Monitoring Changes in the Volatile Profile of Ecuadorian Cocoa during Different Steps in Traditional On-Farm Processing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Main Changes in the Families of Volatile Compounds during Primary Processing
2.1.1. Aldehydes, Alcohols and Ketones
Processing | Variety | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fresh | Anaerobic Fermentation | Aerobic Fermentation | Drying | p-Value | Forastero | CCN-51 | ETT103 | LR14 | p-Value | |
2-Methyl butanal | 1.53c | 2.06b | 3.25a | 1.00d | *** | 1.09 | 1.00 | 1.15 | 1.18 | n.s. |
Hexanal | 6.39a | 2.22b | 1.00c | n.d. | *** | 3.33b | 1.00d | 4.66a | 2.42c | *** |
(E)-2-Octenal | 18.48a | 1.00b | n.d. | n.d. | *** | 4.60b | 1.00b | 30.43a | 4.85b | *** |
3-(Methylthio)propanal | 1.06a | 1.00a | 0.00 | 0.00 | *** | 1.00bc | 1.97b | 6.55a | 0,00 | *** |
Benzaldehyde | 1.00c | 1.09c | 3.61a | 1.85b | *** | 2.21b | 1.00c | 3.42a | 3.55a | *** |
Benzacetaldehyde | 1.33b | 1.31b | 3.75a | 1.00c | *** | 1.00b | 1.07b | 1.68a | 1.69 | *** |
α-Ethylidenbenzeneacetaldehyde | 1.00d | 4.01c | 12.08b | 15.69a | *** | 1.74c | 1.00c | 7.46a | 3.64b | *** |
∑Aldehydes | 1.51b | 1.49b | 3.60a | 1.00c | *** | 1.07b | 1.00b | 1.62a | 1.51a | *** |
2-Methylbut-3-en-2-ol | 6.52a | 6.09a | 3.77b | 1.00c | *** | 1.67c | 1.00d | 3.27a | 2.67b | *** |
2-Methyl-propanol | n.d. | 1.00b | 16.05a | n.d. | *** | 3.57b | 12.51a | n.d. | 1.00c | *** |
3-Methyl-2-butanol + 2-pentanol | 6.23a | 5.19b | 1.71c | 1.00c | *** | 1.00b | 1.04b | 1.48a | 1.84a | ** |
3-Methyl-butanol | 1.00c | 22.05b | 40.06a | 35.51a | *** | 1.00 | 1.16 | 1.14 | 1.19 | n.s. |
2-Hexanol | 5.36a | 3.54b | 1.96c | 1.00d | *** | 2.16b | 1.00d | 1.84c | 2.66a | *** |
2-Methyl-butanol | 1.00c | 7.35a | 4.68b | 2.08c | *** | 1.59b | 1.00 | 1.04b | 2.33a | ** |
1-Pentanol | 1.64a | 1.18b | 1.00b | n.d. | *** | 3.14c | 1.00d | 4.49b | 5.61a | *** |
2-Heptanol | 7.20a | 2.96b | 1.85c | 1.00d | *** | 3.64a | 1.00c | 2.70b | 4.16a | *** |
4-Methyl-5-hexen-2-ol (Probably) †,†† | 2.84a | 1.35b | 1.00c | 1.27b | *** | 1.55a | 1.00b | 1.61a | 1.68a | *** |
1-Hexanol | 1.00b | 1.37a | 1.36a | n.d. | *** | 1.65a | 1.00b | 1.19b | 1.01b | *** |
2-Octanol | 4.14a | 1.41b | 1.54b | 1.00b | *** | 3.97a | 1.00b | 3.13a | 3.43a | *** |
2-Nonanol | 2.35 | 3.35 | 1.00 | 2.10 | n.s. | 2.01 | 1.00 | 5.30 | 5.32 | n.s. |
α-Phenylethanol | 1.00b | 1.13b | 1.57a | 1.16b | *** | 3.52b | 1.00c | 3.88b | 5.92a | *** |
Benzyl alcohol | 1.00c | 2.27b | 2.73b | 4.23a | *** | 1.00b | 1.97a | 1.11b | 1.12b | *** |
2-Phenylethanol | 1.00d | 8.13c | 31.66b | 60.81a | *** | 1.23 | 1.34 | 1.04 | 1.00 | n.s. |
∑Alcohols | 2.15a | 1.38b | 1.14c | 1.00c | *** | 1.75b | 1.00c | 1.72b | 2.18a | *** |
Acetic acid | n.d. | 1.00bc | 4.57b | 20.95a | *** | 1.57 | 1.99 | 1.00 | 2.70 | n.s. |
Propanoic acid | n.d. | n.d. | n.d. | 1.00a | *** | n.d. | 1.56a | 1.00b | 1.12ab | *** |
2-Methyl-propanoic acid | n.d. | 1.00b | 91.16b | 883.72a | *** | 1.00c | 2.14b | 2.96ab | 3.24a | ** |
2/3-Methyl-butanoic acid | n.d. | 1.00c | 75.12b | 364.73a | *** | 1.00c | 2.83b | 2.70b | 5.25a | *** |
∑Acids | n.d. | 1.00c | 5.44b | 25.38a | *** | 1.21b | 1.70ab | 1.00b | 2.45a | ** |
2-Pentanone | 4.21a | 2.28b | 1.00c | 1.27c | *** | 1.12b | 1.00b | 1.75a | 1.73a | *** |
2-Heptanone + 5-methyl-2-hexanone | 2.89a | 1.52b | 1.06c | 1.00c | *** | 4.06b | 1.00d | 3.34c | 5.90a | *** |
2-Octanone | 2.14a | 1.00b | 1.06b | 1.39b | *** | 4.04ab | 1.00c | 3.02b | 4.52a | *** |
3-Hydroxy-2-butanone (acetoin) | n.d. | 1.00b | 3.59b | 13.5a | *** | 3.46b | 2.54b | 1.00b | 7.70a | ** |
2-Nonanone | 2.21a | 1.51ab | 1.00b | 2.08a | * | 2.64b | 1.00c | 3.59b | 6.13a | *** |
3,6-Heptanedione (probably) ‡ | 5.30a | 1.79b | 1.00b | 1.92b | *** | 5.99ab | 1.00c | 2.09bc | 3.27b | *** |
Acetophenone | 2.42a | 1.91ab | 1.43bc | 1.00c | ** | 6.80ab | 1.00b | 8.23a | 6.97a | *** |
∑Ketones | 2.57a | 1.42b | 1.00c | 1.24b | *** | 3.28b | 1.00c | 3.01b | 5.01a | *** |
Ethyl acetate | n.d. | 1.00c | 7.11a | 1.82b | *** | 1.03b | 3.37a | 1.00b | 1.16b | *** |
2-Pentyl acetate | n.d. | 1.00b | 2.75a | 1.02b | *** | 2.85b | 1.00d | 1.84c | 4.32a | *** |
2/3-Methylbutyl acetate | n.d. | 1.00b | 27.91a | 30.62a | *** | 1.28 | 1.17 | 1.00 | 1.33 | n.s. |
Ethyl hexanoate | n.d. | 2.61a | 1.13b | 1.00b | *** | 2.29a | 1.02b | 2.10a | 1.00b | *** |
1-Methylhexyl acetate/2-heptanol acetate | n.d. | 1.00b | 4.93a | 4.18a | *** | 3.80ab | 1.00c | 1.94bc | 5.42a | ** |
Ethyl octanoate | n.d. | 1.00c | 4.85b | 7.72a | *** | 3.80a | 1.36b | 1.00b | 1.14b | *** |
Benzyl acetate | n.d. | 1.00c | 9.27b | 34.72a | *** | 30.00a | 10.19b | 3.78c | 1.00c | *** |
Ethyl benzeneacetate | n.d. | 1.00c | 14.24b | 39.69a | *** | 2.39 | 1.71 | 1.05 | 1.00 | n.s. |
β-Phenylethyl acetate | n.d. | n.d. | 1.00b | 5.81a | *** | 6.86a | 1.51b | 1.00b | 1.30b | *** |
Butyl benzoate | 1.02b | 1.00b | 1.17b | 1.63a | *** | 1.00c | 1.12c | 1.55b | 1.82a | *** |
∑Esters | 1.00d | 28.59c | 192.19a | 118.59b | *** | 1.49b | 2.14a | 1.00c | 1.35b | *** |
β-Myrcene | 1.40 | 1.00 | 1.93 | 1.05 | n.s. | 48.35b | 1.00c | 100.28a | 68.94ab | *** |
D-Limonene | 1.00a | n.d. | n.d. | n.d. | *** | 1.00a | n.d. | n.d. | n.d. | *** |
Ocimene (isomers E and Z) | 1.00b | 1.37b | 4.45a | 3.23a | ** | 1.00c | n.d. | 2.21b | 3.27a | *** |
γ-Pyronene | 1.00b | 1.09b | 3.91a | 1.19b | ** | 1.00b | n.d. | 2.10a | 2.03a | ** |
Linalool oxide I | 4.11a | 2.97a | 1.36b | 1.00b | ** | 5.87bc | 1.00c | 29.35a | 10.38b | *** |
Linalool oxide II | 2.01a | 1.39b | 1.00c | 1.30bc | *** | 1.39b | 1.00b | 9.33a | 1.63b | *** |
Linalool | 4.53 | 5.24 | 1.29 | 1.00 | n.s. | 10.66b | 1.00b | 92.76a | 16.12b | *** |
∑Terpenes | 2.14 | 2.12 | 1.51 | 1.00 | n.s. | 10.04bc | 1.00c | 46.61a | 16.29b | *** |
Valerolactone | n.d. | n.d. | n.d. | 1.00 | *** | n.d. | 1.00c | 1.81b | 3.41a | *** |
Butyrolactone | n.d. | n.d. | n.d. | 1.00 | *** | 1.15b | 1.00b | 1.32b | 3.14a | *** |
∑Lactones | n.d | n.d. | n.d. | 1.00a | *** | 1.00c | 1.30c | 1.93b | 4.22a | *** |
Trimethyl-pyrazine | n.d. | n.d. | n.d. | 1.00a | *** | 5.15a | n.d. | 1.00b | n.d. | *** |
Isophorone | n.d. | n.d. | 1.00 | n.d. | n.s. | 1.00 | n.d. | n.d. | n.d. | n.s. |
Benzonitrile | n.d. | n.d. | 1.00b | 1.52a | *** | 1.00c | 2.23b | 2.61ab | 3.07a | *** |
o-Guaiacol | n.d. | n.d. | n.d. | 1.00a | *** | 1.00a | n.d. | n.d. | n.d. | *** |
∑Miscellaneous | n.d. | 1.00b | 18.09a | 18.05a | *** | 6.18a | 1.00b | 1.50b | 1.38b | *** |
2.1.2. Terpenes
Fresh Cocoa | Anaerobic Fermentation | Aerobic Fermentation | Drying | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | F | C | E | L | F | C | E | L | F | C | E | L | F | C | E | L | p-Value |
2-Methyl butanal | 19.1c | 14.9cde | 12.1efg | 6.5h | 18.1c | 24.9b | 14.9cde | 13.1def | 28.1b | 13.1def | 26.5b | 44.0a | 1.1i | 8.0gh | 16.9cd | 8.6fgh | *** |
Hexanal | 20.0b | 8.1e | 40.3a | 15.3c | 8.0e | 1.9fg | 8.0e | 11.4d | 8.9de | 1.0fg | 3.2f | n.d. | n.d. | n.d. | n.d. | n.d. | *** |
(E)-2-Octenal | 27.6bc | n.d. | 317.2a | 50.6b | 20.3bc | 1.0c | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | *** |
3-(Methylthio)propanal | 1.1c | 4.9b | 6.2b | n.d. | 1.4c | n.d. | 10.0a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | *** |
Benzaldehyde | 5.0cd | 1.1e | 3.8cde | 1.7e | 3.4cde | 2.0de | 3.9cde | 3.4cde | 9.4b | 3.1cde | 9.6b | 19.9a | 1.2e | 2.5cde | 12.3b | 5.6c | *** |
Benzacetaldehyde | 19.0fgh | 19.0fgh | 31.8de | 23.3efg | 15.5gh | 22.8efgh | 24.7efg | 28.7def | 59.5b | 47.8c | 66.3b | 88.9a | 1.0i | 12.5h | 36.8d | 19.7fgh | *** |
α-Ethylidenbenzeneacetaldehyde | 2.2f | 1.1f | 4.7ef | 2.8f | 12.0def | 3.5f | 13.6def | 13.8def | 22.1d | 11.2def | 37.7c | 58.3b | 7.7ef | 9.6def | 132.9a | 17.3de | *** |
∑Aldehydes | 13.1e | 10.1ef | 18.3cd | 10.3ef | 10.8ef | 13.9de | 12.9e | 13.6de | 28.8b | 19.2c | 30.5b | 45.2a | 1.0g | 6.7f | 19.8c | 6.8f | *** |
2-Methylbut-3-en-2-ol | 3.0de | 1.8fgh | 7.1a | 3.1de | 2.5ef | 1.8gh | 6.5b | 3.3cd | 2.3fg | 1.0i | 1.6hi | 3.8c | n.d. | n.d. | n.d. | 2.3fg | *** |
2-Methyl-propanol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0c | 1.8b | 6.2a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | *** |
3-Methyl-2-butanol + 2-pentanol 2-Pentanol | 6.1 | 4.7 | 7.7 | 10.5 | 3.4 | 5.6 | 7.2 | 7.9 | 3.4 | 2.7 | 2.2 | 2.6 | 1.1 | 1.1 | 1.0 | 1.4 | n.s. |
3-Methyl-butanol | 2.0e | 2.1e | 1.0e | 2.8e | 57.7c | 19.5de | 32.1d | 68.6c | 96.1b | 121.6a | 35.9d | 70.7c | 22.0de | 62.6c | 133.8a | 69.2c | *** |
2-Hexanol | 16.2a | 4.4f | 15.2a | 16.6a | 7.4de | 6.4e | 9.5c | 11.3b | 6.3e | 2.8fg | 1.8g | 8.2cd | 2.7fg | 1.5g | 1.0g | 4.3f | *** |
2-Methyl-butanol | n.d. | 8.1cd | n.d. | n.d. | 16.2ab | 12.3cde | 16.7ab | 19.3a | 15.3ab | 2.7def | 2.6def | 17.2ab | 1.0ef | 2.4def | 2.1def | 11.2bc | ** |
1-Pentanol | 8.4c | 4.2de | 23.3a | 8.1cd | 8.2c | 1.8ef | 7.2cd | 14.2b | 5.9cd | 1.0ef | 1.7ef | 18.0b | n.d. | n.d. | n.d. | n.d. | *** |
2-Heptanol | 27.7b | 5.2efg | 22.8c | 47.9a | 17.1d | 6.2ef | 13.0d | 6.2ef | 13.2d | 2.2fg | 2.6fg | 8.5e | 1.0g | 2.7fg | 5.5efg | 5.1efg | *** |
4-Methyl-5-hexen-2-ol (Probably) †,†† | 6.4ab | 2.3de | 5.8b | 6.6a | 2.3de | 2.6cd | 2.7cd | 2.4d | 2.4d | 1.0f | 1.5f | 2.3d | 1.6ef | 2.2de | 3.1c | 2.4d | *** |
1-Hexanol | 6.0cde | 1.4g | 9.0a | n.d. | 6.9bcd | 5.7de | 4.2f | 5.6de | 8.0ab | 5.5e | 1.7g | 7.1bc | n.d. | n.d. | n.d. | n.d. | *** |
2-Octanol | 19.5a | 1.0e | 18.8a | 21.4a | 7.1c | 3.1cde | 6.5cd | 4.1cde | 12.4b | 2.2cde | 2.1cde | 5.9cde | 1.9de | 4.0cde | 5.0cde | 3.9cde | *** |
2-Nonanol | 11.6 | 1.0 | 24.8 | 24.0 | 5.5 | 5.3 | 51.5 | 25.2 | 11.1 | 6.2 | 1.6 | 7.1 | 5.7 | 4.3 | 11.4 | 33.4 | n.s. |
α-Phenylethanol | 7.5de | 1.0g | 15.7bc | 8.6de | 9.6d | 2.8fg | 5.7ef | 19.1ab | 14.2c | 2.0fg | 13.5c | 22.2a | 8.2de | 5.2ef | 8.6de | 16.5bc | *** |
Benzyl alcohol | 1.0i | 4.6fg | 1.9hi | 1.1i | 1.9hi | 12.5a | 2.1hi | 3.3ghi | 4.2fgh | 6.5def | 7.4de | 5.9ef | 10.1abc | 10.2ab | 7.7cde | 9.0bcd | *** |
2-Phenylethanol | 3.5e | 1.0e | 6.0de | 1.0e | 40.0d | 13.4de | 19.4de | 33.8de | 121.2c | 113.1c | 41.3d | 103.6c | 158.6b | 225.0a | 218.0a | 125.9bc | *** |
∑Alcohols | 3.6b | 1.1hi | 3.8b | 5.9a | 2.7cde | 1.4hi | 3.0c | 2.2ef | 2.8cd | 1.6gh | 1.0i | 2.3def | 1.0i | 1.6gh | 2.1f | 2.0fg | *** |
Acetic acid | n.d. | n.d. | n.d. | n.d. | 4.8cd | 1.0d | 7.7cd | 20.1cd | 54.2cd | 28.9cd | 36.9cd | 32.4cd | 130.3b | 211.8a | 76.8bc | 274.9a | ** |
Propanoic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.8a | 1.0b | 1.0b | *** |
2-Methyl-propanoic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0d | 22.3d | 12.6d | 18.6d | 52.6cd | 99.6c | 247.9b | 343.5a | 341.3a | *** |
2/3-Methyl-butanoic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0d | 17.1cd | 9.6cd | 26.8c | 31.3c | 25.3c | 109.8b | 87.3b | 189.7a | *** |
∑Acids | n.d. | n.d. | n.d. | n.d. | 4.8e | 1.1e | 7.7e | 20.6e | 61.0de | 32.6e | 47.1de | 44.9e | 141.5c | 257.3b | 115.7cd | 351.7a | ** |
2-Pentanone | 4.8c | 4.3c | 13.7a | 10.4b | 3.8cde | 4.8c | 5.1c | 4.2cd | 2.7def | 1.3fg | 1.7fg | 2.3fg | 2.4efg | 1.9fg | 1.0g | 4.6c | *** |
2-Heptanone + 5-methyl-2-hexanone 5-Methyl-2-hexanone | 18.6b | 3.1gh | 9.7de | 31.4a | 11.1cde | 3.5gh | 13.6c | 4.7fg | 9.1e | 1.0h | 3.3gh | 9.4e | 1.0h | 2.1gh | 6.2f | 12.4cd | *** |
2-Octanone | 10.3a | 1.1f | 9.5ab | 12.4a | 6.1bcd | 1.6ef | 5.3cde | 2.6def | 8.7abc | 1.0f | 1.5ef | 5.2cde | 2.8def | 3.2def | 4.6def | 11.0a | ** |
3-Hydroxy-2-butanone (acetoin) | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0 | n.d. | 23.1 | 9.2 | 18.5 | 16.8 | 41.8 | 93.1 | 55.8 | 12.8 | 163.1 | n.s. |
2-Nonanone | 8.0bc | 1.0d | 6.9bcd | 23.5a | 3.6bcd | 3.0bcd | 17.7a | 2.3bcd | 9.3b | 1.1cd | 1.1cd | 6.4bcd | 2.9bcd | 4.2bcd | 6.8bcd | 23.0a | *** |
3,6-Heptanedione (probably) ‡ | 31.3 | 3.9 | 13.5 | 25.1 | 13.6 | 2.1 | 6.9 | 2.4 | 9.4 | 1.0 | 1.9 | 2.9 | 13.3 | 4.1 | 1.1 | 7.9 | n.s. |
Acetophenone | 16.6ab | 1.1fg | 20.8a | 12.0de | 9.2d | 1.4efg | 15.2abc | 10.4cd | 11.0bcd | 1.5efg | 5.0efg | 11.9bcd | 1.0g | 1.5efg | 7.1def | 9.3d | *** |
∑Ketones | 5.6b | 1.0gh | 3.9d | 9.6a | 3.3de | 1.3g | 4.8c | 1.8fg | 3.1e | 0.5h | 1.1gh | 3.1e | 1.1gh | 1.1gh | 2.1f | 5.4bc | *** |
Ethyl acetate | n.d. | n.d. | n.d. | n.d. | 3.1de | n.d. | 1.2ef | 4.7d | 10.9b | 37.7a | 7.3c | 8.0c | n.d. | 8.2c | 5.1d | 3.1de | *** |
2-Pentyl acetate | n.d. | n.d. | n.d. | n.d. | 6.8f | 1.0gh | 4.4fg | 30.5bc | 23.9d | 19.3e | 33.0b | 41.2a | 27.2cd | n.d. | n.d. | 16.2e | *** |
2/3-Methylbutyl acetate | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0d | 8.4ab | 6.0c | 4.6c | 10.1a | 8.3b | 9.1ab | 8.4ab | 6.2c | *** |
Ethyl hexanoate | n.d. | n.d. | n.d. | n.d. | 5.3b | 1.0e | 8.5a | 5.9b | 5.5b | 2.1d | 1.3e | n.d. | 2.6cd | 2.8c | 2.5cd | n.d. | *** |
1-Methylhexyl acetate/2-heptanol acetate | n.d. | n.d. | n.d. | n.d. | 29.7c | 1.0c | 42.8c | 38.4c | 272.6ab | 33.8c | 59.9c | 186.1b | 51.6c | 58.2c | 77.4c | 281.8a | ** |
Ethyl octanoate | n.d. | n.d. | n.d. | n.d. | 4.8gh | 1.0h | 4.5gh | 7.2fg | 33.3b | 23.1c | 11.4ef | 14.5de | 81.5a | 19.6cd | 15.7de | 14.2de | *** |
Benzyl acetate | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0de | 2.6cde | 3.4cd | 4.1c | n.d. | 30.2a | 7.7b | n.d. | n.d. | *** |
Ethyl benzeneacetate | n.d. | n.d. | n.d. | n.d. | 1.7d | n.d. | n.d. | 1.0d | 5.7cd | 18.5b | 5.5cd | 5.5cd | 45.4a | 19.3b | 17.6bc | 15.8bc | ** |
β-Phenylethyl acetate | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.7de | 1.3e | 1.0ef | 1.3e | 20.8a | 3.6b | 2.4cd | 3.0bc | *** |
Butyl benzoate | 1.3j | 2.9gh | 5.2cde | 5.5cd | 1.0ij | 2.2hij | 8.1a | 2.7gh | 2.5gh | 3.8efg | 2.3hi | 7.8ab | 8.2a | 4.8def | 3.4fgh | 6.3bc | *** |
∑Esters | 1.0h | 2.4gh | 4.2gh | 4.4gh | 94.5f | 4.3gh | 54.0fg | 191.3e | 490.3b | 1055.3a | 315.6d | 453.9bc | 434.7c | 405.8c | 309.8d | 277.2d | *** |
β-Myrcene | 33.8de | n.d. | 176.0a | 20.8de | 23.1de | n.d. | 126.1abc | 15.3de | 137.8abc | 1.8e | 15.4de | 162.4ab | 1.0e | 2.3e | 88.3bcd | 80.7cd | ** |
D-Limonene | 1.0a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | *** |
Ocimene (isomers E and Z) | 1.8d | n.d. | 7.7cd | 2.3d | 1.0d | n.d. | 13.4bc | 1.7d | 15.4bc | n.d. | 2.4d | 34.4a | n.d. | n.d. | 16.6bc | 21.3b | *** |
γ-Pyronene | 3.1c | n.d. | 9.0bc | 2.5c | 1.0c | n.d. | 13.6b | 1.4c | 16.5b | n.d. | 2.9c | 37.7a | n.d. | n.d. | 17.3b | n.d. | *** |
Linalool oxide I | 19.2bc | 1.0c | 141.8a | 45.1b | 13.7bc | 1.3.c | 116.3a | 18.0bc | 26.7bc | 1.2c | 9.3bc | 31.3bc | n.d. | 6.8c | 31.9bc | 11.5bc | *** |
Linalool oxide II | 2.1efgh | 1.1h | 30.5a | 1.0gh | 1.9fgh | 1.3gh | 18.4b | 2.1efgh | 5.0de | 1.8fgh | 5.6d | 4.7def | 1.2gh | 3.2defgh | 13.9c | 4.1defg | *** |
Linalool | 31.7b | 1.0b | 364.8a | 56.3b | 22.4b | 1.1b | 477.4a | 23.3b | 50.1b | 3.8b | 28.2b | 46.8b | 2.5b | 4.4b | 58.5b | 35.1b | * |
∑Terpenes | 19.1bc | 1.0c | 161.7a | 23.1bc | 12.8c | 1.2c | 176.5a | 12.3c | 54.5bc | 2.6c | 16.2bc | 71.3b | 1.6c | 4.0c | 53.7bc | 36.1bc | *** |
γ-Valerolactone | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.1c | 1.9b | 3.6a | *** |
Butyrolactone | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.2bc | 1.0c | 1.4b | 3.3a | *** |
∑Lactones | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0d | 1.5c | 2.2b | 4.8a | *** |
Trimethyl-pyrazine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 4.1a | n.d. | 1.0b | n.d. | *** |
Isophorone | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.s. |
Benzonitrile | n.d. | n.d. | n.d. | n.d. | 2.9ef | 1.8f | 1.0f | 1.0f | 8.1cd | 9.9bc | 5.7de | 12.6b | n.d. | 12.9b | 22.1a | 20.2a | *** |
o-Guaiacol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0a | n.d. | n.d. | n.d. | *** |
∑Miscellaneous | n.d. | n.d. | n.d. | n.d. | 2.9d | 1.8d | 1.0d | 1.0d | 92.2a | 9.9cd | 5.7d | 12.6cd | 56.6b | 12.9cd | 30.3c | 20.2cd | *** |
2.1.3. Acids
2.1.4. Esters
2.1.5. Pyrazines
2.2. Chemometric Analysis of the Volatile Content Evolution along the Processing of Cocoa: Venn Diagrams and PCA
3. Materials and Methods
3.1. Plant Material
3.2. Popular Ecuadorian Methods of Fermentation and Drying
3.3. Sample Preparation and HS-SPME Extraction Conditions
3.4. GC–MS Instrumental Parameters
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. flavor chemistry of cocoa and cocoa products-An overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; de Walle, D.V.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—A review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Quelal-Vásconez, M.A.; Lerma-García, M.J.; Pérez-Esteve, É.; Talens, P.; Barat, J.M. Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 448–478. [Google Scholar] [CrossRef]
- Michel, S.; Baraka, L.F.; Ibañez, A.J.; Mansurova, M. Mass spectrometry-based flavor monitoring of Peruvian chocolate fabrication process. Metabolites 2021, 11, 71. [Google Scholar] [CrossRef]
- Rottiers, H.; Tzompa Sosa, D.A.; Lemarcq, V.; De Winne, A.; De Wever, J.; Everaert, H.; Bonilla Jaime, J.A.; Dewettinck, K.; Messens, K. A multipronged flavor comparison of Ecuadorian CCN51 and Nacional cocoa cultivars. Eur. Food Res. Technol. 2019, 245, 2459–2478. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Contreras-Ramos, S.M.; Orozco-Avila, I.; Jaramillo-Flores, E.; Lugo-Cervantes, E. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 2012, 132, 277–288. [Google Scholar] [CrossRef]
- Schwan, R.F.; Wheals, A.E. The microbiology of cocoa fermentation and its role in chocolate quality. Crit. Rev. Food Sci. Nutr. 2004, 44, 205–221. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Gysel, L.; Maridueña-Zavala, M.G.; Molina-Miranda, M.J. Time-related changes in volatile compounds during fermentation of bulk and fine-flavor cocoa (Theobroma cacao) beans. J. Food Qual. 2018, 2018, 1758381. [Google Scholar] [CrossRef]
- Febrianto, N.A.; Zhu, F. Changes in the composition of methylxanthines, polyphenols, and volatiles and sensory profiles of cocoa beans from the sul 1 genotype affected by fermentation. J. Agric. Food Chem. 2020, 68, 8658–8675. [Google Scholar] [CrossRef]
- Biehl, B.; Voigt, J. Biochemistry of cocoa flavour precursors. In Proceedings of the 12th International Cocoa Research Conference, Salvador, Brazil, 20–25 October 1996. [Google Scholar]
- Sarbu, I.; Csutak, O. The microbiology of cocoa fermentation. In Caffeinated and Cocoa Based Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier: Oxford, UK, 2019; Volume 8, pp. 423–446. [Google Scholar] [CrossRef]
- Nair, K.P. Cocoa (Theobroma cacao L.). In Tree Crops; Nair, K.P., Ed.; Springer: Cham, Switzerland, 2021; pp. 153–213. [Google Scholar] [CrossRef]
- Kyi, T.M.; Daud, W.R.W.; Mohammad, A.B.; Samsudin, M.W.; Kadhum, A.A.H.; Talib, M.Z.M. The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. Int. J. Food Sci. Technol. 2005, 40, 323–331. [Google Scholar] [CrossRef]
- Afoakwa, E.O. Chocolate Science and Technology, 2nd ed.; Wiley-Blackwell Publishers: Oxford, UK, 2010; pp. 3–82. [Google Scholar]
- Díaz-Montenegro, J. Livelihood Strategies and Risk Behavior of Cacao Producers in Ecuador: Effects of National Policies to Support Cacao Farmers and Specialty Cacao Landraces. Ph.D. Thesis, Universitat Politècnica de Catalunya, Institut Universitari de Recerca en Ciència i Tecnologies de la Sostenibilitat, Barcelona, Spain, 2019. [Google Scholar]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M.E. Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res. Int. 2011, 44, 250–258. [Google Scholar] [CrossRef]
- Fadel, H.H.M.; Abdel Mageed, M.A.; Abdel Samad, A.K.M.E.; Lotfy, S.N. Cocoa substitute: Evaluation of sensory qualities and flavour stability. Eur. Food Res. Technol. 2006, 223, 125–131. [Google Scholar] [CrossRef]
- Ziegleder, G.; Biehl, B. Analysis of cocoa flavour components and flavour precursors. In Modern Methods of Plant Analysis; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin, Germany, 1988; pp. 289–299. [Google Scholar]
- Frauendorfer, F.; Schieberle, P. Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. J. Agric. Food Chem. 2006, 54, 5521–5529. [Google Scholar] [CrossRef]
- Batista, N.N.; Ramos, C.L.; Dias, D.R.; Pinheiro, A.C.M.; Schwan, R.F. The impact of yeast starter cultures on the microbial communities and volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate. J. Food Sci. Technol. 2016, 53, 1101–1110. [Google Scholar] [CrossRef]
- Assi-Clair, B.J.; Koné, M.K.; Kouamé, K.; Lahon, M.C.; Berthiot, L.; Durand, N.; Lebrun, M.; Julien-Ortiz, A.; Maraval, I.; Boulanger, R.; et al. Effect of aroma potential of Saccharomyces cerevisiae fermentation on the volatile profile of raw cocoa and sensory attributes of chocolate produced thereof. Eur. Food Res. Technol. 2019, 245, 1459–1471. [Google Scholar] [CrossRef]
- Rottiers, H.; Tzompa Sosa, D.A.; De Winne, A.; Ruales, J.; De Clippeleer, J.; De Leersnyder, I.; De Wever, J.; Everaert, H.; Messens, K.; Dewettinck, K. Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. Eur. Food Res. Technol. 2019, 245, 1917–1937. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int. J. Food Microbiol. 2020, 333, 108796. [Google Scholar] [CrossRef]
- Lee, A.H.; Neilson, A.P.; O’Keefe, S.F.; Ogejo, J.A.; Huang, H.; Ponder, M.; Chu, H.S.S.; Jin, Q.; Pilot, G.; Stewart, A.C. A laboratory-scale model cocoa fermentation using dried, unfermented beans and artificial pulp can simulate the microbial and chemical changes of on-farm cocoa fermentation. Eur. Food Res. Technol. 2019, 245, 511–519. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Utrilla-Vázquez, M.; Vallejo-Cardona, A.; Roblero-Pérez, D.B.; Lugo-Cervantes, E. Thermal properties and volatile compounds profile of commercial dark-chocolates from different genotypes of cocoa beans (Theobroma cacao L.) from Latin America. Food Res. Int. 2020, 136, 109594. [Google Scholar] [CrossRef]
- Frauendorfer, F.; Schieberle, P. Changes in key aroma compounds of criollo cocoa beans during roasting. J Agric Food Chem. 2008, 56, 10244–10251. [Google Scholar] [CrossRef]
- Costa Castro Alves, V.; Flavia Azevedo da Penha, M.; de Oliveira Frederico Pinto, N.; dos Santos Garruti, D. Volatile compounds profile of Musa FHIA 02: An option to counter losses by black sigatoka. Nat. Prod. J. 2012, 2, 55–60. [Google Scholar] [CrossRef]
- Li, N. Fungal Volatile Compounds: Small Molecules with Big Roles in Plant-Fungal and Fungal-Fungal Interactions. Ph.D. Thesis, The Pensylvania State University, State College, PA, USA, 2018. [Google Scholar]
- Raffo, A.; Carcea, M.; Castagna, C.; Magrì, A. Improvement of a headspace solid phase microextraction-gas chromatography/mass spectrometry method for the analysis of wheat bread volatile compounds. J. Chromatogr. A 2015, 1406, 266–278. [Google Scholar] [CrossRef]
- Ziegleder, G. Linalool contents as characteristic of some flavor grade cocoas. Z. Lebensm. Unters. Forch. 1990, 191, 306–309. [Google Scholar] [CrossRef]
- Collin, S.; Fisette, T.; Pinto, A.; Souza, J.; Rogez, H. Discriminating aroma compounds in five cocoa bean genotypes from two Brazilian states: White kerosene-like catongo, red whisky-like FL89 (Bahia), Forasteros IMC67, PA121 and P7 (Pará). Molecules 2023, 28, 1548. [Google Scholar] [CrossRef]
- Ziegleder, G. Flavour development in cocoa and chocolate. In Industrial Chocolate Manufacture and Use, 4th ed.; Beckett, S.T., Fowler, M.S., Ziegler, G.R., Eds.; Blackwell Publishing: Oxford, UK, 2009; pp. 169–191. [Google Scholar] [CrossRef]
- Utrilla-Vázquez, M.; Rodríguez-Campos, J.; Avendaño-Arazate, C.H.; Gschaedler, A.; Lugo-Cervantes, E. Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Res. Int. 2020, 129, 108834. [Google Scholar] [CrossRef]
- Qin, X.W.; Lai, J.X.; Tan, L.H.; Hao, C.Y.; Li, F.P.; He, S.Z.; Song, Y.H. Characterization of volatile compounds in Criollo, Forastero, and Trinitario cocoa seeds (Theobroma cacao L.) in China. Int. J. Food Prop. 2017, 20, 2261–2275. [Google Scholar] [CrossRef]
- Etschmann, M.M.W.; Sell, D.; Schrader, J. Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol. Bioeng. 2005, 92, 624–634. [Google Scholar] [CrossRef]
- Reineccius, G.A.; Keeney, P.G.; Weissberger, W. Factors affecting the concentration of pyrazines in cocoa beans. J. Agric. Food Chem. 1972, 20, 202–206. [Google Scholar] [CrossRef]
- Erazo Solorzano, C.Y.; Disca, V.; Muñoz-Redondo, J.M.; Tuárez García, D.A.; Sánchez-Parra, M.; Carrilo Zenteno, M.D.; Moreno-Rojas, J.M.; Rodríguez-Solana, R. Effect of drying technique on the volatile content of Ecuadorian bulk and fine-flavor cocoa. Foods 2023, 12, 1065. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Characterization of fennel extracts and quantification of estragole: Optimization and comparison of accelerated solvent extraction and Soxhlet techniques. Ind. Crops Prod. 2014, 52, 528–536. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erazo Solorzano, C.Y.; Tuárez García, D.A.; Edison Zambrano, C.; Moreno-Rojas, J.M.; Rodríguez Solana, R. Monitoring Changes in the Volatile Profile of Ecuadorian Cocoa during Different Steps in Traditional On-Farm Processing. Plants 2023, 12, 3904. https://doi.org/10.3390/plants12223904
Erazo Solorzano CY, Tuárez García DA, Edison Zambrano C, Moreno-Rojas JM, Rodríguez Solana R. Monitoring Changes in the Volatile Profile of Ecuadorian Cocoa during Different Steps in Traditional On-Farm Processing. Plants. 2023; 12(22):3904. https://doi.org/10.3390/plants12223904
Chicago/Turabian StyleErazo Solorzano, Cyntia Yadira, Diego Armando Tuárez García, Carlos Edison Zambrano, José Manuel Moreno-Rojas, and Raquel Rodríguez Solana. 2023. "Monitoring Changes in the Volatile Profile of Ecuadorian Cocoa during Different Steps in Traditional On-Farm Processing" Plants 12, no. 22: 3904. https://doi.org/10.3390/plants12223904
APA StyleErazo Solorzano, C. Y., Tuárez García, D. A., Edison Zambrano, C., Moreno-Rojas, J. M., & Rodríguez Solana, R. (2023). Monitoring Changes in the Volatile Profile of Ecuadorian Cocoa during Different Steps in Traditional On-Farm Processing. Plants, 12(22), 3904. https://doi.org/10.3390/plants12223904