Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India—A Review
Abstract
:1. Introduction
2. Status of Heavy Metals Pollution in India
3. Sources of Heavy Metal Accumulation
4. Heavy Metals Contaminated Impacts Environments
5. Heavy Metal Harmfulness Disturbs Human Health
6. Techniques for Detecting Heavy Metals
- Inductively coupled plasma mass spectrometry: ICP-MS is a very sensitive and precise technology for identifying a wide spectrum of heavy metals in a wide range of matrices. ICP-MS analyzes a sample by ionizing it and then detecting the ratio of mass to charge of the ions [63]. For ICP-MS is costly and needs specialist equipment, it is primarily employed in laboratories.
- Atomic absorption spectroscopy (AAS): Another sensitive and precise approach for detecting heavy metals is AAS. AAS works by absorbing certain wavelengths of light into the sample. The percentage of light absorbed is related to the metal content in the sample. AAS is also commonly utilized in laboratories. Researchers have conducted a more thorough study on AFS as a result of the continued development of this technology. At the moment, these disciplines include food, medicine, agriculture, health, and the prevention of epidemics, as well as the environment [64].
- X-ray fluorescence (XRF): A non-destructive method for finding heavy metals in a wide range of matrices is XRF. X-rays are used to irradiate the sample in XRF, which subsequently measures the fluorescence energy the sample emits. Since it is very portable and does not need substantial sample preparation, XRF is frequently utilized for on-site analysis. Heavy metals in solid materials, such as soil, minerals, and relics from ancient civilizations, are analyzed using XRF [65].
- Assays using colorimetry: Assays using colorimetry are straightforward and reasonably priced methods for identifying heavy metals. A reagent is added to the sample in a colorimetric test, which changes color when the metal is present [66]. Since colorimetric tests are portable and do not need specific equipment, they are frequently utilized for field testing. These techniques are used to quickly and simply analyze the presence of heavy metals in biological, soil, and water samples.
- Biosensors: Biosensors work on the premise that biological molecules like enzymes and antibodies can detect heavy metals. Biosensors are frequently very sensitive and selective, and they may identify heavy metals in complicated matrices like blood and urine [67].
7. Phytoremediation for the Removal of Heavy Metals from Contaminated Soil
7.1. Genetic Modification in Plants
7.2. Phytoextraction
7.3. Endophytic Microorganisms Utilization
8. Recent Biotechnological Approaches for Potential Phytoremediation of Soil
9. Factors Impacting Heavy Metals Phytoremediation
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhingra, N.; Sharma, R.; Singh, N.S. Phytoremediation of Heavy Metal Contaminated Soil and Water. In Phytoremediation for Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 47–70. [Google Scholar]
- Al-Hazmi, H.E.; Mohammadi, A.; Hejna, A.; Majtacz, J.; Esmaeili, A.; Habibzadeh, S.; Saeb, M.R.; Badawi, M.; Lima, E.C.; Mąkinia, J. Wastewater treatment for reuse in agriculture: Prospects and challenges. Environ. Res. 2023, 236, 116711. [Google Scholar] [CrossRef] [PubMed]
- Bijekar, S.; Padariya, H.D.; Yadav, V.K.; Gacem, A.; Hasan, M.A.; Awwad, N.S.; Yadav, K.K.; Islam, S.; Park, S.; Jeon, B.-H. The state of the art and emerging trends in the wastewater treatment in developing nations. Water 2022, 14, 2537. [Google Scholar] [CrossRef]
- Timalsina, H.; Gyawali, T.; Ghimire, S.; Paudel, S.R. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere 2022, 306, 135581. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.R.; Steinnes, E. Soil and water contamination by heavy metals. In Soil Processes and Water Quality; CRC Press: Boca Raton, FL, USA, 2020; pp. 233–271. [Google Scholar]
- Gao, J.; Han, H.; Gao, C.; Wang, Y.; Dong, B.; Xu, Z. Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere 2023, 335, 139088. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, Y.; Stein, A.; Dorman, M.; Svoray, T.; Doniger, T.; Rinot, O.; Gil, E. A sensitive soil biological indicator to changes in land-use in regions with Mediterranean climate. Sci. Rep. 2022, 12, 22216. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Nakagawa, K.; Abdullah-Al-Mamun, M.; Siddique, M.A.B.; Berndtsson, R. Toxicity and source identification of pollutants in an urban river in Bangladesh. Environ. Earth Sci. 2023, 82, 140. [Google Scholar] [CrossRef]
- Abiye, T.A.; Bhattacharya, P. Arsenic concentration in groundwater: Archetypal study from South Africa. Groundw. Sustain. Dev. 2019, 9, 100246. [Google Scholar] [CrossRef]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Mawari, G.; Kumar, N.; Sarkar, S.; Frank, A.L.; Daga, M.K.; Singh, M.M.; Joshi, T.K.; Singh, I. Human health risk assessment due to heavy metals in ground and surface water and association of diseases with drinking water sources: A study from Maharashtra, India. Environ. Health Insights 2022, 16, 11786302221146020. [Google Scholar] [CrossRef]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef]
- Mishra, R.; Kumar, A.; Singh, E.; Kumar, S.; Tripathi, V.K.; Jha, S.K.; Shukla, S.K. Current status of available techniques for removal of heavy metal contamination in the river ecosystem. In Ecological Significance of River Ecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 217–234. [Google Scholar]
- Lee, J.H. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol. Bioprocess Eng. 2013, 18, 431–439. [Google Scholar] [CrossRef]
- Timalsina, H.; Mainali, B.; Angove, M.J.; Komai, T.; Paudel, S.R. Potential modification of groundwater arsenic removal filter commonly used in Nepal: A review. Groundw. Sustain. Dev. 2021, 12, 100549. [Google Scholar] [CrossRef]
- Gupta, A.; Dubey, P.; Kumar, M.; Roy, A.; Sharma, D.; Khan, M.M.; Bajpai, A.B.; Shukla, R.P.; Pathak, N.; Hasanuzzaman, M. Consequences of Arsenic Contamination on Plants and Mycoremediation-Mediated Arsenic Stress Tolerance for Sustainable Agriculture. Plants 2022, 11, 3220. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Pandita, S.; Sidhu, G.P.S.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, V.; Mahey, S.; Bhardwaj, R.; Thukral, A.K. Antagonistic effects of EDTA against biochemical toxicity induced by Cr (VI) in Hordeum vulgare L. seedlings. Physiol. Mol. Biol. Plants 2020, 26, 2487–2502. [Google Scholar] [CrossRef]
- Kumar, V.; Dwivedi, S.K.; Oh, S. A critical review on lead removal from industrial wastewater: Recent advances and future outlook. J. Water Process Eng. 2022, 45, 102518. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Setia, R. A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res. 2022, 103, 487–501. [Google Scholar] [CrossRef]
- Macomber, L.; Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Met. Integr. Biometal Sci. 2011, 3, 1153–1162. [Google Scholar] [CrossRef]
- Ba, Q.; Zhou, J.; Li, J.; Cheng, S.; Zhang, X.; Wang, H. Mutagenic Characteristics of Six Heavy Metals in Escherichia coli: The Commonality and Specificity. Environ. Sci. Technol. 2022, 56, 13867–13877. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef]
- Yoo, J.-C.; Beiyuan, J.; Wang, L.; Tsang, D.C.W.; Baek, K.; Bolan, N.S.; Ok, Y.S.; Li, X.-D. A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Sci. Total Environ. 2018, 616, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Bashir, O.; Haq, S.A.U.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Huang, Y.; Han, R.; Qi, J.; Duan, H.; Chen, C.; Lu, X.; Li, N. Health risks of industrial wastewater heavy metals based on improved grey water footprint model. J. Clean. Prod. 2022, 377, 134472. [Google Scholar] [CrossRef]
- Kayastha, S.P. Heavy metal pollution of agricultural soils and vegetables of Bhaktapur district, Nepal. Sci. World 2014, 12, 48–55. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Shen, Z.; Tang, Z.; Niu, J.; Gao, F. Assessment of heavy metals in sediments from a typical catchment of the Yangtze River, China. Environ. Monit. Assess. 2011, 172, 407–417. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Taguas, E.; Seeger, M.; Ries, J.B. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. J. Hydrol. 2018, 556, 749–758. [Google Scholar] [CrossRef]
- Wang, N.; Qiu, Y.; Hu, K.; Huang, C.; Xiang, J.; Li, H.; Tang, J.; Wang, J.; Xiao, T. One-step synthesis of cake-like biosorbents from plant biomass for the effective removal and recovery heavy metals: Effect of plant species and roles of xanthation. Chemosphere 2021, 266, 129129. [Google Scholar] [CrossRef]
- Priya, A.K.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef]
- Odobasic, A.; Sestan, I.; Begic, S. Biosensors for determination of heavy metals in waters. Biosens. Environ. Monit. 2019. [Google Scholar] [CrossRef]
- Verma, N.; Kanojia, N.; Kalra, S.; Dua, K. Chemical Speciation of Chromium and Arsenic and Biogeochemical Cycle in the Aquatic System. Hydrogeochem. Aquat. Ecosyst. 2023, 155–179. [Google Scholar] [CrossRef]
- Srivastava, V.; Gupta, S.K.; Singh, P.; Sharma, B.; Singh, R.P. Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost. Int. J. Recycl. Org. Waste Agric. 2018, 7, 241–250. [Google Scholar] [CrossRef]
- Anderson, A.; Anbarasu, A.; Pasupuleti, R.R.; Manigandan, S.; Praveenkumar, T.R.; Kumar, J.A. Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends. Chemosphere 2022, 295, 133724. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Dane, H.; Şişman, T. A morpho-histopathological study in the digestive tract of three fish species influenced with heavy metal pollution. Chemosphere 2020, 242, 125212. [Google Scholar] [CrossRef]
- Krieger, J.R.; Beaudreau, A.H.; Heintz, R.A.; Callahan, M.W. Corrigendum to “Growth of young-of-year sablefish (Anoplopoma fimbria) in response to temperature and prey quality: Insights from a life stage specific bioenergetics model”. J. Exp. Mar. Biol. Ecol. 2020, 526, 151340, Erratum in J. Exp. Mar. Biol. Ecol. 2020, 527, 151363. [Google Scholar] [CrossRef]
- Rani, R.; Sharma, P.; Kumar, R.; Hajam, Y.A. Effects of heavy metals and pesticides on fish. In Bacterial Fish Diseases; Elsevier: Amsterdam, The Netherlands, 2022; pp. 59–86. [Google Scholar]
- Topal, T.; Onac, C. Determination of heavy metals and pesticides in different types of fish samples collected from four different locations of Aegean and Marmara Sea. J. Food Qual. 2020, 2020, 8101532. [Google Scholar] [CrossRef]
- Kucukosmanoglu, A.G.; Filazi, A. Investigation of the metal pollution sources in Lake Mogan, Ankara, Turkey. Biol. Trace Elem. Res. 2020, 198, 269–282. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chatterjee, N.; Sircar, A.; Maikap, S.; Singh, A.; Acharyya, S.; Paul, S. A Comparative Analysis of Heavy Metal Effects on Medicinal Plants. Appl. Biochem. Biotechnol. 2023, 195, 2483–2518. [Google Scholar] [CrossRef]
- Bhatti, J.S.; Sehrawat, A.; Mishra, J.; Sidhu, I.S.; Navik, U.; Khullar, N.; Kumar, S.; Bhatti, G.K.; Reddy, P.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022, 184, 114–134. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root exudates contribute to belowground ecosystem hotspots: A review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef] [PubMed]
- Noor, I.; Sohail, H.; Sun, J.; Nawaz, M.A.; Li, G.; Hasanuzzaman, M.; Liu, J. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere 2022, 303, 135196. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Rennenberg, H.; Du, H.; Wang, T.; Gao, L.; Flemetakis, E.; Hänsch, R.; Ma, M.; Wang, D. Bacterial assemblages imply methylmercury production at the rice-soil system. Environ. Int. 2023, 178, 108066. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.; Azevedo, R.; Fernandes, P.; Santos, C.A. Cr (VI) induces DNA damage, cell cycle arrest and polyploidization: A flow cytometric and comet assay study in Pisum sativum. Chem. Res. Toxicol. 2011, 24, 1040–1047. [Google Scholar] [CrossRef]
- Ali, S.; Mir, R.A.; Tyagi, A.; Manzar, N.; Kashyap, A.S.; Mushtaq, M.; Raina, A.; Park, S.; Sharma, S.; Mir, Z.A. Chromium toxicity in plants: Signaling, mitigation, and future perspectives. Plants 2023, 12, 1502. [Google Scholar] [CrossRef]
- Islam, M.R.; Akash, S.; Jony, M.H.; Alam, M.N.; Nowrin, F.T.; Rahman, M.M.; Rauf, A.; Thiruvengadam, M. Exploring the potential function of trace elements in human health: A therapeutic perspective. Mol. Cell. Biochem. 2023, 478, 2141–2171. [Google Scholar] [CrossRef]
- Ali, Z.; Ullah, R.; Tuzen, M.; Ullah, S.; Rahim, A.; Saleh, T.A. Colorimetric sensing of heavy metals on metal doped metal oxide nanocomposites: A review. Trends Environ. Anal. Chem. 2022, 37, e00187. [Google Scholar] [CrossRef]
- Liu, C.; Liao, W. Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. Plant Physiol. Biochem. 2022, 173, 110–121. [Google Scholar] [CrossRef]
- Ma, Y.; Su, Q.; Yue, C.; Zou, H.; Zhu, J.; Zhao, H.; Song, R.; Liu, Z. The effect of oxidative stress-induced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. Int. J. Mol. Sci. 2022, 23, 13491. [Google Scholar] [CrossRef]
- Sethi, S. Phytochelatins: Heavy Metal Detoxifiers in Plants. In Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2023; pp. 361–379. [Google Scholar]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Phelps, K.R. Estimation of health risks associated with dietary cadmium exposure. Arch. Toxicol. 2023, 97, 329–358. [Google Scholar] [CrossRef] [PubMed]
- Abd Elnabi, M.K.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Abd Elaty, A.E.; et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Bilal, A.; Shakeel, K.; Malik, F.T. Effects of nickel toxicity on various organs of the Swiss albino mice. Uttar Pradesh J. Zool. 2022, 43, 1–12. [Google Scholar] [CrossRef]
- Kiran; Bharti, R.; Sharma, R. Effect of heavy metals: An overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar] [CrossRef]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise review of nickel human health toxicology and ecotoxicology. Inorganics 2019, 7, 89. [Google Scholar] [CrossRef]
- Bhan, A.; Sarkar, N.N. Mercury in the environment: Effect on health and reproduction. Rev. Environ. Health 2005, 20, 39–56. [Google Scholar] [CrossRef]
- Famurewa, A.C.; Renu, K.; Eladl, M.A.; Chakraborty, R.; Myakala, H.; El-Sherbiny, M.; Elsherbini, D.M.A.; Vellingiri, B.; Madhyastha, H.; Wanjari, U.R. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed. Pharmacother. 2022, 149, 112914. [Google Scholar] [CrossRef]
- Suh, J.H.; Lee, Y.Y.; Lee, H.J.; Kang, M.; Hur, Y.; Lee, S.N.; Yang, D.-H.; Han, S.B. Dispersive liquid–liquid microextraction based on solidification of floating organic droplets followed by high performance liquid chromatography for the determination of duloxetine in human plasma. J. Pharm. Biomed. Anal. 2013, 75, 214–219. [Google Scholar] [CrossRef]
- Feldmann, J.; Kindness, A.; Ek, P. Laser ablation of soft tissue using a cryogenically cooled ablation cell. J. Anal. At. Spectrom. 2002, 17, 813–818. [Google Scholar] [CrossRef]
- Balaram, V.; Ramkumar, M.; Mir, A.R. Developments in analytical techniques for chemostratigraphy, chronostratigraphy, and geochemical fingerprinting studies: Current status and future trends. J. South Am. Earth Sci. 2023, 104528. [Google Scholar]
- El-Naas, M.H.; Banerjee, A. Petroleum Industry Wastewater: Advanced and Sustainable Treatment Methods; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Wang, T.-T.; Huang, X.-F.; Huang, H.; Luo, P.; Qing, L.-S. Nanomaterial-based optical-and electrochemical-biosensors for urine glucose detection: A comprehensive review. Adv. Sens. Energy Mater. 2022, 1, 100016. [Google Scholar] [CrossRef]
- Ashraf, S.; Afzal, M.; Naveed, M.; Shahid, M.; Ahmad Zahir, Z. Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int. J. Phytoremediation 2018, 20, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Afzal, S.; Ashraf, M.A.; Rasheed, R.; Saleem, M.H.; Alatawi, A.; Ameen, F.; Fahad, S. Effect of metals or trace elements on wheat growth and its remediation in contaminated soil. J. Plant Growth Regul. 2023, 42, 2258–2282. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Wang, L.; Bolan, N.S.; Tsang, D.C.W.; Hou, D. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Sci. Total Environ. 2020, 720, 137584. [Google Scholar] [CrossRef] [PubMed]
- Lago-Vila, M.; Arenas-Lago, D.; Rodríguez-Seijo, A.; Andrade, M.L.; Vega, F.A. Ability of Cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioavailability and bioaccumulation. J. Environ. Manag. 2019, 235, 152–160. [Google Scholar] [CrossRef]
- Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environ. Sci. Pollut. Res. 2020, 27, 12138–12151. [Google Scholar] [CrossRef]
- Kumari, A.; Lal, B.; Rai, U.N. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India. Int. J. Phytoremediation 2016, 18, 592–597. [Google Scholar] [CrossRef]
- Eapen, S.; D’Souza, S.F. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol. Adv. 2005, 23, 97–114. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, S.; Pandey, A. Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. J. Environ. Chem. Eng. 2021, 9, 105684. [Google Scholar] [CrossRef]
- Cutillas-Barreiro, L.; Pérez-Rodríguez, P.; Gómez-Armesto, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C. Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe. Sci. Total Environ. 2016, 562, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, S.P.; Pandey, S.; Thanki, A.; Singh, N.K. Role of potential native weeds and grasses for phytoremediation of endocrine-disrupting pollutants discharged from pulp paper industry waste. In Bioremediation of Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–37. [Google Scholar]
- Yang, X.; Feng, Y.; He, Z.; Stoffella, P.J. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elem. Med. Biol. 2005, 18, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.S.; Zeng, H.Q.; Liu, Z.P.; Yang, Z.M. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ. 2012, 35, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Loix, C.; Huybrechts, M.; Vangronsveld, J.; Gielen, M.; Keunen, E.; Cuypers, A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front. Plant Sci. 2017, 8, 1867. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.; Sharma, D.; Partap, M.; Kumar, R.; Bhargava, B. Microbially-assisted phytoremediation toward air pollutants: Current trends and future directions. Environ. Technol. Innov. 2023, 31, 103140. [Google Scholar] [CrossRef]
- Asgari Lajayer, B.; Khadem Moghadam, N.; Maghsoodi, M.R.; Ghorbanpour, M.; Kariman, K. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: Mechanisms and efficiency improvement strategies. Environ. Sci. Pollut. Res. 2019, 26, 8468–8484. [Google Scholar] [CrossRef]
- Li, J.T.; Liao, B.; Lan, C.Y.; Ye, Z.H.; Baker, A.J.M.; Shu, W.S. Cadmium Tolerance and Accumulation in Cultivars of a High-Biomass Tropical Tree (Averrhoa carambola) and Its Potential for Phytoextraction. J. Environ. Qual. 2010, 39, 1262–1268. [Google Scholar] [CrossRef]
- Bian, F.; Zhong, Z.; Zhang, X.; Yang, C.; Gai, X. Bamboo–An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 2020, 246, 125750. [Google Scholar] [CrossRef]
- Guarino, F.; Miranda, A.; Castiglione, S.; Cicatelli, A. Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 2020, 251, 126310. [Google Scholar] [CrossRef]
- Mello, I.S.; Targanski, S.; Pietro-Souza, W.; Stachack, F.F.F.; Terezo, A.J.; Soares, M.A. Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicol. Environ. Saf. 2020, 202, 110818. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Idris, R.; Trifonova, R.; Puschenreiter, M.; Wenzel, W.W.; Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 2004, 70, 2667–2677. [Google Scholar] [CrossRef] [PubMed]
- El-Deeb, B. Plasmid mediated tolerance and removal of heavy metals by Enterobacter sp. Am. J. Biochem. Biotechnol 2009, 5, 47–53. [Google Scholar] [CrossRef]
- Sun, L.-N.; Zhang, Y.-F.; He, L.-Y.; Chen, Z.-J.; Wang, Q.-Y.; Qian, M.; Sheng, X.-F. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour. Technol. 2010, 101, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Dimitroula, H.; Syranidou, E.; Manousaki, E.; Nikolaidis, N.P.; Karatzas, G.P.; Kalogerakis, N. Mitigation measures for chromium-VI contaminated groundwater–the role of endophytic bacteria in rhizofiltration. J. Hazard. Mater. 2015, 281, 114–120. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Mechanisms used by plant growth-promoting bacteria. Bact. Agrobiol. Plant Nutr. Manag. 2011, 17–46. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.; Angle, J.S.; Delorme, T.A.; Chaney, R.L.; Van Berkum, P.; Moawad, H.; Ghanem, K.; Ghozlan, H.A. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol. 2003, 158, 219–224. [Google Scholar] [CrossRef]
- Gulzar, A.B.M.; Mazumder, P.B. Helping plants to deal with heavy metal stress: The role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environ. Sci. Pollut. Res. 2022, 29, 40319–40341. [Google Scholar] [CrossRef]
- Rai, P.K.; Sonne, C.; Kim, K.-H. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. Sci. Total Environ. 2023, 874, 162327. [Google Scholar] [CrossRef]
- Zhao, F.-J.; Tang, Z.; Song, J.-J.; Huang, X.-Y.; Wang, P. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol. Plant 2022, 15, 27–44. [Google Scholar] [CrossRef]
- Moon, J.Y.; Belloeil, C.; Ianna, M.L.; Shin, R. Arabidopsis CNGC Family Members Contribute to Heavy Metal Ion Uptake in Plants. Int. J. Mol. Sci. 2019, 20, 413. [Google Scholar] [CrossRef]
- Jhilta, P.; Dipta, B.; Rana, A. Phytoremediation of heavy metals and radionuclides: Sustainable approach to environmental management. In Phytoremediation for Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 83–111. [Google Scholar]
- Ghuge, S.A.; Nikalje, G.C.; Kadam, U.S.; Suprasanna, P.; Hong, J.C. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. J. Hazard. Mater. 2023, 450, 131039. [Google Scholar] [CrossRef] [PubMed]
- De Paolis, A.; De Caroli, M.; Rojas, M.; Curci, L.M.; Piro, G.; Di Sansebastiano, G.-P. Evaluation of Dittrichia viscosa Aquaporin Nip1.1 Gene as Marker for Arsenic-Tolerant Plant Selection. Plants 2022, 11, 1968. [Google Scholar] [CrossRef] [PubMed]
- Anglana, C.; Capaci, P.; Barozzi, F.; Migoni, D.; Rojas, M.; Stigliano, E.; Di Sansebastiano, G.P.; Papadia, P. Dittrichia viscosa Selection Strategy Based on Stress Produces Stable Clonal Lines for Phytoremediation Applications. Plants 2023, 12, 2499. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Gu, X.; Chen, S.; Zhang, M.; Hao, S.; Wei, L.; Cao, Y.; Hu, S. Genome-wide analysis and characterization of Dendrocalamus farinosus SUT gene family reveal DfSUT4 involvement in sucrose transportation in plants. Front. Plant Sci. 2023, 13, 1118398. [Google Scholar] [CrossRef]
- Pradhan, B.; Bhuyan, P.P.; Nayak, R.; Patra, S.; Behera, C.; Ki, J.-S.; Ragusa, A.; Lukatkin, A.S.; Jena, M. Microalgal phycoremediation: A glimpse into a sustainable environment. Toxics 2022, 10, 525. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D. Phytochelatins: Sulfur-containing metal (loid)-chelating ligands in plants. Int. J. Mol. Sci. 2023, 24, 2430. [Google Scholar] [CrossRef]
- Bayanati, M.; Al-Tawaha, A.R.; Al-Taey, D.; Al-Ghzawi, A.L.; Abu-Zaitoon, Y.M.; Shawaqfeh, S.; Al-Zoubi, O.; Al-Ramamneh, E.A.-D.; Alomari, L.; Al-Tawaha, A.R. Interaction between zinc and selenium bio-fortification and toxic metals (loid) accumulation in food crops. Front. Plant Sci. 2022, 13, 1001992. [Google Scholar] [CrossRef]
- Sharma, J.K.; Kumar, N.; Singh, N.P.; Santal, A.R. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 2023, 14, 1076876. [Google Scholar] [CrossRef]
- Beatrice, A.; Varco, J.J.; Dygert, A.; Atsar, F.S.; Solomon, S.; Thirumalai, R.V.K.G.; Pittman, C.U., Jr.; Mlsna, T. Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate. Chemosphere 2022, 292, 133355. [Google Scholar] [CrossRef]
Heavy Metals | Impacts of Heavy Metal on Microorganisms and Plants | References |
---|---|---|
Arsenic | Arsenic causes the deactivation of enzymes in bacteria. Reduced shoot and root development, necrosis, chlorosis, senescence of the leaves, defoliation, limited stomatal conductance and nutrient absorption, and degradation of chlorophyll | [16] |
Copper | Disrupts cellular function and restricts the actions of enzymes in microorganisms. Cu affects oxidative stress, chlorosis, and hinders plant development. | [17] |
Cadmium | Nucleic acid is impacted, as are the division of cells and transcription, the mineralization of carbon and nitrogen, and the denaturation of proteins in microorganisms. A higher toxicity stops plants from growing and causes plant necrosis. Exposure to Cd in soil produces an osmotic stress response in plants, which damages their physiological health by lowering transpiration, stomatal conductance, and leaf relative water content. | [18] |
Chromium | Reduction of Cr(VI) to Cr(III), Biosorption, precipitation, reduced accumulation and chromate efflux are only a few of Cr-resistance mechanisms that microorganisms and likely plants exhibit. Growth, an extension of the lag phase, and a decrease in oxygen intake. | [19] |
Lead | Protein and nucleic acid degradation interfere with transcription and enzyme activity. Fruits and vegetables cultivated in soils polluted with high amounts of lead may be the source of lead poisoning. | [20] |
Mercury | Population size reduction, protein denaturation, cell membrane instability, and the function of enzymes in microorganisms. Reduces plant development, persuades genotoxic effects, increases lipid peroxidation, yield, nutrient absorption, homeostasis, and oxidative stress. | [21] |
Nickel | Interferes with the actions of enzymes in microorganisms and disturbs cell membrane. a study by E. coli, many bacteria are worried by ambient nickel in usual conditions. Decreases growth and nutrient absorption, enzyme activity, and chlorophyll content. | [22,23] |
Zinc | Execution, obstruction to biomass, and microbial development Plant biomass, chlorophyll content, growth rate, germination rate, reduces photosynthesis | [24] |
Heavy Metals | Sources |
---|---|
Arsenic (As) | Natural processes/Geogenic, fuel burning, thermal power plants, smelting operations |
Chromium (Cr) | leather tanning, chromium salts manufacturing, industrial coolants, Mining |
Copper (Cu) | Smelting operations, Mining, electroplating |
Fluoride (F) | Water additive, industrial waste, Natural geological sources |
Lead (Pb) | E-waste, smelting operations, paints, Lead acid batteries, coal- based thermal power plants, bangle industry, ceramics, |
Mercury (Hg) | Thermal power plants, Chlor—alkali plants, electrical appliances fluorescent lamps, hospital waste (Sphygmomanometers, barometers damaged, thermometers) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barathi, S.; Lee, J.; Venkatesan, R.; Vetcher, A.A. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India—A Review. Plants 2023, 12, 3816. https://doi.org/10.3390/plants12223816
Barathi S, Lee J, Venkatesan R, Vetcher AA. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India—A Review. Plants. 2023; 12(22):3816. https://doi.org/10.3390/plants12223816
Chicago/Turabian StyleBarathi, Selvaraj, Jintae Lee, Raja Venkatesan, and Alexandre A. Vetcher. 2023. "Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India—A Review" Plants 12, no. 22: 3816. https://doi.org/10.3390/plants12223816
APA StyleBarathi, S., Lee, J., Venkatesan, R., & Vetcher, A. A. (2023). Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India—A Review. Plants, 12(22), 3816. https://doi.org/10.3390/plants12223816