenous MT results in an
improvement in leaf gas exchange parameters and K+ uptake while decreasing Na+ uptake.
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Table 2. Stepwise regression of parameters of salt-stressed cotton seedlings at 15 ◦C and 25 ◦C under exogenous melatonin.

Independent Variable
Low Temperature (15 ◦C) + Salt Stress (150 mM) 25 ◦C + Salt Stress (150 mM)

Stepwise Regression Equation R2 p Stepwise Regression Equation R2 p

X1 shoot dry weight y = 1.443x2 + 0.266 0.40 0.01 y = 0.20x12 + 0.192x14 − 0.101x16 + 0.147 0.87 0.00
X2 root dry weight y = 0.278x1 + 0.023 0.40 0.01 y = −0.070x17 + 0.244 0.47 0.00
X3 Pn y = −0.014x5 + 3.090x6 + 0.398x10 + 2.046 0.97 0.00 y = 3.558x6 + 2.126 0.72 0.00
X4 gs y = −0.002x12 + 0.001x10 + 0.061x6 + 0.034 1.00 0.00 y = 0.002x13 + 0.001x9 + 0.000x5−0.108 0.92 0.00
X5 Ci y = −135.623x17 − 269.164 0.39 0.06 y = 891.435x4 + 122.900 0.72 0.00
X6 Tr y = 0.025x12 − 0.016x10 + 15.698x4−0.468 0.99 0.00 y = 0.203x3−0.033 0.72 0.00
X7 MDA y = −0.002x9 + 0.635 0.23 0.04 y = −0.070x10 + 0.007x9 + 0.209x17 + 0.120 0.92 0.00
X8 Superoxide anion y = 0.000x14 − 0.005 0.26 0.03 / / /
X9 SOD y = 205.005x17 − 49.711 0.40 0.01 y = −1.211x15 + 7.685x10 + 101.543x7 − 1.916 0.96 0.00

X10 POD y = 0.125x15 + 130.185x4 + 2.404x11 − 0.422 0.98 0.00 y = −4.530x7 + 32.189x11 + 0.083x9 + 0.531 0.85 0.00
X11 CAT y = −0.052x15 − 2.979x6 + 0.329x10 − 0.498 0.96 0.00 y = 0.002x14 − 0.114x7 + 0.073 0.73 0.00

X12 K+-L y = −0.057x16 + 0.042x15 − 35.334x4 + 0.604x13 +
22.223x17 − 11.876 0.96 0.00 y = 37.733x4 + 16.815 0.57 0.00

X13 K+-R y = 0.42x11 + 48.308x4 + 1.020x12 − 33.413x17 + 31.137 1.00 0.00 y = 0.237x16 + 1.078x12−23.081x17 + 20.755 0.99 0.00
X14 Na+-L y = 4.983x2 + 9.996x1 + 0.492x16 − 5.787 0.99 0.00 y = −0.896x7 + 4.021x1 + 0.534x16 − 1.744 1.00 0.00
X15 Na+-R y = 0.758x13−4.227x11 + 4.298x12 + 2.025x14 − 110.436 0.87 0.00 y = 17.741x17 − 0.150x9 + 6.932 0.91 0.00
X16 Na+-uptake y = −0.993x2 − 20.381x1 + 2.027x14 + 11.795 1.00 0.00 y = 1.713x7 − 7.595x1 + 1.869x14 + 3.308 1.00 0.00
X17 K+ translocation y = 0.011x11 + 1.427x4 + 0.031x12 − 0.030x13 + 0.912 1.00 0.00 y = 0.119x7 + 0.012x16 + 0.040x12 − 0.039x13 + 0.856 0.99 0.00

Note: SDW, shoot dry weight; RDW, root dry weight; Pn, net photosynthetic rate; gs, stomatal conductance; Ci, intracellular CO2 concentration; Tr, transpiration rate; K-L, leaf K+

content; K-R, root K+ content; Na-L, leaf Na+ content; Na-R, root Na+ content; Na+ uptake; K+ translocation.
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Expression of the phythomelatonin receptor (ZmPMTR1) induced using abiotic stresses,
including low temperature and salt, suggests its potential function in maize responses to
various abiotic stresses and may be useful for crop genetic improvement [24]. Recently,
various studies aimed to investigate the function of melatonin as a signaling molecule
that is involved in plant growth regulation and stress responses, mainly the identification
and analysis of its receptors in various plant species [28,69]. More in-depth studies on
cotton are required in the future perspectives on the MT-receptor interaction (identification,
location, regulation, etc.). Exogenous MT has different regulatory mechanisms on the ion
content, photosynthetic parameters, membrane damage, protective enzyme activities, and
biomass accumulation of cotton seedlings under coupled salt and low-temperature stress
(Figure 7). Protecting enzymes under salt stress affects photosynthesis in two directions
while affecting photosynthesis in one direction under low temperatures plus salt stress. The
antioxidant enzyme activity under salt stress affects membrane damage one way, and ion
content one-way affects membrane damage and biomass, while under the combined stress
of low temperature plus salt, the antioxidant enzymeand membrane damage, ion content,
and membrane damage and biomass have two-way effects. Under double coercion, MT’s
adjustment of the above parameters is more complex.

4. Materials and Methods
4.1. Plant Material and Experimental Design

The cotton variety, Xinluzhong37, was purchased from The Seed Industry Co., Ltd.,
Alar City, China. It is a mid-early maturing upland cotton variety with a growth period
of about 140 days. Melatonin (MT), sodium chloride (NaCl), sodium sulfate (Na2SO4),
and other chemical reagents are all analytically pure, purchased from Beijing Soleibao and
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

The experiment was carried out in a phytotron in the Xinxiang Comprehensive Ex-
perimental Station of the Chinese Academy of Agricultural Sciences (35.09◦ N, 113.48◦ E,
and altitude 81 m). The humidity of the climate room is 40–50%, the photoperiod is 12 h,
the light intensity is 600 µmol m−2 s−1 (lighting is provided using LED lights), and the
temperature is controlled according to the experimental design. The experimental design is
shown in Table 3.

Table 3. The detailed experimental treatments.

Temperature Treatment Label NaCl Dose (mM) MT Dose (µM)

15 ◦C

CK 0 0
T1 150 0
T2 150 50
T3 150 100
T4
T5

150
150

150
200

25 ◦C

CK 0 0
T1 150 0
T2 150 50
T3 150 100
T4
T5

150
150

150
200

Uniform size and plump cotton seeds were selected, disinfected with 1000 times
diluted solution of carbendazim, and rinsed with deionized water after 30 min. The
sterilized seeds were sown at a depth of 2 cm in PVC pots (diameter 6 cm, height 24 cm)
containing 780 g of fine sand (the sand was sterilized at high temperature). After sowing,
the PVC pots were covered with an opaque shading board to keep the surface of the sand
moist and facilitate the germination of seeds. For germination, the PVC pots were placed
in a phytotron with a day/night temperature of 25/20 ◦C. After the seeds germinated, the
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shading was removed from the pots. Seven (7) plants per treatment with one plant/pot
were used in this experiment, with a total number of 70 plants, and three (3) replications per
treatment were used for all the measurements. When the seedlings grew to one true leaf,
seedlings were watered with 1/2 Hoagland nutrient solution [9]. The pH of the nutrient
solution was between 5.8 and 6.2; each pot was watered every five days with about 80 mL
of the 1/2 Hoagland solution. When the seedlings were grown to two leaves and one heart
leaf, they were randomly divided into groups to start the salt and temperature treatments.
For room temperature (25 ◦C) and low temperature (15 ◦C) treatments, seedlings were
placed in phytotrons with day/night temperatures of 25/18 ◦C and 15/8 ◦C, respectively.
On the 1st, 4th, and 9th day under the temperature treatment, seedlings were irrigated with
150 mmol L−1 salt water (NaCl: Na2SO4 = 9:1) in the morning. Every day after turning off
the lights, different concentrations of MT (0, 50, 100, 150, 200 µmol L−1) were sprayed on
the upper surface of the leaves of salt-stressed cotton seedlings at 15 and 25 ◦C. On the 10th
day, the fully expanded leaves were sampled for the measurement of various indicators.

4.2. Measurements
4.2.1. Determination of Cotton Seeding Biomass and Gas Exchange Parameters

Three plants were randomly selected for each treatment, the shoots were separated
from the roots, and the fresh weights were, respectively weighed and put into sample bags.
The samples were put into a sample bag at 105 ◦C for 30 min and oven-dried at 75 ◦C for
48 h; the dry weight was then measured.

The LI-6400XT photosynthesis measuring system (Licor, Lincoln, NE, USA) was used
to measure the net photosynthetic rate (Pn), stomatal conductance (gs) intercellular carbon
dioxide concentration (Ci), and transpiration rate (Tr) of the upper fully expanded leaves of
cotton seedlings between 9:00–11:00 in the morning with photosynthetically active radiation
(PAR) at 1000 µmol·m−2·s−1.

4.2.2. Determination of MDA, Superoxide Anion and Antioxidant Enzyme Activities

About 0.3 g of fresh leaf tissue was ground using a pestle and mortar. An amount
of 3.0 mL of 0.05 M precooled phosphate buffer (pH 7.8) was added to the homogenate,
which was then centrifuged at 15,000× g at 4 ◦C for 20 min. Lipid peroxidation was
measured spectrophotometrically from MDA content using a thiobarbituric acid (TBA)
reaction following the method described by Heath and Packer [70]. At the same time, the
same supernatant was used to determine the leaves’ superoxide anion production rate [71].

About 0.3 g of fresh leaf tissue was ground using a pestle and mortar. An amount of
2.7 mL of 0.05 M precooled phosphate buffer (pH 7.8) was added to the homogenate, which
was then centrifuged at 15,000× g at 4 ◦C for 20 min. After obtaining the supernatant, refer
to the following method to determine the protective enzyme activity. SOD activity was
determined spectrophotometrically from the inhibition of the photochemical reduction
of nitroblue tetrazolium (NBT) at 560 nm [72]. POD activity was measured using the
determination of guaiacol oxidation by H2O2 at 470 nm [73]. CAT activity was measured
by monitoring the disappearance of H2O2 at 240 nm [74].

4.2.3. Determination of Seeding Biomass and Ion Content

On the 10th day after the treatment, three cotton seedling leaves and roots were
randomly selected for each treatment, oven-dried at 105 ◦C for 30 min, and then continued
drying at 75 ◦C for 48 h; the dry weight was then measured. The dried leaves and roots
were ground into powder. Each sample, weighing 0.15 g, was digested with H2SO4-H2O2
and diluted in a 100-mL volumetric flask. The filtered supernatant was used to determine
the Na+ and K+ ion contents in the leaves and roots of cotton seedlings using a flame
photometer. Na+ uptake at the seedlings’ root surface and K+ translocation from root to
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shoot were computed by following the equations described by Shabala and Mackay [75,76],
respectively.

Na ion uptake at root =
Sum of Na concentration in tissues

Total root dry wright of
(1)

Translocation factor =
K concentration in leaves
K concentrantion in roots

(2)

4.3. Statistical Analysis

The data were statistically analyzed using one-way ANOVA using EXCEL 2020 and
DPS V13.5 software. All experimental data were expressed as means ± standard deviation.
All treatment means (n = 3) were compared for any significant differences using Duncan’s
multiple range tests at p < 0.05. Data fitting and graphical presentation were carried out in
Origin-Pro 2021a (Origin Lab, Northampton, MA, USA). A general linear regression model
was used to fit the relationships between parameters.

5. Conclusions

The current study demonstrated that exogenous foliar application of MT significantly
affects the physiological and biochemical characteristics of cotton subjected to combined
stress of salinity and low temperature. Under salt stress, the spraying of 50 to 150 µM
MT on the leaf surface increased the biomass, Pn, and SOD and POD activities while
reducing membrane damage of cotton seedling leaves. The exogenously supplied MT
reduced the accumulation of Na+ and MDA under the coupled stress of low temperature
and salt. The regulatory mechanism of exogenously applied MT remains different under
salt stress alone as compared to the combined salinity and low-temperature stress. The
regulation of the mechanism under the combined stress of low temperature and salinity
is more complex. Further study is necessary to investigate the molecular mechanisms of
MT-regulated salinity and low-temperature stress tolerance in cotton.
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