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Abstract: Melatonin (MT) is considered a new plant hormone having a universal distribution from
prokaryotic bacteria to higher plants. It has been characterized as an antistress molecule playing
a positive role in the acclimation of plants to stress conditions, but its impact on plants under non-
stressed conditions is not well understood. In the current research, we evaluated the impact of
MT application (10 and 100 µM) on photosystem II (PSII) function, reactive oxygen species (ROS)
generation, and chlorophyll content on mint (Mentha spicata L.) plants in order to elucidate the
molecular mechanism of MT action on the photosynthetic electron transport process that under
non-stressed conditions is still unclear. Seventy-two hours after the foliar spray of mint plants with
100 µM MT, the improved chlorophyll content imported a higher amount of light energy capture,
which caused a 6% increase in the quantum yield of PSII photochemistry (ΦPSII) and electron transport
rate (ETR). Nevertheless, the spray with 100 µM MT reduced the efficiency of the oxygen-evolving
complex (OEC), causing donor-side photoinhibition, with a simultaneous slight increase in ROS. Even
so, the application of 100 µM MT decreased the excess excitation energy at PSII implying superior
PSII efficiency. The decreased excitation pressure at PSII, after 100 µM MT foliar spray, suggests
that MT induced stomatal closure through ROS production. The response of ΦPSII to MT spray
corresponds to a J-shaped hormetic curve, with ΦPSII enhancement by 100 µM MT. It is suggested
that the hormetic stimulation of PSII functionality was triggered by the non-photochemical quenching
(NPQ) mechanism that stimulated ROS production, which enhanced the photosynthetic function.
It is concluded that MT molecules can be used under both stress and non-stressed conditions as
photosynthetic biostimulants for enhancing crop yields.

Keywords: chlorophyll content; reactive oxygen species; electron transport rate; non-photochemical
quenching; PSII photochemistry; reaction centers; excitation pressure; stomatal closure; excess
excitation energy
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1. Introduction

Photosynthesis is a fundamental process to plant growth and development, but the
plant’s capability to achieve high photosynthetic activity simply depends on the environ-
mental conditions [1]. Enhancing photosynthetic efficiency and improving crop perfor-
mance stand as crucial and highly significant research challenges [2–4]. Improving the
quantum yield of photosystem II (PSII) stands as a pathway toward achieving increased
efficiency and productivity in photosynthesis [5].

Photosystem II (PSII) uses solar energy to provide electrons by oxidizing water. At
PSII in the oxygen-evolving complex (OEC), the oxidation of H2O results in oxygen (O2),
protons (H+), and electrons (e−) [6]. The e− are transferred to NADP+, and coupled with
this transfer, the proton gradient that is established drives the synthesis of ATP [6,7]. The
activity of PSII is regularly censored by chlorophyll a fluorescence measurements [8–11].
Chlorophyll a fluorescence analysis is used extensively for acquiring information regarding
the amount of absorbed light energy used for photochemistry (ΦPSII), the amount of
regulated non-photochemical energy loss in PSII (ΦNPQ), and the amount of nonregulated
energy loss in PSII (ΦNO) [12–14]. The sum of ΦPSII + ΦNPQ + ΦNO is equal to 1 [12].

During the conversion of the light energy to chemical energy, reactive oxygen species
(ROS), such as hydrogen peroxide (H2O2), superoxide anion radical (O2

•−), and singlet-
excited oxygen (1O2), are constantly produced [7,15–17]. However, they are scavenged by
different antioxidant mechanisms [15–20]. When ROS production is not well adjusted by
the antioxidant mechanisms, photooxidative stress develops [21].

Melatonin (MT) is an indole molecule (N-acetyl-5-methoxytryptamine) naturally ap-
pearing in roots, leaves, fruits, and seeds [22,23], which was first discovered in the animal
kingdom [24]. Melatonin in plants, which is called also phytomelatonin [25], was detected
in 1995 by various research groups [22,26–28]. The MT molecule plays crucial roles in
an extensive variety of physiological processes, e.g., germination, root and shoot growth,
photosynthesis, stomatal closure, osmoregulation, secondary metabolism, leaf senescence,
circadian cycle regulation, flowering, and fruit setting, and in the protection against biotic
and abiotic factors [29–33]. The identification in the model plant Arabidopsis thaliana of the
first plant melatonin receptor, named PHYTOMELATONIN RECEPTOR 1 (AtPMTR1) [34],
unlocked the door to be considered a new plant hormone [29]. Melatonin has been shown
to have a universal distribution from prokaryotic bacteria to higher plants, being a phylo-
genetically conserved molecule [35]. Melatonin activates or deactivates certain metabolic
pathways, not merely by regulating gene and protein expression but also through post-
translational modifications of proteins [36]. It has been characterized as an antistress
molecule playing a positive role in a number of environmental stresses, e.g., in low and
high temperatures, salinity, drought, toxic chemicals, UV radiation, fungal diseases, and
plant–pathogen interactions [37,38]. Melatonin is related to plant hormones, e.g., abscisic
acid (ABA), cytokinins (CTK), gibberellins (GAs), ethylene (ETH), indole acetic acid (IAA),
jasmonic acid (JA), brassinosteroids (BR), salicylic acid (SA), and strigolactone (SL) [39,40].
Plants have been found to possess much higher MT levels compared to animals, possibly
as a compensatory response to their lack of mobility, to withstand harmful environmental
conditions [40]. High MT concentrations have been measured in widespread beverages
like tea, coffee, beer, and wine, and also in popular crops like wheat, rice, corn, oats, and
barley [40].

Exogenous application of MT can penetrate the plasma membranes increasing the
endogenous MT levels [23,41]. Endogenous MT is produced from tryptophan as an interme-
diate product of the shikimate pathway in the chloroplasts [42]. Melatonin under diverse
stress conditions has a fundamental function in preserving the chlorophyll molecules and
the photosynthetic function [43]. Additionally, MT interacts with other molecules like ROS,
nitric oxide (NO), and Ca2+ to regulate the redox network [44,45]. Melatonin and ROS
signaling have been shown to be interrelated coordinately [30]. Melatonin-induced plant
stress tolerance is linked with up-regulation of stress-induced transcription factors [46].
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Melatonin performs a key role in protein quality control in plants and thus functions as a
pleiotropic molecule under both non-stress and stress conditions [46].

Melatonin (MT) has been extensively reported to contribute to the acclimation of
plants to stress conditions [47]. The positive regulation of MT on photosynthetic efficiency
and redox homeostasis under stress conditions has been frequently confirmed [48,49].
Under saline-alkali stress conditions, exogenous MT increased the efficiency of light en-
ergy capture and electron transport and improved soybean photosynthesis [50]. In rice
plants under salt stress conditions, exogenous MT enhanced photosynthetic function by
improving antioxidant capacity, increasing the xanthophyll pool size, and enhancing pho-
tosynthetic enzyme activities [47]. Furthermore, exogenous MT application increased
strawberry fruit yield and quality under salinity stress [42]. During chilling stress, exoge-
nous MT enhanced violaxanthin de-epoxidase activity accelerating the photoprotective
heat dissipation of excitation energy, i.e., the non-photochemical quenching (NPQ), miti-
gating photoinhibition [51]. In grafted Carya cathayensis plants under drought stress, MT
regulated metabolic processes, including photosynthesis, antioxidant system, and gene
expression [52]. Recently, Karumannil et al. [33] reviewed the molecular mechanisms of
MT impact on photosynthetic function in different environmental conditions. However, the
molecular mechanisms of the possible interaction between MT and photosynthetic function
under non-stressed conditions have seldom been studied [53].

In the current study, we evaluated the consequences of exogenous MT application on
the PSII function of Mentha spicata plants, under non-stressed conditions. We also evaluated
the impact of MT application on ROS generation, and chlorophyll content, in order to
elucidate the molecular mechanism of MT action on photosynthetic electron transport that
under non-stressed conditions is still unclear.

2. Results
2.1. Melatonin Impact on Chlorophyll Content

The chlorophyll content of mint plants, 72 h after the spray with 10 µM melatonin
(MT) did not differ from those that were sprayed with distilled water (dH2O) (Figure 1).
However, an 18% increase (p < 0.05) in chlorophyll content was observed in plants that
were sprayed with 100 µM MT compared to control plants (Figure 1).
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Figure 1. Changes in the chlorophyll content of Mentha spicata leaves 72 h after the spray with 10 and
100 µM MT, in comparison to control leaves (sprayed with distilled water). Different lowercase letters
symbolize statistical differences (p < 0.05). The error bars in columns symbolize SD.

2.2. Changes in the Efficiency of the Oxygen Evolving Complex and the Maximum Efficiency of
PSII Photochemistry by Melatonin

A malfunction of the oxygen-evolving complex (OEC) was observed in mint plants,
72 h after the spray with MT, showing a decreased efficiency of 2.5% (p < 0.05) at 10 µM MT
and of 6% (p < 0.05) at 100 µM MT, compared to control values (Figure 2a). An analogous
pattern was observed in the maximum efficiency of PSII photochemistry (Fv/Fm), with
a decreased efficiency of 0.5% (p < 0.05) at 10 µM MT and of 1% (p < 0.05) at 100 µM MT,
compared to plants sprayed with dH2O (Figure 2b).
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Figure 2. Changes in the efficiency of the oxygen-evolving complex (OEC) (Fv/Fo) (a), and the
maximum efficiency of PSII photochemistry (Fv/Fm) (b), 72 h after the spray of Mentha spicata leaves
with 10 and 100 µM MT, in comparison to control leaves (sprayed with distilled water). Different
lowercase letters symbolize statistical differences (p < 0.05). The error bars in columns symbolize SD.

2.3. Partitioning of the Absorbed Light Energy after Foliar Application of Melatonin

To estimate the partitioning of the captured light energy at PSII, we assessed the
effective quantum yield of PSII photochemistry (ΦPSII), the quantum yield of regulated
non-photochemical energy loss in PSII (ΦNPQ), and the quantum yield of non-regulated
energy loss in PSII (ΦNO), with their sum (ΦPSII + ΦNPQ + ΦNO) to be equal to 1 [12].

The ΦPSII of mint plants 72 h after the spray with 10 µM MT did not differ from
those that were sprayed with dH2O (Figure 3a) at the growth light intensity (GL 200 µmol
photons m−2 s−1) and at high light intensity (HL, intensity 1000 µmol photons m−2 s−1).
In contrast, in mint plants, 72 h after the spray with 100 µM MT, ΦPSII increased (p < 0.05)
by 6% at the GL intensity, but there was no difference at the HL intensity compared to
plants that were sprayed with dH2O (Figure 3a).
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Figure 3. Changes in the allocation of the absorbed light energy; the effective quantum yield of
PSII photochemistry (ΦPSII) (a), the quantum yield of regulated non-photochemical energy loss in
PSII (ΦNPQ) (b), the quantum yield of non-regulated energy dissipated in PSII (ΦNO) (c); and the
photoprotective heat dissipation of excitation energy, i.e., the non-photochemical quenching (NPQ)
(d); assessed all at the growth light intensity (GL, 200 µmol photons m−2 s−1), and at a high light
intensity (HL, 1000 µmol photons m−2 s−1), 72 h after the spray of Mentha spicata leaves with 10 and
100 µM MT, compared to control leaves. Different lowercase or uppercase letters symbolize statistical
differences (p < 0.05). The error bars in columns symbolize SD.
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ΦNPQ, at both the GL intensity and the HL intensity, of mint plants sprayed with
10 µM MT did not differ from those that were sprayed with dH2O (Figure 3b). However,
in mint plants, 72 h after the spray with 100 µM MT, ΦNPQ decreased (p < 0.05) by 10% at
the GL intensity, but it did not differ from those that were sprayed with dH2O at the HL
intensity (Figure 3b).

MT treatment had no impact on the quantum yield of non-regulated energy loss in
PSII (ΦNO) at both the GL intensity and the HL intensity (Figure 3c).

2.4. Changes in Non-Photochemical Quenching by Melatonin Spray

The non-photochemical quenching (NPQ) of mint plants 72 h after the spray with
10 µM MT did not differ from those that were sprayed with dH2O at both the GL and the
HL intensity (Figure 3d). In contrast, in mint plants, 72 h after the spray with 100 µM MT,
NPQ decreased (p < 0.05) by 7% at the GL intensity, but there was no difference at the HL
intensity compared to plants that were sprayed with dH2O (Figure 3d).

2.5. Melatonin Impact on PSII Reaction Centers and Their Efficiency

Photochemical quenching (qp) that represents the fraction of open PSII reaction centers,
or in other words the redox state of quinone A (QA), did not differ at both the GL intensity
and the HL intensity, in mint plants sprayed with 10 µM MT compared to those that were
sprayed with dH2O (Figure 4a). However, in mint plants, 72 h after the spray with 100 µM
MT, qp increased (p < 0.05) by 6% at the GL intensity, but there was no difference at the HL
intensity compared to plants that were sprayed with dH2O (Figure 4a). The efficiency of
open reaction centers (Fv′/Fm′) in mint plants sprayed with 10 µM MT decreased at the
GL intensity compared to those that were sprayed with dH2O but remained the same to
controls at the HL intensity (Figure 4b). In contrast, in mint plants sprayed with 100 µM
MT, Fv′/Fm′ remained the same as controls at the GL intensity (Figure 4b) but decreased at
the HL intensity compared to plants that were sprayed with dH2O (Figure 4b).
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Figure 4. Changes in the fraction of open PSII reaction centers (qp), a measure of the redox state of
quinone A (QA) (a), and the efficiency of excitation energy capture by the open PSII reaction centers
(Fv′/Fm′) (b); assessed all at the growth light intensity (GL, 200 µmol photons m−2 s−1), and at a
high light intensity (HL, 1000 µmol photons m−2 s−1), 72 h after the spray of Mentha spicata leaves
with 10 and 100 µM MT, in comparison to control leaves (sprayed with distilled water). Different
lowercase or uppercase letters symbolize statistical differences (p < 0.05). The error bars in columns
symbolize SD.

2.6. Changes in the Electron Transport Rate and the Excess Excitation Energy by Melatonin Spray

The electron transport rate (ETR) of mint plants 72 h after the spray with 10 µM MT
did not differ from those that were sprayed with dH2O at both the GL intensity and the
HL intensity (Figure 5a). In contrast, in mint plants, 72 h after the spray with 100 µM MT,
ETR increased (p < 0.05) by 6% at the GL intensity, but there was no difference at the HL
intensity compared to plants that were sprayed with dH2O (Figure 5a).
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The excess excitation energy at PSII (EXC) in mint plants, 72 h after the spray with
100 µM MT, decreased (p < 0.05) by 12% at the GL intensity, but there was no difference
at the HL intensity compared to plants that were sprayed with dH2O (Figure 5b). In mint
plants sprayed with 10 µM MT, EXC did not differ from those sprayed with dH2O at both
GL and HL intensity (Figure 5b).

2.7. Melatonin Impact on PSII Excitation Pressure

The excitation pressure at PSII, based on the “lake” model for the photosynthetic unit
(1-qL) in mint plants, 72 h after the spray with 100 µM MT, decreased (p < 0.05) by 11% and
4%, at the GL and the HL intensity, respectively, compared to plants that were sprayed
with dH2O (Figure 6). In mint plants sprayed with 10 µM MT, excitation pressure did not
differ from those sprayed with dH2O at both GL and HL intensity (Figure 6).
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Figure 6. Changes in the excitation pressure at PSII (based on the “lake” model for the photosynthetic
unit), assessed at the growth light intensity (GL, 200 µmol photons m−2 s−1), and at a high light
intensity (HL, 1000 µmol photons m−2 s−1), 72 h after the spray of Mentha spicata leaves with 10 and
100 µM MT, in comparison to control leaves (sprayed with distilled water). Different lowercase or
uppercase letters symbolize statistical differences (p < 0.05). The error bars in columns symbolize SD.

2.8. Melatonin Impact on Reactive Oxygen Species Generation

Low MT foliar spray concentration (10 µM) did not seem to induce any reactive
oxygen species (ROS) accumulation (Figure 7b), compared to plants that were sprayed with
dH2O (Figure 7a). However, foliar spray with 100 µM MT induced a slight increase in ROS
generation, especially on the leaf’s midvein (arrows, Figure 7c).
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2.9. Melatonin-Induced Hormetic Responses of Photosystem II

There was a decline in the effective quantum yield of PSII photochemistry (ΦPSII) in
mint plants, 72 h after the spray with 10 µM MT at both the GL and HL intensity (Figure 8a).
This effect changed after the spray with 100 µM MT, with ΦPSII increasing above the control
level at both GL and HL intensity (Figure 8a). This pattern of hormesis corresponds to a
J-shaped hormetic response curve (Figure 8a).
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Figure 8. A J-shaped hormetic response curve of ΦPSII (a), and an inverted J-shaped hormetic
response curve of ΦNPQ (b), 72 h after the spray of Mentha spicata leaves with distilled water (control
0 µM MT) or with 10 and 100 µM MT, assessed either at the growth light intensity (200 µmol photons
m−2 s−1), or at a high light intensity (1000 µmol photons m−2 s−1).

In contrast to ΦPSII, the photoprotective quantum yield of regulated non-photochemical
energy loss in PSII (ΦNPQ), 72 h after the spray with 10 µM MT at both the GL and HL
intensity, increased, while it decreased with 100 µM MT (Figure 8b), showing an inverted
J-shaped hormetic response pattern (Figure 8b).

3. Discussion

Chlorophyll molecules serve as the principal pigments for absorbing light energy and
transferring it to the reaction centers (RCs). Melatonin, which, in plants, is synthesized in
mitochondria and chloroplasts through two paths that both are based on tryptophan [33],
has revealed exceptional protective effects on chlorophyll molecules [53], controlling both
the degradation and synthesis of chlorophyll molecules and protecting photosynthetic
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proteins [53]. A higher chlorophyll content, as we observed after the spray with 100 µM MT
(Figure 1), can lead to the formation of larger light-harvesting complexes (LHCs), resulting
in an increased capture of light energy and consequently enhancing ΦPSII and ETR [54–58],
as it was detected (Figures 3a and 5a). The observed improvement in photosynthetic
function, at the GL following the spray with 100 µM MT, can be attributed to the enhanced
light absorption. However, MT spray resulted in the malfunction of the OEC (Figure 2a) that
caused donor-side photoinhibition [55,59–61], reflected in the reduced Fv/Fm (Figure 2b).
When the OEC fails to efficiently reduce the chlorophyll molecule at the PSII RC, it results
in damaging oxidations in PSII [59]. Consequently, donor-side photoinhibition is often
associated with the production of ROS [55,62–64]. The minor increase in ROS generation
that we observed (Figure 7c), as a result of donor-side photoinhibition (Figure 2b), can be
attributed to a malfunction of the OEC (Figure 2a).

The non-photochemical quenching (NPQ) mechanism, by dissipating surplus light
energy, serves as a protective measure for the photosynthetic apparatus against the detri-
mental impacts of ROS [7,56,65]. While a minimal level of ROS is necessary for maintaining
life, a slight increase in ROS levels triggers molecular tolerance mechanisms, which are
generally considered beneficial. Nevertheless, elevated levels of ROS are recognized as
detrimental to plants [7,66–71]. NPQ functions as a photoprotective mechanism that in-
hibits the formation of ROS [72–76]. The reduction of excitation energy dissipation as heat
through NPQ by 7%, 72 h after the spray with 100 µM MT (Figure 3d), can explain the slight
increase in ROS generation (Figure 7c). However, this slight increase in ROS production
can be considered as favorable for triggering defense stress responses [66,77,78]. The sur-
plus light energy dissipated as heat by NPQ reduces the efficiency of PSII photochemistry
(down-regulation of PSII) [20,21,74]. The increased excitation energy dissipation as heat
through NPQ, 72 h after the spray with 10 µM MT compared to the spray with 100 µM
MT (Figure 3d), decreased ΦPSII (Figure 3a). An increased NPQ, as was observed in mint
plants sprayed with 10 µM MT, compared to plants sprayed with 100 µM MT (Figure 3d),
decreases the ETR (Figure 5a), preventing the ROS formation (see Figure 7b), which occurs
during photoinhibition (Figure 2b) [79].

The increased ETR of mint plants at the GL, following the spray with 100 µM MT,
(Figure 5a), could be due to a decreased NPQ (Figure 3d) [79,80]. The observed donor-side
photoinhibition, reflected by the reduced Fv/Fm (Figure 2b), decreased NPQ (Figure 3d),
enhancing the ETR (Figure 5a) [63,81]. The increased effective quantum yield of PSII
photochemistry (ΦPSII), 72 h after the spray with 100 µM MT at the GL intensity (Figure 3a),
resulted in increased values of ETR (Figure 5a). Simultaneously, there was a reduction
in excess excitation energy at PSII (Figure 5b), indicating enhanced efficiency of PSII.
Enhancing photosynthesis is a critical challenge faced by plant scientists, especially in light
of the ever-increasing global demand for food [2,82,83]. The ultimate goal of improving
photosynthetic efficiency can be accomplished by optimizing the allocation of absorbed
light energy [84,85].

As a result of the increased ΦPSII with 100 µM MT at the GL intensity (Figure 3a),
the controlled non-photochemical energy loss in PSII (ΦNPQ) decreased by 10% (p < 0.05)
(Figure 3b), while the unregulated energy loss in PSII (ΦNO) remained unchanged (Figure 3c).
An increased ΦPSII can be attributed either to an increased efficiency of RCs (Fv′/Fm′) or/and
to an increased number of open RCs (qp) [86]. The increased ΦPSII, with 100 µM MT at the GL
intensity (Figure 3a), was rather due to the increased fraction of open PSII RCs (qp) (Figure 4a)
than due to increased efficiency of the RCs (Fv′/Fm′) (Figure 4b). In Chara australis application
of 10 µM MT to the artificial pond water, increased ΦPSII by 34% was attributed to an increased
fraction of open PSII RCs, rather than increased efficiency of each RC [87]. More open RCs
reflect higher photosynthetic efficiency [87].

The excitation pressure at PSII, based on the “lake” model for the photosynthetic unit
(1 − qL) [12], in mint plants sprayed with 100 µM MT, decreased at both the GL and the
HL intensity (Figure 6), which corresponds to diminished stomatal opening [88]. It seems
that 100 µM MT could have induced the stomatal closure of mint plants through ROS
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production [34]. MT-induced stomatal closure is possibly regulated by H2O2 production
and Ca2+ influx [34]. Fluctuations in the parameter 1 − qL reflect alterations in the redox
state of QA [12], which act as a signal to the stomatal guard cells [89]. Consistent with
this hypothesis, the parameter 1 − qL was linearly correlated to the stomatal conductance
in tobacco plants [90]. It seems that stomatal movement is not controlled by the Calvin–
Benson cycle but instead by the redox state (QA) [91]. As stomatal closure is a recognized
process used by plants to restrict the penetration of pathogens, also known as stomatal
immunity [92], MT is now acquiring consideration for its ability to prevent pathogen
invasion and induce responses to biotic stress in plants [34,93–95].

Hormesis can commonly be exploited as an assessable measure of biological plasticity
through adaptive responses under disruption of homeostasis [70,96–98]. These adaptive
responses, which can be triggered by exposing plants to a low level of a factor that causes
disruption of homeostasis, can result in protecting plants through the stimulation of cellular
defence mechanisms [66,96,97]. Elucidating the molecular mechanisms that trigger horme-
sis in plants aims to accomplish higher crop productivity [55,97]. Higher crop productivity
can be achieved by more efficient utilization of the absorbed light energy [5,99,100].

Hormetic–biphasic dose–response relationships were commonly observed in
plants [55,96,101,102]. Melatonin has been shown to induce biphasic dose–response relation-
ships in a series of studies including plants and animals [102]. In mint plants, MT induced a
biphasic dose–response of ΦPSII with a J-shaped hormetic response curve to be enhanced by
100 µM MT (Figure 8a). Hormetic stimulation of PSII functionality can be triggered by NPQ,
which can stimulate ROS production [55,96,103]. The process of NPQ dissipates in a harm-
less way the excess excitation energy (EXC) and decreases ETR to avoid ROS creation, thus
NPQ can control a range of the level of ROS [96,103–105]. The slight increase in ROS level,
72 h after the spray with 100 µM MT (Figure 3d), is suggested to trigger the molecular mech-
anisms that are considered favorable for enhancing photosynthetic function [98,103]. ROS
are considered as signaling hormetic molecules, which result in a biphasic dose–response
effect on physiological end-points, such as photosynthesis [104,105]. ROS signaling can be
favorable and essential for acclimation, regulating different pathways [106,107]. ROS play
essential roles in the acclimation process of plants to environmental stress conditions as
signal transduction molecules. Hormesis relies highly on the choice of dose range, duration
of exposure, and experimental design [55,70,96,103,108–114]. Consequently, PSII hormetic
responses can be observed only in appropriate planned studies [55,96].

Under non-stressed conditions, exogenous MT application in Chara australis increased
the number of open RCs of PSII, thus improving ΦPSII [87], as we also observed in Mentha
spicata plants. In contrast to our results, in which 100 µM MT reduced Fv/Fm due to
donor-side photoinhibition, Yang et al. [115] suggested that the application of MT might
alleviate PSII inhibition and partially display a direct antioxidant effect. They concluded
that the application of 200 µM MT in the tea plant (Camellia sinensis (L.) Kuntze) stimulated
photosynthesis and the expression of genes related to chlorophyll metabolism in a dose-
dependent manner [115]. A dose-dependent increase in chlorophyll content was also
noticed in our experiments (Figure 1), and enriched chlorophyll content by MT priming
under high-temperature stress was observed in the tall fescue [116]. In agreement with
our results, MT priming under high-temperature stress increased ΦPSII by increasing the
fraction of RCs and decreased NPQ and the excessive excitation energy [116]. Exogenously
applied MT in different crops improved not only crop yield but also quality by active
regulation of several traits of plant development and growth, under either stressed or
non-stressed conditions [31,53,117–121].

4. Materials and Methods
4.1. Plant Material, Growth Conditions, and Treatments

Mint (Mentha spicata L.) plants were obtained from a plant nursery and transferred to a growth
chamber with 16 h light and 8 h dark cycles, 210 ± 10 µmol photons m−2 s−1 light intensity,
21± 1/18± 1 ◦C day/night temperature, and relative humidity 55± 5/60± 5% day/night.
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Melatonin (N-acetyl-5-methoxytryptamine) (MT) was purchased from Sigma-Aldrich
(St. Louis, MO, USA) and dissolved in ethanol (20 mg mL−1), before being further di-
luted with ultra-pure water [42,122]. Mint plants were foliar-sprayed until full wetting
(15 mL plant−1), with 10 µM MT, 100 µM MT, or distilled water (dH2O) (control). Control
plants were sprayed with dH2O with an equal amount of ethanol to that in MT-sprayed
plants. To prevent MT from dropping into the soil, the surface of the soil was shielded by
an aluminum foil that was detached after the spray. Since MT may be photo-responsive,
the plants were sprayed during the dark cycle [123].

Leaf samples from M. spicata were taken 72 h after the spray from 4 to 5 plants with
3 independent biological replicates (n = 12–15) for the following measurements.

4.2. Chlorophyll Content

Relative chlorophyll content was measured in Mentha spicata leaves 72 h after the
foliar spray with distilled water (control), 10 µM MT, and 100 µM MT, using a portable
Chlorophyll Content Meter (Model Cl-01, Hansatech Instruments Ltd., Norfolk, UK). Values
were expressed in relative units [63,124].

4.3. Chlorophyll Fluorescence Measurements

Chlorophyll a fluorescence was measured in Mentha spicata plants using a chlorophyll
fluorometer imaging-PAM M-Series (Heinz Walz GmbH, Effeltrich, Germany), as described
in detail previously [125]. Fluorescence was excited by blue LED in dark-adapted leaves
with saturating pulses (SPs) of 6000 µmol photons m−2 s−1. Measurements on M. spicata
leaves were conducted 72 h after the foliar spray with distilled water (control), 10 µM MT,
and 100 µM MT. The actinic light (AL) used was 200 µmol photons m−2 s−1 corresponding
to the growth light (GL) or 1000 µmol photons m−2 s−1 corresponding to a high light (HL)
intensity. The chlorophyll fluorescence parameters, described in Table S1, were estimated
using Win V2.41a software (Heinz Walz GmbH, Effeltrich, Germany). For each treatment,
12–15 leaves of the same developmental age were measured.

4.4. Reactive Oxygen Species Detection

In vivo imaging of ROS in mint leaves was performed 72 h after the foliar spray with
distilled water (control), 10 µM MT, and 100 µM MT as described previously [126]. Thirty
min after incubation of the leaves in the dark with 25 µM 2′, 7′-dichlorofluorescein diacetate
(DCF-DA, Sigma Aldrich, Chemie GmbH, Schnelldorf, Germany), they were observed
with a Zeiss AxioImager Z2 epi-fluorescence microscope (Carl Zeiss MicroImaging GmbH,
Göttingen, Germany) that was equipped with an AxioCam MRc5 digital camera (Carl Zeiss
MicroImaging GmbH, Göttingen, Germany).

4.5. Statistical Analysis

Data are presented as mean values ± SD and were tested for normality using the
Shapiro–Wilk test and for homogeneity of variance using Levene’s test. The population
of variances was not equal, so significant differences between the three treatments were
determined using Welch ANOVA followed by a post hoc analysis with the Games–Howell
test. All analyses were performed using SPSS version 28.0 (IBM, Chicago, IL, USA) for
Windows. Values were considered significantly different at p < 0.05.

5. Conclusions

We observed a hormetic response of ΦPSII, which was probably triggered by NPQ that
stimulated ROS production at 100 µM MT. The application of 100 µM MT in mint plants
increased the chlorophyll content, possibly resulting in increased LHCs and increased light
energy capture that enhanced ETR. In addition, 100 µM MT decreased the excess excitation
energy at PSII and the excitation pressure at PSII, indicating an improved PSII efficiency.
Improving photosynthetic function is of great importance for improving plant productivity
and grain yield. Therefore, MT can potentially be used as a photosynthetic biostimulant
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that can be applied to plants exogenously to enhance crop yields while reducing the use of
chemical fertilizers, also under non-stressed conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12234025/s1, Table S1: Definitions of the chlorophyll
fluorescence parameters used in the experiments.
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