OsALB3 Is Required for Chloroplast Development by Promoting the Accumulation of Light-Harvesting Chlorophyll-Binding Proteins in Rice
Abstract
:1. Introduction
2. Results
2.1. Characterization of Yellow Leaf and Lethal 1 Mutant
2.2. Chloroplast Development Was Impaired in yll1
2.3. Identification of the Causal Mutation through Mutmap+
2.4. Characterization of OsALB3
2.5. Knockout of OsALB3 Mimics the Phenotype of yll1
2.6. OsALB3 Is Located in Chloroplasts
2.7. Light-Harvesting Chlorophyll-Binding Proteins Were Reduced in yll1
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Measurement of Pigment Content
4.3. Transmission Electron Microscopy Analysis
4.4. Mutmap+
4.5. Knockout of OsALB3 by CRISPR/Cas9 Gene Editing Approach
4.6. qRT-PCR Assay
4.7. Subcellular Localization of OsALB3
4.8. Western Blot Analysis
4.9. Sequence Alignment and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, W.; Stoebe, B.; Goremykin, V.; Hapsmann, S.; Hasegawa, M.; Kowallik, K.V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 1998, 393, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, F.; Salamini, F.; Leister, D. A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci. 2000, 5, 141–142. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, P.; Robinson, C. Mechanisms of protein import and routing in chloroplasts. Curr. Biol. CB 2004, 14, R1064–R1077. [Google Scholar] [CrossRef] [PubMed]
- Schunemann, D. Mechanisms of protein import into thylakoids of chloroplasts. Biol. Chem. 2007, 388, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Harrison, M.S.; Peterson, E.C.; Henry, R. Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 2000, 275, 1529–1532. [Google Scholar] [CrossRef]
- Moore, M.; Goforth, R.L.; Mori, H.; Henry, R. Functional interaction of chloroplast SRP/FtsY with the ALB3 translocase in thylakoids: Substrate not required. J. Cell Biol. 2003, 162, 1245–1254. [Google Scholar] [CrossRef]
- Stengel, K.F.; Holdermann, I.; Cain, P.; Robinson, C.; Wild, K.; Sinning, I. Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43. Science 2008, 321, 253–256. [Google Scholar] [CrossRef]
- Hermkes, R.; Funke, S.; Richter, C.; Kuhlmann, J.; Schunemann, D. The alpha-helix of the second chromodomain of the 43 kDa subunit of the chloroplast signal recognition particle facilitates binding to the 54 kDa subunit. FEBS Lett. 2006, 580, 3107–3111. [Google Scholar] [CrossRef]
- Asakura, Y.; Kikuchi, S.; Nakai, M. Non-identical contributions of two membrane-bound cpSRP components, cpFtsY and Alb3, to thylakoid biogenesis. Plant J. Cell Mol. Biol. 2008, 56, 1007–1017. [Google Scholar] [CrossRef]
- Amin, P.; Sy, D.A.C.; Pilgrim, M.L.; Parry, D.H.; Nussaume, L.; Hoffman, N.E. Arabidopsis mutants lacking the 43-and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. Plant Physiol. 1999, 121, 61–70. [Google Scholar] [CrossRef]
- Durrett, T.P.; Connolly, E.L.; Rogers, E.E. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe (III) chelate reductase activity. Plant J. Cell Mol. Biol. 2006, 47, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Xia, H.Q.; Li, Q.; Li, Z.Z.; Zhai, C.; Weng, L.; Mi, H.L.; Yan, S.; Datla, R.; Wang, H.; et al. PALE-GREEN LEAF 1, a rice cpSRP54 protein, is essential for the assembly of the PSI-LHCI supercomplex. Plant Direct 2022, 6, e436. [Google Scholar] [CrossRef]
- Hutin, C.; Havaux, M.; Carde, J.P.; Kloppstech, K.; Meiherhoff, K.; Hoffman, N.; Nussaume, L. Double mutation cpSRP43(-)/cpSRP54(-) is necessary to abolish the cpSRP pathway required for thylakoid targeting of the light-harvesting chlorophyll proteins. Plant J. 2002, 29, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.G.; Shi, Y.F.; Xu, X.; Wei, Y.L.; Wang, H.M.; Zhang, X.B.; Wu, J.L. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis. PLoS ONE 2015, 10, e0143249. [Google Scholar] [CrossRef] [PubMed]
- Rutschow, H.; Ytterberg, A.J.; Friso, G.; Nilsson, R.; van Wijk, K.J. Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. Plant Physiol. 2008, 148, 156–175. [Google Scholar] [CrossRef]
- Shi, Y.F.; He, Y.; Lv, X.G.; Wei, Y.L.; Zhang, X.B.; Xu, X.; Li, L.J.; Wu, J.L. Chloroplast SRP54s are Essential for Chloroplast Development in Rice. Rice 2020, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Martin, M.; Sundberg, E.; Swinburne, J.; Puangsomlee, P.; Coupland, G. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: Identification of an albino mutation induced by Ds insertion. Proc. Natl. Acad. Sci. USA 1993, 90, 10370–10374. [Google Scholar] [CrossRef] [PubMed]
- Hell, K.; Herrmann, J.M.; Pratje, E.; Neupert, W.; Stuart, R.A. Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc. Natl. Acad. Sci. USA 1998, 95, 2250–2255. [Google Scholar] [CrossRef]
- Jiang, F.; Yi, L.; Moore, M.; Chen, M.; Rohl, T.; Van Wijk, K.J.; De Gier, J.W.; Henry, R.; Dalbey, R.E. Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J. Biol. Chem. 2002, 277, 19281–19288. [Google Scholar] [CrossRef]
- Sundberg, E.; Slagter, J.G.; Fridborg, I.; Cleary, S.P.; Robinson, C.; Coupland, G. ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 1997, 9, 717–730. [Google Scholar]
- Bellafiore, S.; Ferris, P.; Naver, H.; Gohre, V.; Rochaix, J.D. Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 2002, 14, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, B.; Duenschede, B.; Pietzenuk, B.; Justesen, B.H.; Kraemer, U.; Hofmann, E.; Pomorski, T.G.; Schuenemann, D. Chloroplast Ribosomes Interact with the Insertase Alb3 in the Thylakoid Membrane. Front. Plant Sci. 2021, 12, 781857. [Google Scholar] [CrossRef] [PubMed]
- Kroliczewski, J.; Piskozub, M.; Bartoszewski, R.; Kroliczewska, B. ALB3 Insertase Mediates Cytochrome b(6) Co-translational Import into the Thylakoid Membrane. Sci. Rep. 2016, 6, 34557. [Google Scholar] [CrossRef] [PubMed]
- Ossenbuhl, F.; Gohre, V.; Meurer, J.; Krieger-Liszkay, A.; Rochaix, J.D.; Eichacker, L.A. Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3.1p, a homolog of Arabidopsis ALBINO3. Plant Cell 2004, 16, 1790–1800. [Google Scholar] [CrossRef] [PubMed]
- Nymark, M.; Volpe, C.; Hafskjold, M.C.G.; Kirst, H.; Serif, M.; Vadstein, O.; Bones, A.M.; Melis, A.; Winge, P. Loss of ALBINO3b Insertase Results in Truncated Light-Harvesting Antenna in Diatoms. Plant Physiol. 2019, 181, 1257–1276. [Google Scholar] [CrossRef] [PubMed]
- Pasch, J.C.; Nickelsen, J.; Schunemann, D. The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl. Microbiol. Biotechnol. 2005, 69, 440–447. [Google Scholar] [CrossRef]
- Bals, T.; Dunschede, B.; Funke, S.; Schunemann, D. Interplay between the cpSRP pathway components, the substrate LHCP and the translocase Alb3: An in vivo and in vitro study. FEBS Lett. 2010, 584, 4138–4144. [Google Scholar] [CrossRef]
- Dünschede, B.; Bals, T.; Funke, S.; Schünemann, D. Interaction Studies between the Chloroplast Signal Recognition Particle Subunit cpSRP43 and the Full-length Translocase Alb3 Reveal a Membrane-embedded Binding Region in Alb3 Protein. J. Biol. Chem. 2011, 286, 35187–35195. [Google Scholar] [CrossRef]
- Falk, S.; Ravaud, S.; Koch, J.; Sinning, I. The C terminus of the Alb3 membrane insertase recruits cpSRP43 to the thylakoid membrane. J. Biol. Chem. 2010, 285, 5954–5962. [Google Scholar] [CrossRef]
- Urbischek, M.; von Braun, S.; Brylok, T.; Gugel, I.L.; Richter, A.; Koskela, M.; Grimm, B.; Mulo, P.; Bolter, B.; Soll, J.; et al. The extreme Albino3 (Alb3) C terminus is required for Alb3 stability and function in Arabidopsis thaliana. Planta 2015, 242, 733–746. [Google Scholar] [CrossRef]
- Schneider, A.; Steinberger, I.; Strissel, H.; Kunz, H.H.; Manavski, N.; Meurer, J.; Burkhard, G.; Jarzombski, S.; Schunemann, D.; Geimer, S.; et al. The Arabidopsis Tellurite resistance C protein together with ALB3 is involved in photosystemII protein synthesis. Plant J. 2014, 78, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Fekih, R.; Takagi, H.; Tamiru, M.; Abe, A.; Natsume, S.; Yaegashi, H.; Sharma, S.; Sharma, S.; Kanzaki, H.; Matsumura, H.; et al. MutMap +: Genetic Mapping and Mutant Identification without Crossing in Rice. PLoS ONE 2013, 8, e68529. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Tian, H.F.; Wen, J.F. The evolution of YidC/Oxa/Alb3 family in the three domains of life: A phylogenomic analysis. BMC Evol. Biol. 2009, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, L.; Bals, T.; Klostermann, E.; Karl, M.; Philippar, K.; Hunken, M.; Soll, J.; Schunemann, D. A second thylakoid membrane-localized Alb3/Oxal/YidC homologue is involved in proper chloroplast biogenesis in Arabidopsis thaliana. J. Biol. Chem. 2006, 281, 16632–16642. [Google Scholar] [CrossRef] [PubMed]
- Benz, M.; Bals, T.; Gugel, I.L.; Piotrowski, M.; Kuhn, A.; Schunemann, D.; Soll, J.; Ankele, E. Alb4 of Arabidopsis Promotes Assembly and Stabilization of a Non Chlorophyll-Binding Photosynthetic Complex, the CF1CF0-ATP Synthase. Mol. Plant 2009, 2, 1410–1424. [Google Scholar] [CrossRef] [PubMed]
- Trosch, R.; Topel, M.; Flores-Perez, U.; Jarvis, P. Genetic and Physical Interaction Studies Reveal Functional Similarities between ALBINO3 and ALBINO4 in Arabidopsis. Plant Physiol. 2015, 169, 1292–1306. [Google Scholar] [CrossRef]
- Hu, F.; Kang, Z.H.; Qiu, S.C.; Wang, Y.; Qin, F.; Yue, C.L.; Huang, J.L.; Wang, G.X. Overexpression of OsTLP27 in rice improves chloroplast function and photochemical efficiency. Plant Sci. 2012, 195, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Gao, H.B.; Luo, J.W.; Wang, H.B.; Dong, Q.L.; Wang, Y.P.; Yang, K.Y.; Mao, K.; Ma, F.W. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress. Plant Physiol. Bioch. 2020, 154, 517–529. [Google Scholar] [CrossRef]
- Liu, M.X.; Zhang, S.B.; Hu, J.X.; Sun, W.X.; Padilla, J.; He, Y.L.; Li, Y.; Yin, Z.Y.; Liu, X.Y.; Wang, W.H.; et al. Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice. Proc. Natl. Acad. Sci. USA 2019, 116, 17572–17577. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Li, J.; Wei, S.B.; Yan, Y.Y.; Yang, J.; Zhao, M.; Langdale, J.A.; Zhou, W.B. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun. Biol. 2020, 3, 151. [Google Scholar] [CrossRef]
- Yeh, S.Y.; Lin, H.H.; Chang, Y.M.; Chang, Y.L.; Chang, C.K.; Huang, Y.C.; Ho, Y.W.; Lin, C.Y.; Zheng, J.Z.; Jane, W.N.; et al. Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield. Plant Physiol. 2022, 188, 2377–2378. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.E.; Marty, N.J.; Kathir, K.M.; Rajalingam, D.; Kight, A.D.; Daily, A.; Kumar, T.K.S.; Henry, R.L.; Goforth, R.L. A Dynamic cpSRP43-Albino3 Interaction Mediates Translocase Regulation of Chloroplast Signal Recognition Particle (cpSRP)-targeting Components. J. Biol. Chem. 2010, 285, 34220–34230. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Yu, X.; Chen, H.; Liu, L.; Xiao, Y.; Wang, Y.; Wang, C.; Lin, Y.; Yu, Y.; Wang, C.; et al. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. Plant Mol. Biol. 2016, 92, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Heldenbrand, J.R.; Baheti, S.; Bockol, M.A.; Drucker, T.M.; Hart, S.N.; Hudson, M.E.; Iyer, R.K.; Kalmbach, M.T.; Kendig, K.I.; Klee, E.W.; et al. Recommendations for performance optimizations when using GATK3.8 and GATK4. BMC Bioinform. 2019, 20, 557. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y.; et al. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [CrossRef]
- Xue, C.; Liu, S.; Chen, C.; Zhu, J.; Yang, X.B.; Zhou, Y.; Guo, R.; Liu, X.; Gong, Z. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa. Proteomics 2018, 18, 1700036. [Google Scholar] [CrossRef]
- Gouet, P.; Courcelle, E.; Stuart, D.I.; Métoz, F. ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics 1999, 15, 305–308. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Mao, X.; Feng, X.; Sun, Y.; Wang, Z.; Tang, J.; Yu, H. OsALB3 Is Required for Chloroplast Development by Promoting the Accumulation of Light-Harvesting Chlorophyll-Binding Proteins in Rice. Plants 2023, 12, 4003. https://doi.org/10.3390/plants12234003
Zhang C, Mao X, Feng X, Sun Y, Wang Z, Tang J, Yu H. OsALB3 Is Required for Chloroplast Development by Promoting the Accumulation of Light-Harvesting Chlorophyll-Binding Proteins in Rice. Plants. 2023; 12(23):4003. https://doi.org/10.3390/plants12234003
Chicago/Turabian StyleZhang, Chao, Xinchen Mao, Xiaoxiao Feng, Yali Sun, Zirui Wang, Jiaqi Tang, and Hengxiu Yu. 2023. "OsALB3 Is Required for Chloroplast Development by Promoting the Accumulation of Light-Harvesting Chlorophyll-Binding Proteins in Rice" Plants 12, no. 23: 4003. https://doi.org/10.3390/plants12234003
APA StyleZhang, C., Mao, X., Feng, X., Sun, Y., Wang, Z., Tang, J., & Yu, H. (2023). OsALB3 Is Required for Chloroplast Development by Promoting the Accumulation of Light-Harvesting Chlorophyll-Binding Proteins in Rice. Plants, 12(23), 4003. https://doi.org/10.3390/plants12234003