In Vitro Conservation of Mexican Garlic Varieties by Minimal Growth
Abstract
:1. Introduction
2. Results
2.1. Shoot Height
2.2. Survival and Contamination
2.3. Regeneration and Recovery
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Initial Explants and Culture Conditions
4.3. Minimal Growth Experiment and Data Collection
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelrahman, M.; Hirata, S.; Mukae, T.; Yamada, T.; Sawada, Y.; El-Syaed, M.; Yamada, Y.; Sato, M.; Hirai, M.Y.; Shigyo, M. Comprehensive Metabolite Profiling in Genetic Resources of Garlic (Allium sativum L.) Collected from Different Geographical Regions. Molecules 2021, 26, 1415. [Google Scholar] [CrossRef] [PubMed]
- Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, K.; Han, X.; Zhao, D.; Zheng, Y.; Chao, J.; Gou, J.; Kong, F.; Zhang, C.-S. The Antifungal Effect of Garlic Essential Oil on Phytophthora nicotianae and the Inhibitory Component Involved. Biomolecules 2019, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Botas, J.; Fernandes, Â.; Barros, L.; Alves, M.J.; Carvalho, A.M.; Ferreira, I.C.F.R. A comparative study of black and white Allium sativum L.: Nutritional composition and bioactive properties. Molecules 2019, 24, 11. [Google Scholar] [CrossRef]
- UPOV. International Union for the Protection of New Varieties of Plants. 2021. Available online: https://www.upov.int/portal/index.html.es (accessed on 6 May 2023).
- Mishra, R.K.; Jaiswal, R.K.; Kumar, D.; Saabale, P.R.; Singh, A. Management of major diseases and insect pests of onion and garlic: A comprehensive review. J. Plant Breed. Crop. Sci. 2014, 6, 160–170. [Google Scholar] [CrossRef]
- Sharrock, S.; Hoft, R.; de Souza Dias, B.F. An overview of recent progress in the implementation of the Global Strategy for Plant Conservation—A global perspective. Rodriguesia 2018, 69, 1489–1511. [Google Scholar] [CrossRef]
- Volk, G.M.; Bretting, P.K.; Byrne, P.F. Survey identifies essential plant genetic resources training program components. Crop Sci. 2019, 59, 2308–2316. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. 2023. Available online: https://www.fao.org (accessed on 6 May 2023).
- Gulati, R. Strategies for sustaining plant germplasm evaluation and conservation a review. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2018, 4, 313–320. [Google Scholar] [CrossRef]
- Oseni, O.M.; Pande, V.; Nailwal, T.K. A review on plant tissue culture, a technique for propagation and conservation of endangered plant species. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3778–3786. [Google Scholar] [CrossRef]
- Panis, B.; Nagel, M.; den Houwe, I.V. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef]
- De Lacerda, L.F.; Gomes, H.T.; Bartos, P.M.C.; Vasconcelos, J.M.; Vasconcelos-Filho, S.C.; Silva-Cardoso, I.M.A.; Scherwinski-Pereira, J.E. Growth, anatomy and histochemistry of fast growing species under in vitro conservation through mineral oil and low-temperature combination. Plant Cell Tiss. Organ Cult. 2021, 144, 143–156. [Google Scholar] [CrossRef]
- Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell. Dev. Biol. Plant. 2011, 47, 5–16. [Google Scholar] [CrossRef]
- Benke, A.; Kuldip; Shelke, P.; Singh, M. Slow growth in vitro conservation studies in garlic. J. Allium Res. 2018, 1, 98–101. [Google Scholar]
- Pardo, A.; Rivero, S.; Alvarado, G. Conservación in vitro de microbulbos de ajo (Allium sativum L.). Bioagro 2014, 25, 115–122. [Google Scholar]
- Hassan, N.A.; El-awady, A.A.; Gaber, A.; El-awady, M.; Khalaf, A. Slow-growth in vitro conservation of garlic cultivars grow in Egypt: Chemical characterization and molecular evaluation. Glob. J. Mol. Sci. 2007, 2, 67–75. [Google Scholar]
- Ruta, C.; Lambardi, M.; Ozudogru, E.A. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Biodivers. Conserv. 2020, 29, 3495–3532. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Dunstan, D.I.; Short, K.C. Improved growth of tissue culture of the onion, Allium cepa. Physiol. Plant 1977, 41, 70–72. [Google Scholar] [CrossRef]
- Khoury, C.; Laliberté, B.; Guarino, L. Trends in ex situ conservation of plant genetic resources: A review of global crop and regional conservation strategies. Genet. Resour. Crop. Evol. 2010, 57, 625–639. [Google Scholar] [CrossRef]
- Tirado-Pérez, B.; Sandoval-Cancino, G. Cryopreservation of plant genetic resources: A legacy for humanity. Afr. J. Biotechnol. 2022, 21, 55–63. [Google Scholar]
- Byrne, P.F.; Volk, G.M.; Gardner, C.; Gore, M.A.; Simon, P.W.; Smith, S. Sustaining the future of plant breeding: The critical role of the USDA-ARS national plant germplasm system. Crop Sci. 2018, 58, 451–468. [Google Scholar] [CrossRef]
- Nievola, C.C.; Carvalho, C.P.; Carvalho, V.; Rodrigues, E. Rapid responses of plants to temperature changes. Temperature 2017, 4, 371–405. [Google Scholar] [CrossRef]
- Li, S.L.; Li, Z.G.; Yang, L.T.; Li, Y.R.; He, Z.L. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. Sugar Tech. 2018, 20, 11–20. [Google Scholar] [CrossRef]
- Mawia, R.S.; Saleem, H.Z.; Fahed, B.; Ayman, S.O. Impact of sorbitol-induced osmotic stress on some biochemical traits of potato in vitro. Iraqi J. Agric. Sci. 2020, 51, 1038–1047. [Google Scholar] [CrossRef]
- Sotiropoulos, T.E.; Molassiotis, A.N.; Mouhtaridou, G.I. Sucrose and sorbitol effects on shoot growth and proliferation in vitro, nutritional status and peroxidase and catalase isoenzymes of M 9 and MM 106 apple (Malus domestica Borkh.) rootstocks. Eur. J. Hortic. Sci. 2006, 71, 114–119. [Google Scholar]
- Gelmesa, D.; Dechassa, N.; Mohammed, W.; Gebre, E.; Monneveux, P.; Bündig, C.; Winkelmann, T. In vitro screening of potato genotypes for osmotic stress tolerance. Open Agric. 2017, 2, 308–316. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Mavrommati, E.; Kartsonas, E.; Petropoulos, S.A. Effect of temperature and sucrose on in vitro seed germination and bulblet production of Pancratium maritimum L. Agronomy 2022, 12, 2786. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Jeong, J.H.; Lee, J.S.; Jeon, J.O.; Park, Y.U.; Min, J.H.; Chang, W.B.; Lee, S.Y.; Youn, C.K.; Kim, K.H. Multiple shoot induction and bulb mass proliferation system by in vitro immature spathe culture of elephant garlic (Allium ampeloprasum L.). Korean J. Plant Res. 2018, 31, 355–362. [Google Scholar] [CrossRef]
- Youssef, N.M.; Shaaban, S.A.; Ghareeb, Z.F.; Taha, L.S. In vitro bulb formation of direct and indirect regeneration of Lilium orientalis cv. “Starfighter” plants. BNRC 2020, 43, 211. [Google Scholar] [CrossRef]
- Niino, T.; Arizaga, M.V. Cryopreservation for preservation of potato genetic resources. Breed. Sci. 2015, 65, 41–52. [Google Scholar] [CrossRef]
- De Souza Mendes, M.I.; Verde, D.D.S.V.; de Souza Ramos, A.P.; da Silva Gesteira, A.; dos Santos Soares Filho, W.; da Silva Souza, A. In vitro conservation of citrus rootstocks using paclobutrazol and analysis of plant viability and genetic stability. Sci. Hortic. 2021, 286, 110231. [Google Scholar] [CrossRef]
- Cioloca, M.; Tican, A.; Bădărău, C.; Bărăscu, N.; Popa, M. In vitro medium term conservation of sweet potato genotypes using mannitol and sorbitol. Rom. Agric. Res. 2021, 38, 123–132. [Google Scholar] [CrossRef]
- Dos Santos Silva, S.S.; de Souza, E.H.; Souza, F.V.D.; Nepomuceno, C.F.; de Carvalho Costa, M.A.P. Micropropagation and in vitro conservation of Alcantarea nahoumii (Bromeliaceae), an endemic and endangered species of the brazilian atlantic forest. Acta Sci. Biol. Sci. 2020, 42, e52940. [Google Scholar] [CrossRef]
- Singh, C.R. Review on problems and its remedy in plant tissue culture. Asian J. Biol. Sci. 2018, 11, 1651672. [Google Scholar] [CrossRef]
- Orlikowska, T.; Nowak, K.; Reed, B. Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ Cult. 2017, 128, 487–508. [Google Scholar] [CrossRef]
- Diriba-Shiferaw, G. Review of management strategies of constraints in garlic (Allium sativum L.) production. J. Agric. Sci. 2016, 11, 186–207. [Google Scholar] [CrossRef]
- Pitekelabou, R.; Aïdam, A.V.; Kokou, K. Influence of various carbohydrates on the in vitro micropropagation of Nauclea diderrichii (De Wild T. Durand) Merrill, an endangered forest species in Togo. Afr. J. Biotechnol. 2015, 14, 1283–1289. [Google Scholar] [CrossRef]
- Reid, S.J.; Abratt, V.R. Sucrose utilization in bacteria: Genetic organization and regulation. Appl. Microbiol. Biotechnol. 2005, 67, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.S.; Ali, N. Biotic contamination and possible ways of sterilization: A review with reference to bamboo micropropagation. Braz. Arch. Biol. Technol. 2018, 60, e16160485. [Google Scholar] [CrossRef]
- Wei, Z.Z.; Liu, M.Y.; Li, Z.; Zhou, Y.J. Research on the separation and bacteriostasis of garlic endophytes. Heilongjiang Agric. Sci. 2013, 12, 5–8. [Google Scholar]
- Costa Júnior, P.S.P.; Cardoso, F.P.; Martins, A.D.; Buttrós, V.H.T.; Pasqual, M.; Dias, D.R.; Schwan, R.F.; Dória, J. Endophytic bacteria of garlic roots promote growth of micropropagated meristems. Microbiol. Res. 2020, 241, 126585. [Google Scholar] [CrossRef] [PubMed]
- Sarropoulou, V.; Maloupa, E.; Grigoriadou, K. Cretan Dittany (Origanum dictamnus L.), a valuable local endemic plant: In vitro regeneration potential of different type of explants for conservation and sustainable exploitation. Plants 2023, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molphe-Balch, E.; Pérez-Reyes, M.E.; De La Rosa-Carrillo, M.L. In vitro conservation of Turbinicarpus (Cactaceae) under slow growth conditions. Haseltonia 2012, 17, 51–57. [Google Scholar] [CrossRef]
- Heredia, G.; Delgadillo, S. El Ajo en Mexico: Origen, Mejoramiento Genético y Tecnología de Producción; SAGAR, INIFAP, Campo Experimental Bajío: Celaya, Mexico, 2000; Volume 3, 102p. [Google Scholar]
Days | ||||||
---|---|---|---|---|---|---|
Temperature | 30 | 60 | 90 | 180 | 270 | 365 |
5 °C | 21.08 ± 1.04 b | 55.04 ± 4.59 b | 75.04 ± 6.33 a | 106.37 ± 5.95 a | 108.28 ± 6.02 a | 106.47 ± 6.23 a |
18 °C | 59.10 ± 4.42 a | 81.39 ± 5.83 a | 82.69 ± 5.94 a | 82.79 ± 6.12 b | 81.94 ± 6.20 b | 81.97 ± 6.20 b |
25 °C | 58.50 ± 6.66 a | 71.29 ± 7.79 ab | 65.70 ± 7.00 a | 69.11 ± 7.46 b | 68.99 ± 7.41 b | 69.49 ± 7.60 b |
Culture Medium | ||||||
M1: BDS + 100.0 g L−1 suc | 40.37 ± 4.33 abc | 57.74 ± 5.41 b | 61.60 ± 5.57 a | 71.52 ± 8.04 a | 69.53 ± 7.86 a | 67.54 ± 7.24 b |
M2: MS (25%) + 45.0 g L−1 suc | 48.66 ± 7.16 abc | 64.56 ± 6.44 ab | 72.45 ± 7.18 a | 81.45 ± 8.79 a | 76.54 ± 8.10 a | 73.96 ± 7.97 ab |
M3: MS + 15.0 g L−1 mannitol + 15.0 g L−1 suc | 37.45 ± 5.35 bc | 62.91 ± 8.06 ab | 70.69 ± 8.83 a | 85.44 ± 10.79 a | 86.08 ± 10.99 a | 86.77 ± 11.14 ab |
M4: MS + 72.87 g L−1 sorbitol | 31.60 ± 5.34 c | 60.18 ± 10.76 ab | 69.53 ± 11.20 a | 88.41 ± 10.74 a | 95.60 ± 11.26 a | 96.85 ± 11.55 ab |
M5: MS + 68.46 g L−1 suc + 36.43 g L−1 sorbitol | 61.80 ± 10.05 a | 94.47 ± 9.81 a | 91.20 ± 8.70 a | 106.41 ± 7.73 a | 106.67 ± 7.88 a | 105.95 ± 8.08 a |
M6: MS + 30.0 g L−1 suc | 57.47 ± 10.49 ab | 75.58 ± 10.72 ab | 81.38 ± 11.66 a | 83.32 ± 11.84 a | 84.00 ± 11.79 a | 84.80 ± 11.90 ab |
Days | ||||||
---|---|---|---|---|---|---|
Temperature | 30 | 60 | 90 | 180 | 270 | 365 |
5 °C | 22.37 ± 1.03 b | 50.30 ± 3.49 c | 78.73 ± 5.16 b | 109.36 ± 5.05 a | 115.20 ± 4.98 a | 115.85 ± 5.06 a |
18 °C | 88.22 ± 4.98 a | 116.09 ± 3.65 a | 112.76 ± 4.43 a | 115.54 ± 3.49 a | 116.86 ± 3.57 a | 116.57 ± 3.54 a |
25 °C | 79.95 ± 6.52 a | 92.05 ± 6.48 b | 89.50 ± 6.35 b | 90.36 ± 6.82 b | 87.13 ± 6.66b | 89.17 ± 6.70 b |
Culture Medium | ||||||
M1: BDS + 100.0 g L−1 suc | 57.46 ± 8.26 b | 69.63 ± 7.85 b | 75.32 ± 7.83 c | 79.58 ± 7.61 b | 77.27 ± 7.65 b | 78.61 ± 7.35 b |
M2: MS (25%) + 45.0 g L−1 suc | 74.82 ± 9.29 ab | 89.12 ± 7.75 ab | 99.16 ± 6.15 abc | 112.70 ± 6.68 a | 113.25 ± 5.88 a | 112.92 ± 5.90 a |
M3: MS + 15.0 g L−1 mannitol + 15.0 g L−1 suc | 54.23 ± 7.73 bc | 80.19 ± 9.22 ab | 87.21 ± 8.52 abc | 98.98 ± 8.99 ab | 100.18 ± 9.14 ab | 101.29 ± 9.27 ab |
M4: MS + 72.87 g L−1 sorbitol | 34.77 ± 4.99 c | 73.63 ± 10.13 b | 80.66 ± 9.40 bc | 98.58 ± 7.85 ab | 106.71 ± 8.31 a | 107.42 ± 8.42 a |
M5: MS + 68.46 g L−1 suc + 36.43 g L−1 sorbitol | 80.96 ± 9.50 a | 102.02 ± 6.54 a | 106.66 ± 6.07 ab | 123.00 ± 3.21 a | 124.06 ± 3.14 a | 124.66 ± 3.12 a |
M6: MS + 30.0 g L−1 suc | 78.84 ± 10.19 a | 102.27 ± 8.44 a | 112.97 ± 7.62 a | 117.67 ± 7.71 a | 116.91 ± 7.89 a | 118.29 ± 7.91 a |
Days | ||||||
---|---|---|---|---|---|---|
Temperature | 30 | 60 | 90 | 180 | 270 | 365 |
5 °C | 23.26 ± 1.61b | 40.13 ± 3.47 b | 67.44 ± 6.18 b | 89.23 ± 7.62 a | 88.26 ± 7.47 a | 87.96 ± 7.56 a |
18 °C | 69.81 ± 7.23 a | 101.32 ± 27.29 a | 75.64 ± 7.53 ab | 73.42 ± 7.65 a | 74.66 ± 7.48 a | 74.18 ± 7.45 a |
25 °C | 87.87 ± 6.82 a | 92.62 ± 6.68 ab | 90.21 ± 6.55 a | 89.99 ± 6.73 a | 87.19 ± 6.59 a | 88.25 ± 6.79 a |
Culture Medium | ||||||
M1: BDS + 100.0 g L−1 suc | 39.62 ± 7.77 c | 44.45 ± 7.75 b | 47.85 ± 7.65 b | 51.80 ± 8.93 b | 49.24 ± 8.31 b | 49.41 ± 8.43 b |
M2: MS (25%) + 45.0 g L−1 suc | 61.03 ± 9.01 abc | 69.07 ± 8.93 ab | 77.04 ± 8.90 ab | 86.85 ± 9.89 ab | 84.71 ± 9.58 ab | 83.20 ± 9.75 ab |
M3: MS + 15.0 g L−1 mannitol + 15.0 g L−1 suc | 50.95 ± 9.64 bc | 59.20 ± 9.65 ab | 64.87 ± 9.72 ab | 76.88 ± 10.95 ab | 74.85 ± 10.67 ab | 75.42 ± 10.91 ab |
M4: MS + 72.87 g L−1 sorbitol | 52.57 ± 9.39 bc | 69.38 ± 10.36 ab | 80.28 ± 9.61 ab | 90.46 ± 10.45 a | 89.77 ± 10.21 a | 91.25 ± 10.37 a |
M5: MS + 68.46 g L−1 suc + 36.43 g L−1 sorbitol | 72.65 ± 11.06 ab | 84.42 ± 10.37 ab | 97.56 ± 10.30 a | 94.04 ± 10.97 a | 94.69 ± 10.20 a | 95.16 ± 10.40 a |
M6: MS + 30.0 g L−1 suc | 85.06 ± 10.23 a | 141.62 ± 52.62 a | 98.99 ± 8.53 a | 105.26 ± 8.76 a | 106.95 ± 8.69 a | 106.33 ± 8.63 a |
Pebeco | Tacátzcuaro Especial | Huerteño | ||||
---|---|---|---|---|---|---|
Temperature | Survival | Contam. | Survival | Contam. | Survival | Contam. |
5 °C | 72.2 ± 7.6 a | 47.2 ± 8.4 c | 95.8 ± 2.9 a | 14.6 ± 5.1 a | 58.3 ± 7.2 a | 43.8 ± 7.2 b |
18 °C | 13.9 ± 5.8 b | 100.0 ± 0.0 a | 81.3 ± 5.7 ab | 27.1 ± 6.5 a | 33.3 ± 6.9 b | 81.3 ± 5.7 a |
25 °C | 22.2 ± 7.0 b | 75.0 ± 7.3 b | 68.1 ± 6.9 b | 29.8 ± 6.7 a | 25.0 ± 6.3 b | 43.8 ± 7.2 b |
Culture Medium | ||||||
M1: BDS + 100.0 g L−1 suc | 22.2 ± 10.1 b | 83.3 ± 9.0 a | 75.0 ± 9.0 a | 33.3 ± 9.9 a | 16.7 ± 7.8 a | 54.2 ± 10.4 a |
M2: MS (25%) + 45.0 g L−1 suc | 16.7 ± 9.0 b | 88.9 ± 7.62 a | 88.0 ± 6.9 a | 29.1 ± 9.5 a | 33.3 ± 9.8 a | 66.7 ± 9.8 a |
M3: MS + 15.0 g L−1 mannitol + 15.0 g L−1 suc | 22.2 ± 10.1 b | 83.3 ± 9.0 a | 79.2 ± 8.5 a | 16.7 ± 7.8 a | 33.3 ± 9.8 a | 62.5 ± 10.1 a |
M4: MS + 72.87 g L−1 sorbitol | 44.4 ± 12.1 ab | 38.9 ± 11.8 b | 75.0 ± 9.0 a | 20.8 ± 8.5 a | 54.2 ± 10.4 a | 50.0 ± 10.4 a |
M5: MS + 68.46 g L−1 suc + 36.43 g L−1 sorbitol | 66.7 ± 11.4 a | 72.2 ± 10.9 ab | 91.3 ± 6.0 a | 26.1 ± 9.4 a | 54.2 ± 10.4 a | 54.2 ± 10.4 a |
M6: MS + 30.0 g L−1 suc | 44.4 ± 12.1 ab | 77.8 ± 10.1 a | 83.3 ± 7.8 a | 16.7 ± 7.8 a | 41.7 ± 10.3 a | 50.0 ± 10.4 a |
Pebeco | Tacátzcuaro Especial | Huerteño | ||||
---|---|---|---|---|---|---|
Temperature | Plant Regen. (%) | Number of RegeneratedPlants | Plant Regen. (%) | Number of RegeneratedPlants | Plant Regen. (%) | Number of RegeneratedPlants |
5 °C | 44.4 ± 8.4 a | 16 | 60.4 ± 7.1 a | 29 | 33.3 ± 6.9 a | 16 |
18 °C | 0 ± 0 b | 0 | 14.6 ± 5.1 b | 7 | 2.1 ± 2.1 b | 1 |
25 °C | 5.5 ± 3.9 b | 2 | 2.1 ± 2.1 b | 1 | 0 ± 0 b | 0 |
Culture Medium | ||||||
M1: BDS + 100.0 g L−1 suc | 16.7 ± 9.0 a | 3 | 20.8 ± 8.4 ab | 5 | 8.3 ± 5.8 a | 2 |
M2: MS (25%) + 45.0 g L−1 suc | 11.1 ± 7.6 a | 2 | 41.7 ± 10.3 a | 10 | 16.7 ± 7.8 a | 4 |
M3: MS + 15.0 g L−1 mannitol + 15.0 g L−1 suc | 16.7 ± 9.03 a | 3 | 29.1 ± 9.5 ab | 7 | 12.6 ± 6.9 a | 3 |
M4: MS + 72.87 g L−1 sorbitol | 22.2 ± 10.0 a | 4 | 20.8 ± 8.5 ab | 5 | 12.6 ± 6.9 a | 3 |
M5: MS + 68.46 g L−1 suc + 36.43 g L−1 sorbitol | 16.7 ± 9.0 a | 3 | 39.1 ± 10.4 ab | 9 | 12.6 ± 6.9 a | 3 |
M6: MS + 30.0 g L−1 suc | 16.7 ± 9.0 a | 3 | 4.1 ± 4.1 b | 1 | 8.3 ± 0.8 a | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirado, B.; Gómez-Rodríguez, V.M.; Cruz-Cárdenas, C.I.; Zelaya-Molina, L.X.; Ramírez-Vega, H.; Sandoval-Cancino, G. In Vitro Conservation of Mexican Garlic Varieties by Minimal Growth. Plants 2023, 12, 3929. https://doi.org/10.3390/plants12233929
Tirado B, Gómez-Rodríguez VM, Cruz-Cárdenas CI, Zelaya-Molina LX, Ramírez-Vega H, Sandoval-Cancino G. In Vitro Conservation of Mexican Garlic Varieties by Minimal Growth. Plants. 2023; 12(23):3929. https://doi.org/10.3390/plants12233929
Chicago/Turabian StyleTirado, Bibiana, Víctor Manuel Gómez-Rodríguez, Carlos Iván Cruz-Cárdenas, Lily Xochilt Zelaya-Molina, Humberto Ramírez-Vega, and Gabriela Sandoval-Cancino. 2023. "In Vitro Conservation of Mexican Garlic Varieties by Minimal Growth" Plants 12, no. 23: 3929. https://doi.org/10.3390/plants12233929
APA StyleTirado, B., Gómez-Rodríguez, V. M., Cruz-Cárdenas, C. I., Zelaya-Molina, L. X., Ramírez-Vega, H., & Sandoval-Cancino, G. (2023). In Vitro Conservation of Mexican Garlic Varieties by Minimal Growth. Plants, 12(23), 3929. https://doi.org/10.3390/plants12233929