Phenotypic Diversity and Genetic Parameters of Coffea canephora Clones
Abstract
:1. Introduction
2. Results
2.1. Genetic Parameters and Comparison of the Mean Concentration of Chemical Elements in Leaves, Grain Yield, and Productivity
2.2. Multivariate Analysis for Concentrations of Chemical Elements of Roots, Leaves, Raw and Roasted Grains, Grain Yield, and Productivity of Clones
2.2.1. Grouping of Genotypes Based on the Concentration of Chemical Elements in the Roots
2.2.2. Grouping of Genotypes Based on the Concentration of Chemical Elements in the Leaves
2.2.3. Grouping of Genotypes Based on the Concentration of Chemical Elements in Raw and Roasted Grains
2.2.4. Grouping of Genotypes Based on Grain Yield and Productivity
2.3. Correlation between the Productivity of C. canephora and Chemical Element Concentration in Leaves and Raw and Roasted Grains
3. Discussion
3.1. Genetic Parameters and Comparison of the Mean Concentration of Chemical Elements in Leaves, Grain Yield, and Productivity
3.2. Multivariate Analysis of Grain Yield, the Productivity of Clones, and Concentrations of Chemical Elements in Roots, Leaves, and Raw and Roasted Grains
3.3. Concentration of Chemical Elements in Soil and Tissues (Roots, Leaves, and Raw and Roasted Grains) of C. canephora
3.4. Correlation between the Nutritional Concentrations of Leaves and Raw and Roasted Grains
4. Materials and Methods
4.1. Experimental Installation and Description of Area and Plant Material
4.2. Collection and Preparation of Samples from Soil, Roots, Leaves and Fruits
4.3. Analysis Using the Total Reflection X-ray Fluorescence Analytical Method
- Ni: net peak counts of a given element;
- NGa: net counts of Ga peak;
- Ci: concentration of a specific element in the solution;
- CGa: concentration of the element Ga in the solution.
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huded, A.K.C.; Jingade, P.; Bychappa, M.; Mishra, M.K. Genetic diversity, and population structure analysis of Coffee (Coffea canephora) Germplasm Collection in India Gene Bank Employing SRAP and SCoT Markers. Int. J. Fruit Sci. 2020, 20, 757–784. [Google Scholar] [CrossRef]
- Abeele, V.S.; Janssens, S.B.; Anio, J.A.; Bawin, Y.; Depecker, J.; Kambale, B.; Mwanga, I.M.; Ntore, S.; Ebele, T.; Stoffelen, P.; et al. Genetic diversity of wild and cultivated Coffea canephora in northeastern DR Congo and the implications for conservation. Am. J. Bot. 2021, 108, 2425–2434. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Chadburin, H.; Moat, J.; O’sullivan, R.; Hargreaves, S.; Lucghadha, E.N. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 2019, 5, eaav3473. [Google Scholar] [CrossRef] [PubMed]
- Ferrão, M.A.G.; de Mendonça, R.F.; Fonseca, A.F.A.; Ferrão, R.G.; Senra, J.F.B.; Volpi, P.S.; Verdin Filho, A.C.; Comério, M. Characterization and Genetic Diversity of Coffea canephora Accessions in a Germplasm Bank in Espírito Santo, Brazil. Crop. Breed. Appl. Biotechnol. 2021, 21, e36132123. [Google Scholar] [CrossRef]
- International Coffee Organization (ICO). Global Coffee Trade. Available online: http://www.ico.org/trade_statistics.asp (accessed on 2 February 2023).
- Schmidt, R.; da Silva, C.A.; Dubberstein, D.; Dias, J.R.M.; Vieira, H.D.; Partelli, F.L. Genetic Diversity Based on Nutrient Concentrations in Different Organs of Robusta Coffee. Agronomy 2022, 12, 640. [Google Scholar] [CrossRef]
- Moraes, M.S.; Teixeira, A.L.; Ramalho, A.R.; Espíndula, M.C.; Ferrão, M.A.G.; Rocha, R.B. Characterization of gametophytic self- incompatibility of superior clones of Coffea canephora. Genet. Mol. Res. 2019, 17, gmr16039876. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Rocha, R.B.; Espíndula, M.C.; Ramalho, A.R.; Vieira Júnior, J.R.; Alves, E.A.; Lunz, A.M.P.; de França Souza, F.; Costa, J.N.M.; de Freitas Fernandes, C. Amazonian Robustas—New Coffea canephora coffee cultivars for the western Brazilian Amazon. Crop. Breed. Appl. Biotechnol. 2020, 20, e323420318. [Google Scholar] [CrossRef]
- Alves, D.S.B.; Spinelli, V.M.; Moraes, M.S.; Souza, C.A.; Ribeiro, R.S.; Rocha, R.B. Caracterização da Peneira Média em Clones de Coffea canephora. Rev. FIMCA 2018, 5, 28–31. [Google Scholar] [CrossRef]
- Giles, J.A.D.; Ferreira, A.D.; Partelli, F.L.; Aoyama, E.M.; Ramalho, J.C.; Ferreira, A.; Falqueto, A.R. Divergence and genetic parameters between Coffea sp. genotypes based in foliar morpho-anatomical traits. Sci. Hortic. 2019, 245, 23–236. [Google Scholar] [CrossRef]
- Oliosi, G.; Partelli, F.L.; Silva, C.A.; Dubberstein, D.; Gontijo, I.; Tomaz, M.A. Seasonal variation in leaf nutrient concentration of conilon coffee genotypes. J. Plant Nutr. 2020, 44, 74–85. [Google Scholar] [CrossRef]
- de Salles, R.A.; Jordaim, R.B.; Colodetti, T.V.; Rodrigues, W.N.; do Amaral, J.F.T.; Tomaz, M.A. Nutritional characteristics of conilon coffee genotypes grown in transition altitude with water management in soil. Cienc. Agrotec. 2021, 45, e013721. [Google Scholar] [CrossRef]
- Martins, L.D.; Rodrigues, W.N.; de Souza Machado, L.; Brinate, S.V.B.; Colodetti, T.V.; Ferreira, D.S.; Cogo, A.D.; Apostolico, M.A.; Teodoro, P.E.; Tomaz, M.A.; et al. Genotypes of conilon coffee can be simultaneously clustered for efficiencies of absorption and utilization of N, P and K. Afr. J. Agric. Res. 2016, 38, 3633–3642. [Google Scholar] [CrossRef]
- Martinez, H.E.P.; Clemente, J.M.; de Lacerda, J.S.; Neves, Y.P.; Pedrosa, A.W. Nutrição Mineral Do Cafeeiro E Qualidade Da Bebida. Rev. Ceres 2014, 61, 838–848. [Google Scholar] [CrossRef]
- Schmidt, R.; da Silva, C.A.; Silva, L.O.E.; Espíndula, M.C.; Rodrigues, W.P.; Vieira, H.D.; Tomaz, M.A.; Partelli, F.L. Accumulation of Nutrients and the Relation between Fruit, Grain, and Husk of Coffee Robusta Cultivated in Brazilian Amazon. Plants 2023, 12, 3476. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.J.L.; da Silva, C.A.; Braun, H.; Partelli, F.L. Nutritional Balance and Genetic Diversity of Coffea canephora Genotypes. Plants 2023, 12, 1451. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.O.; Honfoga, J.N.B.; Medeiros, L.L.; Madruga, M.S.; Bezerra, T.K.A. Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) Using different extraction methods. Molecules 2021, 26, 46. [Google Scholar] [CrossRef] [PubMed]
- Pashkova, G.V.; Chubarov, V.M.; Akhmetzhanov, T.F.; Zhilicheva, A.N.; Mukhamedova, M.M.; Finkelshtein, A.L.; Belozerova, O.Y. Total-reflection X-ray fluorescence spectrometry as a tool for the direct elemental analysis of ores: Application to iron, manganese, ferromanganese, nickel-copper sulfide ores and ferromanganese nodules. Spectrochim. Acta B At. Spectrosc. 2020, 168, 105856. [Google Scholar] [CrossRef]
- Lara-Almazán, N.; Zarazúa-Ortega, G.; Ávila-Pérez, P.; Carreño-de León, C.; Barrera-Díaz, C.E. Multielemental analysis by total reflection X-ray fluorescence spectrometry and phytochelatins determination in aquatic plants. X-ray Spectrom. 2021, 50, 414–424. [Google Scholar] [CrossRef]
- Maltsev, A.S.; Chuparina, E.V.; Pashkova, G.V.; Sokol’nikova, J.V.; Zarubina, O.V.; Shuliumova, A.N. Features of sample preparation techniques in the total-reflection X-ray fluorescence analysis of tea leaves. Food Chem. 2021, 343, 128502. [Google Scholar] [CrossRef]
- Mojena, R. Hierarchical grouping methods and stopping rules: An evaluation. Comput. J. 1977, 20, 359–363. [Google Scholar] [CrossRef]
- Singh, D. The relative importance of characters affecting genetic divergence. Indian J. Genet. Plant Breed. 1981, 41, 237–245. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALAGROLINEINRA83X0268471 (accessed on 25 May 2023).
- Ferrão, R.G.; Cruz, C.D.; Ferreira, A.; Cecon, P.R.; Ferrão, M.A.G.; da Fonseca, A.F.A.; de Souza Carneiro, P.C.; da Silva, M.F. Genetic parameters in Conilon coffee. Pesqui. Agropecu. Bras. 2008, 43, 61–69. [Google Scholar] [CrossRef]
- Rodrigues, W.N.; Tomaz, M.A.; Ferrão, R.G.; Ferrão, M.A.; Gava, M.A.; Fonseca, A.F.A.; Miranda, F.D. Estimativa de parâmetros genéticos de grupos de clones de café conilon. Coffee Sci. 2012, 7, 177–186. Available online: http://www.sbicafe.ufv.br:80/handle/123456789/7914 (accessed on 3 April 2023).
- da Silva, D.O.; Ferreira, F.M.; Rocha, R.B.; Espíndula, M.C.; Spinelli, V.M. Genetic process with selection of Coffea canephora clones of superior processed coffee yield. Cienc. Rural 2018, 48, e20170443. [Google Scholar] [CrossRef]
- Bergo, C.L.; Miqueloni, D.P.; Lunz, A.M.P.; Assis, G.M.L. Estimation of genetic parameters and selection of Coffea canephora progenies evaluated in Brazil Western Amazon. Coffee Sci. 2020, 15, e151663. [Google Scholar] [CrossRef]
- Brige, F.A.A.; Amabile, R.F.; Malaquias, J.V.; Veiga, A.D.; Maciel, N.B.A.; Fialho, A.R. Genetic parameters in Conilon coffee in an irrigated systema in cerrado. Rev. Contrib. Cienc. Soc. 2023, 16, 1140–1156. [Google Scholar] [CrossRef]
- de Souza Faluba, J.; Miranda, G.V.; DeLima, R.O.; de Souza, L.V.; Debem, E.A.; Oliveira, A.M.C. Genetic potential of maize population UFV 7 for breeding in Minas Gerais. Cienc. Rural 2010, 40, 1250–1256. [Google Scholar] [CrossRef]
- Cruz, C.D.; Carneiro, P.C.S. Modelos Biométricos Aplicados ao Melhoramento Genético, 3rd ed.; UFV: Viçosa, Brazil, 2014; p. 668. [Google Scholar]
- da Silva, D.R.; da Silva, D.R.; Damaceno, J.B.D.; Andrade, R.A.; Domingues, C.G.; da Silva, C.A.; Martins, J.K.D.; Traspadini, E.I.F.; Dubberstein, D.; Dias, J.R.M. Compatibility test and agronomic performance of coffee genotypes (Coffea canephora Pierre ex Froehner), in the State of Rondônia, Brazil. J. Agric. Sci. 2019, 11, 162–170. [Google Scholar] [CrossRef]
- Martins, M.Q.; Partelli, F.L.; Golynski, A.; Pimentel, N.S.; Ferreira, A.; Bernardes, C.O.; Ribeiro-Barros, A.I.; Ramalho, J.C. Adaptability and stability of Coffea canephora genotypes cultivated at high altitude and subjected to low temperature during the winter. Sci. Hortic. 2019, 59, 238–242. [Google Scholar] [CrossRef]
- Ramalho, A.R.; Rocha, R.B.; Souza, F.F.; Veneziano, W.; Teixeira, A.L. Progresso genético da produtividade de café beneficiado com a seleção de clones de cafeeiro ‘Conilon’. Rev. Cien. Agron. 2016, 47, 516–523. [Google Scholar] [CrossRef]
- dos Santos, M.M.; da Silva, C.A.; Oza, E.F.; Gontijo, I.; do Amaral, J.F.T.; Partelli, F.L. Concentration of Nutrients in Leaves, Flowers, and Fruits of Genotypes of Coffea canephora. Plants 2021, 10, 2661. [Google Scholar] [CrossRef] [PubMed]
- Covre, A.M.; Partelli, F.L.; Bonomo, R.; Gontijo, I. Micronutrients in the fruits and leaves of irrigated and non-irrigated coffee plants. J. Plant Nutr. 2018, 41, 1119–1129. [Google Scholar] [CrossRef]
- Gomes, W.R.; Rodrigues, W.P.; Vieira, H.D.; Oliveira, M.G.; Dias, J.R.M.; Partelli, F.L. Genetic diversity of standard leaf nutrients in Coffea canephora genotypes during phenological phases. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.A.D.; PartellI, F.L.; Ferreira, A.; Rodrigues, J.P.; Oliosi, G.; Silva, F.H.L.E. Genetic Diversity of Promising ‘conilon’ Coffee Clones Based on Morpho-agronomic Variables. An. Acad. Bras. Ciênc. 2018, 90, 2437–2446. [Google Scholar] [CrossRef] [PubMed]
- Dubberstein, D.; Partelli, F.L.; Guilhen, J.H.S.; Rodrigues, W.P.; Ramalho, J.C.; Ribeiro-Barros, A.I. Biometric traits as a tool for the identification and breeding of Coffea canephora genotypes. Genet. Mol. Res. 2020, 19, gmr18541. [Google Scholar] [CrossRef]
- Paiva, R.N.; Carvalho, C.H.S.; Mendes, A.N.G.; Almeida, S.R.; Matiello, J.B.; Ferreira, R.A. Agronomic behavior of coffee progenies (Coffea arabica L.) in Varginha, Minas Gerais State. Coffee Sci. 2010, 5, 49–58. [Google Scholar]
- Rebêlo, A.G.M.; Monteiro, M.T.F.; Ferreira, S.J.F.; Ríos-Villamizar, E.A.; Quesada, C.A.N.; Duvoisin Junior, S. Valores de Referência da Concentração de Metais Pesados em Solos na Amazônia Central. Quím. Nova 2020, 43, 534–539. [Google Scholar] [CrossRef]
- Santos, L.C.S.; Da Silva, G.A.M.; Abranches, M.O.; Rocha, J.L.A. O papel do silício nas plantas. Res. Soc. Dev. 2021, 10, e3810716247. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, S.H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.W. Importance of mineral nutrition for mitigating aluminium toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef]
- Peleja, V.L.; Souza, F.I.B.; Rego, A.K.C.; Da Silva Júnior, M.L.; Furtado, A.C.S.; Felsemburgh, C.A.; Tribuzy, E.S. Interferência do alumínio no crescimento radicular, absorção e acúmulo de fósforo em plantas de paricá. Iberoam. J. Environ. Sci. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Hao, H.; Zhang, M.; Wang, J.; Fu, Z.; Balaji, P.; Jiang, S. Barium in coal and coal combustion products: Distribution, enrichment and migration. Energy Explor. Exploit. 2022, 40, 889–907. [Google Scholar] [CrossRef]
- Bragança, S.M.; Martinez, H.E.P.; Leite, H.G.; Santos, L.P.; Sediyama, C.S.; Alvarez, V.H.; Lani, J.A. Accumulation of macronutrients for the conilon coffee tree. J. Plant Nutr. 2008, 3, 103–120. [Google Scholar] [CrossRef]
- Covre, A.M.; Rodrigues, W.P.; Vieira, H.D.; Braun, H.; Ramalho, J.C.; Partelli, F.L. Nutrient accumulation in bean and fruit from irrigated and non-irrigated Coffea canephora cv. Conilon. Emir. J. Food. Agric. 2016, 28, 402–409. [Google Scholar] [CrossRef]
- Partelli, F.L.; Espindula, M.C.; Marré, W.B.; Vieira, H.D. Dry matter and macronutrient accumulation in fruits of conilon coffee with different ripening cycles. Rev. Bras. Cienc. Solo 2014, 1, 214–222. [Google Scholar] [CrossRef]
- Dubberstein, D.; Partelli, F.L.; Dias, J.R.M.; Espindola, M.C. Concentration and accumulation of macronutrients in leaf of coffee berries in the Amazon, Brazil. Aust. J. Crop Sci. 2016, 10, 701–710. Available online: https://search.informit.org/doi/10.3316/informit.203302793623817 (accessed on 10 April 2023). [CrossRef]
- El Mazlouzi, M.; Morel, C.; Robert, T.; Yan, B.; Mollier, A. Phosphorus uptake and partitioning in two durum wheat cultivars with contrasting biomass allocation as affected by different P supply during grain filling. Plant Soil 2022, 449, 179–192. [Google Scholar] [CrossRef]
- Pedrosa, A.W.; Martines, H.E.P.; Cruz, C.D.; Damatta, F.M.; Clemente, J.M.; Neto, A.P. Characterizing zinc use efficiency in varieties of arabica coffee. Acta Sci. 2013, 35, 343–348. [Google Scholar] [CrossRef]
- Krohling, C.A.; Eutrópio, F.J.; Figueira, F.F.; Campostrini, E.; Dobbss, L.B.; Ramos, A.C. Níveis tóxicos de ferro em lavouras de café conilon (Coffea canephora) em solos de tabuleiros costeiros. Coffee Sci. 2016, 11, 255–266. Available online: http://www.sbicafe.ufv.br:80/handle/123456789/8072 (accessed on 26 April 2023).
- Marré, W.B.; Partelli, F.L.; Espindula, M.C.; Dias, J.R.M.; Gontijo, I.; Vieira, H.D. Micronutrient Accumulation in Conilon Coffee Berries with Different Maturation Cycles. Rev. Bras. Ciênc. Solo 2015, 39, 1456–1462. [Google Scholar] [CrossRef]
- Dubberstein, D.; Partelli, F.L.; Espindula, M.C.; Dias, J.R.M. Concentration and Accumulation of Micronutrients in Robust Coffee. Acta Sci. Agron. 2019, 41, e42685. [Google Scholar] [CrossRef]
- Bazoni, P.A.; Espindula, M.C.; Araújo, L.F.B.; Vasconcelos, J.M.; Campanharo, M. Production of cuttings and nutrient export by Coffea canephora in different periods in the Southwestern Amazon. Rev. Bras. Eng. Agric. Ambient. 2020, 24, 162–169. [Google Scholar] [CrossRef]
- Strachan, S. Trace elements. Curr. Anaesth. Crit. Care 2010, 21, 44–48. [Google Scholar] [CrossRef]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a beneficial element for crop production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, V.L.; Souza, B.C.O.Q.; Lopes, G.; Guilherme, L.R.G. On the role of iodine in Plants: A commentary on Benefits of this element. Front. Plant Sci. 2022, 13, 836835. [Google Scholar] [CrossRef] [PubMed]
- Mateus, M.P.B.; Tavanti, R.F.R.; Tavanti, T.R.; Santos, E.F.; Jalal, A.; Dos Reis, A.R. Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. Ecotoxicol. Environ. Saf. 2020, 209, 111772. [Google Scholar] [CrossRef] [PubMed]
- Gonzali, S.; Kiferle, C.; Perata, P. Iodine biofortification of crops: Agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechnol. 2017, 44, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Fontes, M.P.F.; Dias Carneiro Lima, M.T.W.; Cordeiro, S.G.; Wyatt, N.L.P.; Lima, H.N.; Fendorf, S. Human health risk assessment and geochemical mobility of rare earth elements in Amazon soils. Sci. Total Environ. 2022, 806, 151191. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Deb, U.; Walther, C.; Chatterjee, S. Strontium in the Ecosystem: Transfer in Plants via Root System. Behavior of Strontium in Plants and the Environment; Springer: Cham, Switzerland, 2017; pp. 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Wang, J. Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs). Environ. Sci. Pollut. Res. 2017, 24, 7668–7678. [Google Scholar] [CrossRef]
- Shtangeeva, I.; Bertins, M.; Viksna, A.; Chelinabov, V.; Golovin, A. Stress effects on Rubidium on Two Plant Species (Field Experiment). Russ. J. Plant Physiol. 2021, 68, s131–s139. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Espinosa, D.C.R.; Vaughan, J.; Tenório, J.A.S. Recovery of scandium from various sources: A critical review of the state of the art and future prospects. Miner. Eng. 2021, 172, 107148. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Zhao, D. The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. Chem. Soc. Rev. 2021, 50, 4629–4683. [Google Scholar] [CrossRef]
- Fernández-Ruiz, R. TXRF spectrometry in the bioanalytical sciences: A brief review. X-ray Spectrom. 2022, 51, 279–293. [Google Scholar] [CrossRef]
- Lana, R.M.Q.; De Oliveira, S.A.; Lana, A.M.Q.; De Faria, M.V. Levantamento do estado nutricional de plantas de Coffea arabica L. pelo dris, na região do Alto Paranaíba- Minas gerais. Rev. Bras. Cienc. Solo 2010, 34, 1147–1156. [Google Scholar] [CrossRef]
- Borém, F.M.; Coradi, P.C.; Saath, R.; Oliveira, J.A. Qualidade do Café Natural e Despolpado Após Secagem em Terreiro e Com Altas Temperaturas. Ciênc. Agrotec. 2008, 32, 1609–1615. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo-Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018; p. 356. [Google Scholar]
- Boyle, R. Experiments upon Colors, Vol. 2, London, 1663 Apud; Bishop, E., Ed.; Indicators; Pergamon Press: Oxford, UK, 1972; p. 2. [Google Scholar]
- Dickson, A.; Leaf, A.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Schmidt, C.A.P.; Miglioranza, E.; Prudêncio, S.H. Influence of roasting and milling on consumers coffee preference at Paraná west-Brazil. Ciênc. Rural 2008, 38, 1111–1117. [Google Scholar] [CrossRef]
- De La Calle, I.; Cabaleiro, N.; Romero, V.; Lavilla, I.; Bendicho, C. Sample pretreatment strategies for total reflection X-ray fluorescence analysis: A tutorial review. Spectrochim. Acta B At. Spectrosc. 2013, 90, 23–54. [Google Scholar] [CrossRef]
- Khuder, A.; Sawan, M.K.; Karjou, J.; Razouk, A.K. Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry. Spectrochim. Acta Part B 2009, 64, 721–725. [Google Scholar] [CrossRef]
- Klockenkamper, R.; Von Bohlen, A. Determination of the critical thickness and the sensitivity for the thin-film analysis by total reflection X-ray fluorescence spectrometry. Spectrochim. Acta 1989, 44, 461–469. [Google Scholar] [CrossRef]
- Cruz, C.D. GENES, a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010; Available online: https://www.R-project.org/ (accessed on 15 January 2023).
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 15 January 2023).
- Oksanen, J.; Blanchet, F.G.; Kindt, R. Vegan: Community Ecology Package, R Package Version 2.2-0; R Foundation for Statistical Computing: Vienna, Austria, 2014. Available online: http://CRAN.Rproject.org/package=vegan(accessed on 15 January 2023).
Characteristics | F-Value | CVe (%) 1 | CVg (%) 2 | CVg/CVe (%) 3 | H2 (%) 4 | General Average and Standard Deviation * |
---|---|---|---|---|---|---|
Phosphorus | 0.0561 ns | 6.01 | 1.74 | 0.29 | 25.05 | 2944.53 ± 1413.00 |
Sulfur | 0.0000 ns | 14.00 | - | - | - | 2824.82 ± 2237.00 |
Chlorine | 0.0803 ns | 9.30 | - | - | - | 2237.53 ± 1580.00 |
Potassium | 0.0603 ns | 5.32 | 1.26 | 0.24 | 18.19 | 17,451.75 ± 9240.00 |
Calcium | 34,149,841.83 ns | 16.11 | - | - | - | 12,719.93 ± 9403.00 |
Titanium | 0.2734 ** | 44.04 | 38.39 | 0.87 | 75.25 | 2002.73 ± 2633.00 |
Vanadium | 0.00169 ns | 64.02 | - | - | - | 0.19 ± 0.01 |
Chrome | 0.0632 ns | 37.88 | 4.20 | 0.11 | 4.69 | 78.24 ± 155.00 |
Iron | 1615.25 * | 36.39 | 20.84 | 0.57 | 56.75 | 84.63 ± 49.00 |
Cobalt | 0.0238 ns | 67.75 | 29.42 | 0.43 | 43.00 | 1.00 ± 1.00 |
Nickel | 0.2694 ns | 40.54 | 11.38 | 0.28 | 23.97 | 167.86 ± 297.00 |
Copper | 63.6569 ns | 45.95 | 3.18 | 0.07 | 1.88 | 354.15 ± 502.00 |
Zinc | 0.668 ** | 13.43 | 8.87 | 0.66 | 63.59 | 1423.99 ± 2457.00 |
Bromine | 0.4484 ** | 30.56 | 35.68 | 1.17 | 84.50 | 1070.60 ± 1440.00 |
Rubidium | 133.5920 * | 52.19 | 29.26 | 0.56 | 55.70 | 2905.17 ± 2115.00 |
Strontium | 3.0973 ** | 17.46 | 15.89 | 0.91 | 76.81 | 402.81 ± 736.00 |
Yttrium | 3.4060 ** | 30.67 | 25.38 | 0.83 | 73.26 | 2034.42 ± 1498.00 |
Hafnium | 7066.8230 ** | 41.31 | 76.37 | 1.85 | 93.19 | 2321.92 ± 1326.00 |
Iodine | 4093.8764 ns | 181.11 | 50.34 | 0.28 | 23.61 | 161.08 ± 135.00 |
Grain yield | 0.0044 ** | 14.30 | 10.35 | 0.72 | 67.69 | 0.26 ± 0.03 |
Productivity | 3896.3523 ** | 25.95 | 43.75 | 1.69 | 91.91 | 68.39 ± 15.56 |
Element | S.j | Relative Contribution (%) |
---|---|---|
Hafnium | 593.5935 | 16.35 |
Rubidium | 511.4090 | 14.09 |
Cobalt | 436.6348 | 12.03 |
Iodine | 290.8561 | 8.01 |
Copper | 257.7923 | 7.10 |
Potassium | 239.9152 | 6.61 |
Chrome | 157.8306 | 4.35 |
Calcium | 155.5942 | 4.29 |
Iron | 139.0252 | 3.83 |
Yttrium | 130.9612 | 3.61 |
Nickel | 130.4908 | 3.59 |
Bromine | 125.1081 | 3.45 |
Strontium | 116.5392 | 3.21 |
Sulfur | 110.4130 | 3.04 |
Titanium | 98.4062 | 2.71 |
Vanadium | 51.8913 | 1.43 |
Chlorine | 37.6019 | 1.04 |
Phosphorus | 30.4774 | 0.84 |
Zinc | 15.4727 | 0.43 |
Total | 3630.0100 | 100.00 |
Clone | Origin |
---|---|
BRS3137 | Open pollination |
BRS3213 | Encapa03 × Robusta2258 |
BRS1216 | Encapa03 × Robusta1675 |
BRS2314 | Encapa03 × Robusta640 |
BRS3210 | Encapa03 × Robusta2258 |
BRS3220 | Encapa03 × Robusta1675 |
BRS2336 | Open pollination |
BRS2299 | Open pollination 1 |
BRS3193 | Open pollination |
Clone 12 | Conilon—BRS Ouro Preto |
BRS2357 | Open pollination 1 |
RO_C125 | Conilon—BRS Ouro Preto |
RO_C160 | Conilon—BRS Ouro Preto |
Clone 9 | Conilon—BRS Ouro Preto |
Clone 15 | Conilon—BRS Ouro Preto |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, C.d.S.; Tomaz, J.S.; Valente, M.S.F.; Espindula, M.C.; Marques, R.L.S.; Tadeu, H.C.; Ferreira, F.M.; Silva, G.d.S.; Meneses, C.H.S.G.; Lopes, M.T.G. Phenotypic Diversity and Genetic Parameters of Coffea canephora Clones. Plants 2023, 12, 4052. https://doi.org/10.3390/plants12234052
Bezerra CdS, Tomaz JS, Valente MSF, Espindula MC, Marques RLS, Tadeu HC, Ferreira FM, Silva GdS, Meneses CHSG, Lopes MTG. Phenotypic Diversity and Genetic Parameters of Coffea canephora Clones. Plants. 2023; 12(23):4052. https://doi.org/10.3390/plants12234052
Chicago/Turabian StyleBezerra, Caroline de Souza, Jennifer Souza Tomaz, Mágno Sávio Ferreira Valente, Marcelo Curitiba Espindula, Ricardo Lívio Santos Marques, Hugo Cesar Tadeu, Fábio Medeiros Ferreira, Gabriel de Sousa Silva, Carlos Henrique Salvino Gadelha Meneses, and Maria Teresa Gomes Lopes. 2023. "Phenotypic Diversity and Genetic Parameters of Coffea canephora Clones" Plants 12, no. 23: 4052. https://doi.org/10.3390/plants12234052
APA StyleBezerra, C. d. S., Tomaz, J. S., Valente, M. S. F., Espindula, M. C., Marques, R. L. S., Tadeu, H. C., Ferreira, F. M., Silva, G. d. S., Meneses, C. H. S. G., & Lopes, M. T. G. (2023). Phenotypic Diversity and Genetic Parameters of Coffea canephora Clones. Plants, 12(23), 4052. https://doi.org/10.3390/plants12234052