Soybean Variety Saedanbaek Confers a New Resistance Allele to Phytophthora sojae
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Assay for Resistance to P. sojae
2.2. Single-Marker Analysis of Variance (ANOVA)
2.3. Identification of a Resistance Locus Using Linkage Analysis
2.4. Comparison of the Rps Locus of Saedanbaek (RpsSDB) with That of Daewon (RpsDW)
2.5. Distinguished Race-Specificity of RpsSDB and RpsDW
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Evaluation of Resistance to P. sojae Isolate 2858
4.3. DNA Extraction and Single Nucleotide Polymorphism (SNP) Genotyping
4.4. Goodness-of-Fit Test and Single-Marker Analysis of Variance
4.5. Construction of Genetic Map and Linkage Analysis
4.6. Cross-Validation of the Allelic Relationship between Saedanbaek and Daewon
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, T.W.; Bradley, C.A.; Sisson, A.J.; Byamukama, E.; Chilvers, M.I.; Coker, C.M.; Collins, A.A.; Damicone, J.P.; Dorrance, A.E.; Dufault, N.S. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Prog. 2017, 18, 19–27. [Google Scholar] [CrossRef]
- Bradley, C.A.; Allen, T.W.; Sisson, A.J.; Bergstrom, G.C.; Bissonnette, K.M.; Bond, J.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; Damicone, J.P.; et al. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Prog. 2021, 22, 483–495. [Google Scholar] [CrossRef]
- Dorrance, A.E. Management of Phytophthora sojae of soybean: A review and future perspectives. Can. J. Plant Pathol. 2018, 40, 210–219. [Google Scholar] [CrossRef]
- Schmitthenner, A.F. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis. 1985, 69, 362–368. [Google Scholar] [CrossRef]
- Morris, P.F.; Ward, E. Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol. Mol. Plant Pathol. 1992, 40, 17–22. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Yu, H.; Chen, Y.; Gu, X.; Wen, J. Pathotypes of Phytophthora sojae and their distribution in Jilin, China. J. Plant Pathol. 2021, 103, 241–248. [Google Scholar] [CrossRef]
- Sugimoto, T.; Kato, M.; Yoshida, S.; Matsumoto, I.; Kobayashi, T.; Kaga, A.; Hajika, M.; Yamamoto, R.; Watanabe, K.; Aino, M.; et al. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed. Sci. 2012, 61, 511–522. [Google Scholar] [CrossRef]
- Batista, I.C.A.; Silva, M.P.C.; Silva Junior, A.L.; Arrigada, M.P.G.; de Camargo, M.P.; Figueiredo, A.; Júnior, B.T.H.; Mizubuti, E.S.G. A shift in pathotype diversity and complexity of Phytophthora sojae in Brazil. Plant Dis 2023, 107, 1968–1972. [Google Scholar] [CrossRef]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Dodds, P.N. From gene-for-gene to resistosomes: Flor’s enduring legacy. Mol. Plant-Microbe Interact. 2023, 36, 461–467. [Google Scholar] [CrossRef]
- Tremblay, V.; McLaren, D.L.; Kim, Y.M.; Strelkov, S.E.; Conner, R.L.; Wally, O.; Bélanger, R.R. Molecular assessment of pathotype diversity of Phytophthora sojae in Canada highlights declining sources of resistance in soybean. Plant Dis. 2021, 105, 4006–4013. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.-H.; Lee, S. A review and perspective on soybean (Glycine max L.) breeding for the resistance to Phytophthora sojae in Korea. Plant Breed. Biotechnol. 2020, 8, 114–130. [Google Scholar] [CrossRef]
- Chandra, S.; Choudhary, M.; Bagaria, P.K.; Nataraj, V.; Kumawat, G.; Choudhary, J.R.; Sonah, H.; Gupta, S.; Wani, S.H.; Ratnaparkhe, M.B. Progress and prospectus in genetics and genomics of Phytophthora root and stem rot resistance in soybean (Glycine max L.). Front. Genet. 2022, 13, 939182. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Chhapekar, S.S.; Vieira, C.C.; Da Silva, M.P.; Rojas, A.; Lee, D.; Liu, N.; Pardo, E.M.; Lee, Y.-C.; Dong, Z.; et al. Breeding for disease resistance in soybean: A global perspective. Theor. Appl. Genet. 2022, 135, 3773–3872. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ma, Q.; Ren, H.; Xia, Q.; Song, E.; Tan, Z.; Li, S.; Zhang, G.; Nian, H. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theor. Appl. Genet. 2017, 130, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A.; Rector, B.; Lohnes, D.; Fioritto, R.; Graef, G.; Cregan, P.; Shoemaker, R.; Specht, J. Simple sequence repeat markers linked to the soybean Rps genes for Phytophthora resistance. Crop Sci. 2001, 41, 1220–1227. [Google Scholar] [CrossRef]
- Li, Y.; Sun, S.; Zhong, C.; Wang, X.; Wu, X.; Zhu, Z. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean. Theor. Appl. Genet. 2017, 130, 1223–1233. [Google Scholar] [CrossRef]
- Lin, F.; Zhao, M.; Ping, J.; Johnson, A.; Zhang, B.; Abney, T.S.; Hughes, T.J.; Ma, J. Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B. Theor. Appl. Genet. 2013, 126, 2177–2185. [Google Scholar] [CrossRef]
- Niu, J.; Guo, N.; Sun, J.; Li, L.; Cao, Y.; Li, S.; Huang, J.; Zhao, J.; Zhao, T.; Xing, H. Fine mapping of a resistance gene RpsHN that controls Phytophthora sojae using recombinant inbred lines and secondary populations. Front. Plant Sci. 2017, 8, 538. [Google Scholar] [CrossRef]
- Sugimoto, T.; Yoshida, S.; Watanabe, K.; Aino, M.; Kanto, T.; Maekawa, K.; Irie, K. Identification of SSR markers linked to the Phytophthora resistance gene Rps1-d in soybean. Plant Breed. 2007, 127, 154–159. [Google Scholar] [CrossRef]
- Sun, S.; Wu, X.; Zhao, J.; Wang, Y.; Tang, Q.; Yu, D.; Gai, J.; Xing, H. Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae. Plant Breed. 2011, 130, 139–143. [Google Scholar] [CrossRef]
- Weng, C.; Yu, K.; Anderson, T.; Poysa, V. Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7. J. Hered. 2001, 92, 442–446. [Google Scholar] [CrossRef]
- Wu, X.-L.; Zhang, B.-Q.; Sun, S.; Zhao, J.-M.; Yang, F.; Guo, N.; Gai, J.-Y.; Xing, H. Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in Soybean. Agric. Sci. China 2011, 10, 1506–1511. [Google Scholar] [CrossRef]
- Jang, I.-H.; Kang, I.J.; Kim, J.-M.; Kang, S.-T.; Jang, Y.E.; Lee, S. Genetic mapping of a resistance locus to Phytophthora sojae in the Korean soybean cultivar Daewon. Plant Pathol. J. 2020, 36, 591–599. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, C.; Wang, X.; Duan, C.; Sun, S.; Wu, X.; Zhu, Z. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor. Appl. Genet. 2013, 126, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Sun, S.; Li, Y.; Duan, C.; Zhu, Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor. Appl. Genet. 2017, 131, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Li, Y.; Sun, S.; Duan, C.; Zhu, Z. Genetic mapping and molecular characterization of a broad-spectrum Phytophthora sojae resistance gene in Chinese soybean. Int. J. Mol. Sci. 2019, 20, 1809. [Google Scholar] [CrossRef]
- Jiang, B.; Cheng, Y.; Cai, Z.; Li, M.; Jiang, Z.; Ma, R.; Yuan, Y.; Xia, Q.; Nian, H. Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing. BMC Genet. 2020, 21, 280. [Google Scholar] [CrossRef]
- Sugimoto, T.; Yoshida, S.; Kaga, A.; Hajika, M.; Watanabe, K.; Aino, M.; Tatsuda, K.; Yamamoto, R.; Matoh, T.; Walker, D. Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica 2011, 182, 133. [Google Scholar] [CrossRef]
- Matsuoka, J.I.; Takahashi, M.; Yamada, T.; Kono, Y.; Yamada, N.; Takahashi, K.; Moriwaki, J.; Akamatsu, H. Identification of three closely linked loci conferring broad-spectrum Phytophthora sojae resistance in soybean variety Tosan-231. Theor. Appl. Genet. 2021, 134, 2151–2165. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Ping, J.; Fitzgerald, J.C.; Cai, G.; Clark, C.B.; Aggarwal, R.; Ma, J. Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean. Theor. Appl. Genet. 2021, 134, 3863–3872. [Google Scholar] [CrossRef] [PubMed]
- Van Wersch, S.; Li, X. Stronger when together: Clustering of plant NLR disease resistance genes. Trends Plant Sci. 2019, 24, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Tamborski, J.; Krasileva, K.V. Evolution of plant NLRs: From natural history to precise modifications. Annu. Rev. Plant Biol. 2020, 71, 355–378. [Google Scholar] [CrossRef]
- Burnham, K.; Dorrance, A.; Francis, D.; Fioritto, R.; St Martin, S. Rps 8, a new locus in soybean for resistance to Phytophthora sojae. Crop Sci. 2003, 43, 101–105. [Google Scholar]
- Gordon, S.G.; Martin, S.K.S.; Dorrance, A.E. Rps 8 maps to a resistance gene rich region on soybean molecular linkage group F. Crop Sci. 2006, 46, 168–173. [Google Scholar] [CrossRef]
- Gordon, S.; Kowitwanich, K.; Pipatpongpinyo, W.; Martin, S.S.; Dorrance, A. Molecular marker analysis of soybean plant introductions with resistance to Phytophthora sojae. Phytopathology 2007, 97, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Xu, P.; Wang, J.; Zhang, S.; Wu, J.; Li, W.; Chen, W.; Li, N.; Fan, S.; Wang, X. Genetic analysis and SSR mapping of gene resistance to Phytophthora sojae race 1 in soybean cv Suinong 10. Chin. J. Oil Crop Sci. 2010, 32, 462–466. [Google Scholar]
- Sahoo, D.K.; Abeysekara, N.S.; Cianzio, S.R.; Robertson, A.E.; Bhattacharyya, M.K. A novel Phytophthora sojae resistance Rps12 gene mapped to a genomic region that contains several Rps genes. PLoS ONE 2017, 12, e0169950. [Google Scholar] [CrossRef]
- Sandhu, D.; Gao, H.; Cianzio, S.; Bhattacharyya, M.K. Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics 2004, 168, 2157–2167. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Zhao, J.; Huang, J.; Yan, Q.; Xing, H.; Guo, N. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Theor. Appl. Genet. 2014, 127, 913–919. [Google Scholar] [CrossRef]
- Huang, J.; Guo, N.; Li, Y.; Sun, J.; Hu, G.; Zhang, H.; Li, Y.; Zhang, X.; Zhao, J.; Xing, H.; et al. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection. BMC Genet. 2016, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.-Y.; Xiaoming, W.; Wu, X.-F.; Xiao, Y.-N.; Zhu, Z.-D. Molecular mapping of Phytophthora resistance gene in Soybean cultivar Zaoshu18. J. Plant Genet. Resour. 2010, 11, 213–217. [Google Scholar]
- Ping, J.; Fitzgerald, J.C.; Zhang, C.; Lin, F.; Bai, Y.; Wang, D.; Aggarwal, R.; Rehman, M.; Crasta, O.; Ma, J. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean. Theor. Appl. Genet. 2016, 129, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, B.; Sun, S.; Zhao, J.; Chen, S.; Gai, J.; Xing, H. Genetic analysis and mapping of resistance to Phytophthora sojae of Pm14 in soybean. Sci. Agric. Sin. 2011, 44, 456–460. [Google Scholar]
- Zhang, J.; Xia, C.; Duan, C.; Sun, S.; Wang, X.; Wu, X.; Zhu, Z. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS ONE 2013, 8, e69799. [Google Scholar] [CrossRef]
- Zhu, Z.; Huo, Y.; Wang, X.; Huang, J.; Wu, X. Molecular identification of a novel Phytophthora resistance gene in soybean. Acta Agron. Sin. 2007, 33, 154–157. [Google Scholar]
- Jee, H.; Kim, W.; Cho, W. Occurrence of Phytophthora root rot on soybean (Glycine max) and identification of the causal fungus. RDA J. Crop Prot. 1998, 40, 16–22. [Google Scholar]
- Kang, I.J.; Kang, S.; Jang, I.H.; Jang, Y.W.; Shim, H.K.; Heu, S.; Lee, S. Identification of new isolates of Phytophthora sojae and the reactions of Korean soybean cultivars following hypocotyl inoculation. Plant Pathol. J. 2019, 35, 698. [Google Scholar] [CrossRef]
- Jang, Y.E.; Jang, I.H.; Kang, I.J.; Kim, J.-M.; Kang, S.-T.; Lee, S. Two isolate-specific resistance loci for Phytophthora sojae in the soybean Socheong2. Korean J. Breed. Sci. 2020, 52, 398–407. [Google Scholar] [CrossRef]
- You, H.J.; Kang, E.J.; Kang, I.J.; Kim, J.-M.; Kang, S.-T.; Lee, S. Identification of a locus associated with resistance to phytophthora sojae in the soybean elite line ‘CheonAl’. Korean J. Crop Sci. 2023, 68, 134–146. [Google Scholar] [CrossRef]
- Li, L.; Lin, F.; Wang, W.; Ping, J.; Fitzgerald, J.C.; Zhao, M.; Li, S.; Sun, L.; Cai, C.; Ma, J. Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean. Theor. Appl. Genet. 2016, 129, 2379–2386. [Google Scholar] [CrossRef]
- Zhong, C.; Sun, S.; Zhang, X.; Duan, C.; Zhu, Z. Fine mapping, candidate gene identification and co-segregating marker development for the Phytophthora root rot resistance gene RpsYD25. Front. Genet. 2020, 11, 799. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Liu, B.; Wang, H.; Deng, J.; Liao, Y.; Wang, Q.; Cheng, F.; Wang, X.; Wu, J. A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly. BMC Genet. 2011, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Million, C.R.; Wijeratne, S.; Cassone, B.J.; Lee, S.; Rouf Mian, M.A.; McHale, L.K.; Dorrance, A.E. Hybrid genome assembly of a major quantitative disease resistance locus in soybean toward Fusarium graminearum. Plant Genome 2019, 12, 180102. [Google Scholar] [CrossRef] [PubMed]
- Michelmore, R.W.; Meyers, B.C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998, 8, 1113–1130. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, L.; Fengler, K.; Bolar, J.; Llaca, V.; Wang, X.; Clark, C.B.; Fleury, T.J.; Myrvold, J.; Oneal, D.; et al. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat. Commun. 2021, 12, 6263. [Google Scholar] [CrossRef]
- Cook, D.E.; Lee, T.G.; Guo, X.; Melito, S.; Wang, K.; Bayless, A.M.; Wang, J.; Hughes, T.J.; Willis, D.K.; Clemente, T.E.; et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 2012, 338, 1206–1209. [Google Scholar] [CrossRef]
- Sudupak, M.A.; Bennetzen, J.L.; Hulbert, S.H. Unequal exchange and meiotic instability of disease-resistance genes in the Rp1 region of maize. Genetics 1993, 133, 119–125. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, S.; Wang, G.; Duan, C.; Wang, X.; Wu, X.; Zhu, Z. Characterization of Phytophthora resistance in soybean cultivars/lines bred in Henan province. Euphytica 2014, 196, 375–384. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Das, A.; Huang, X.; Cianzio, S.; Bhattacharyya, M.K. Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistance in soybean. Sci. Rep. 2021, 11, 16907. [Google Scholar] [CrossRef]
- Park, K.-Y.; Moon, J.-K.; Yun, H.-T.; Lee, Y.-H.; Kim, S.-L.; Ryu, Y.-H.; Kim, Y.-H.; Ku, J.-H.; Roh, J.-H.; Lee, E.-S.; et al. A new soybean cultivar for fermented soyfood and tofu with high yield, “Daepung”. Korean. J. Breed. Sci. 2005, 37, 111–112. [Google Scholar]
- Kim, H.T.; Ko, J.M.; Baek, I.Y.; Jeon, M.K.; Han, W.Y.; Park, K.Y.; Lee, B.W.; Lee, Y.H.; Jung, C.S.; Oh, K.W.; et al. Soybean cultivar for tofu, ‘Saedanbaek’ with disease resistance, and high protein content. Korean. J. Breed. Sci. 2014, 46, 295–301. [Google Scholar] [CrossRef]
- Dorrance, A.; Jia, H.; Abney, T. Evaluation of soybean differentials for their interaction with Phytophthora sojae. Plant Health Prog. 2004, 5, 9. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Lee, Y.G.; Jeong, N.; Kim, J.H.; Lee, K.; Kim, K.H.; Pirani, A.; Ha, B.K.; Kang, S.T.; Park, B.S.; Moon, J.K.; et al. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J. 2015, 81, 625–636. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
Parents and RILs | Observed 1 | Expected 1 | Goodness-of-Fit | |||||
---|---|---|---|---|---|---|---|---|
R | I | S | R | I | S | χ2 | p | |
Daepung (P1) | 50 | |||||||
Saedanbaek (P2) | 50 | |||||||
Daepung × Saedanbaek (RILs) | 25 | 4 | 43 | 34.9 | 2.25 | 34.9 | 6.05 | 0.05 |
Chr 1 | Position (bp) 2 | SNP ID | Daepung Allele (S) | Saedanbaek Allele (R) | Adjusted | R2 4 | ||
---|---|---|---|---|---|---|---|---|
Genotype | Frequency | Genotype | Frequency | p-Value 3 | ||||
3 | 3,373,644 | AX-90419199 | AA | 0.64 | GG | 0.33 | 1.54 × 10−22 | 0.81 |
3 | 3,395,315 | AX-90404495 | TT | 0.64 | CC | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,403,744 | AX-90448600 | CC | 0.64 | TT | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,403,812 | AX-90372396 | AA | 0.64 | GG | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,417,978 | AX-90354028 | CC | 0.64 | TT | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,423,161 | AX-90380038 | TT | 0.64 | CC | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,458,537 | AX-90524133 | CC | 0.64 | TT | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,464,766 | AX-90414569 | TT | 0.64 | GG | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,464,955 | AX-90387750 | AA | 0.64 | GG | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,484,755 | AX-90378648 | TT | 0.63 | GG | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,485,682 | AX-90470694 | TT | 0.64 | CC | 0.33 | 9.62 × 10−19 | 0.76 |
3 | 3,517,886 | AX-90449575 | AA | 0.64 | CC | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,554,469 | AX-90388258 | TT | 0.63 | AA | 0.36 | 3.68 × 10−16 | 0.71 |
3 | 3,695,759 | AX-90317052 | GG | 0.63 | AA | 0.37 | 4.41 × 10−23 | 0.82 |
3 | 3,709,588 | AX-90394026 | CC | 0.63 | TT | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,759,276 | AX-90440228 | CC | 0.64 | TT | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,847,841 | AX-90375748 | AA | 0.63 | GG | 0.37 | 4.41 × 10−23 | 0.82 |
3 | 3,849,443 | AX-90499181 | GG | 0.64 | AA | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 3,855,656 | AX-90467840 | CC | 0.63 | TT | 0.37 | 4.41 × 10−23 | 0.82 |
3 | 3,875,061 | AX-90449384 | TT | 0.64 | CC | 0.34 | 2.18 × 10−22 | 0.81 |
3 | 4,272,521 | AX-90417885 | GG | 0.63 | AA | 0.37 | 4.41 × 10−23 | 0.82 |
3 | 4,272,894 | AX-90347629 | TT | 0.63 | CC | 0.37 | 4.41 × 10−23 | 0.82 |
3 | 4,277,380 | AX-90310078 | TT | 0.63 | CC | 0.37 | 4.41 × 10−23 | 0.82 |
3 | 4,283,885 | AX-90465452 | TT | 0.64 | AA | 0.36 | 4.41 × 10−23 | 0.82 |
3 | 4,284,091 | AX-90328472 | CC | 0.64 | TT | 0.30 | 3.98 × 10−20 | 0.78 |
3 | 4,291,232 | AX-90331552 | TT | 0.63 | CC | 0.37 | 4.41 × 10−23 | 0.82 |
3 | 4,291,566 | AX-90307867 | AA | 0.63 | TT | 0.37 | 4.41 × 10−23 | 0.82 |
3 | 4,295,128 | AX-90317436 | AA | 0.63 | GG | 0.37 | 4.41 × 10−23 | 0.82 |
Chr. 1 | Total Length (cM) (a) | No. of Total SNP Markers | No. of Unique Loci (b) 2 | Avg. Marker Interval (cM) (a/b) 3 |
---|---|---|---|---|
1 | 87.4 | 1485 | 58 | 1.5 |
2 | 100.4 | 1335 | 63 | 1.6 |
3 | 127.0 | 1165 | 48 | 2.6 |
4 | 62.9 | 1338 | 46 | 1.4 |
5 | 68.6 | 1358 | 51 | 1.3 |
6 | 79.2 | 1583 | 61 | 1.3 |
7 | 70.2 | 1094 | 46 | 1.5 |
8 | 99.2 | 1350 | 52 | 1.9 |
9 | 54.2 | 1198 | 33 | 1.6 |
10 | 74.4 | 1515 | 52 | 1.4 |
11 | 73.9 | 498 | 40 | 1.8 |
12 | 49.4 | 987 | 36 | 1.4 |
13 | 92.2 | 1704 | 43 | 2.1 |
14 | 66.7 | 1092 | 47 | 1.4 |
15 | 95.4 | 1936 | 57 | 1.7 |
16 | 59.7 | 1281 | 39 | 1.5 |
17 | 92.3 | 709 | 41 | 2.3 |
18 | 99.6 | 1822 | 59 | 1.7 |
19 | 66.2 | 1594 | 44 | 1.5 |
20 | 67.6 | 1086 | 47 | 1.4 |
Total | 1586 | 26,130 | 963 |
Chr. 1 | Position (bp) 2 | Flanking Markers | LOD 3 | PVE (%) 4 |
---|---|---|---|---|
3 | 3,373,644…4,295,128 | AX-90419199…AX-90317436 | 38.7 | 93.0 |
Parents and RILs | Reaction to P. sojae Isolates Following Inoculation | |
---|---|---|
2858 | 2457 | |
Daepung | S | S |
Saedanbaek | R | S |
RILs 1 (N = 25) | All R | All S |
Daepung | S | S |
Daewon | S | R |
RILs 2 (N = 35) | All S | All R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, H.J.; Shim, K.-C.; Kang, I.-J.; Kim, J.-M.; Kang, S.; Lee, S. Soybean Variety Saedanbaek Confers a New Resistance Allele to Phytophthora sojae. Plants 2023, 12, 3957. https://doi.org/10.3390/plants12233957
You HJ, Shim K-C, Kang I-J, Kim J-M, Kang S, Lee S. Soybean Variety Saedanbaek Confers a New Resistance Allele to Phytophthora sojae. Plants. 2023; 12(23):3957. https://doi.org/10.3390/plants12233957
Chicago/Turabian StyleYou, Hee Jin, Kyu-Chan Shim, In-Jeong Kang, Ji-Min Kim, Sungtaeg Kang, and Sungwoo Lee. 2023. "Soybean Variety Saedanbaek Confers a New Resistance Allele to Phytophthora sojae" Plants 12, no. 23: 3957. https://doi.org/10.3390/plants12233957
APA StyleYou, H. J., Shim, K. -C., Kang, I. -J., Kim, J. -M., Kang, S., & Lee, S. (2023). Soybean Variety Saedanbaek Confers a New Resistance Allele to Phytophthora sojae. Plants, 12(23), 3957. https://doi.org/10.3390/plants12233957