Phenylalkyl Glycosides from the Flowers of Brugmansia arborea L. and Their Radical Scavenging Effect and Protective Effect on Pancreatic Islets Damaged by Alloxan in Zebrafish (Danio rerio) Larvae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Structure Elucidation
2.2. Radical Scavenging Capacity
2.3. Protective Effects on Pancreatic Islets in Zebrafish Treated by Alloxan
2.4. Action of Diazoxide (DZ) on Alloxan-Induced Pancreatic Islets in Zebrafish
3. Materials and Methods
3.1. Plant Materials
3.2. General Experimental Procedures
3.3. Extraction and Isolation
3.4. Free Radical Scavenging Activity
3.5. Antidiabetic Activity
3.5.1. Chemicals and Animals
3.5.2. Ethics Statement
3.5.3. Evaluation of Recovery Efficacy on Pancreatic Islet Damaged by Alloxan in Zebrafish
3.5.4. Action of Diazoxide on Alloxan-Induced Diabetic Zebrafish
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009, 32, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Piero, M.N.; Nzaro, G.M.; Njagi, J.M. Diabetes mellitus—A devastating metabolic disorder. Asian J. Biomed. Pharm. Sci. 2014, 4, 1–7. [Google Scholar]
- Bastaki, S. Diabetes mellitus and its treatment. Int. J. Diabetes Metab. 2005, 13, 111–134. [Google Scholar] [CrossRef]
- Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 Diabetes mellitus: A review of current trends. Oman Med. J. 2012, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Romero Aroca, P.; Mendez Marin, I.; Baqet Bermaldiz, M.; Fernendez Ballart, J.; Santos Blanco, E.I. Review of the relationship between renal and retinal microangiopathy in diabetes mellitus patients. Curr. Diabetes Rev. 2010, 6, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Parng, C.; Seng, W.L.; Semino, C.; McGrath, P.I. Zebrafish: A preclinical model for drug screening. Assay Drug Dev. Technol. 2002, 1, 41–48. [Google Scholar] [CrossRef]
- Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. 2008, 83, 13–34. [Google Scholar] [CrossRef]
- De Feo, V. The ritual use of Brugmansia species in traditional Andean medicine in Northern Peru. Econ. Bot. 2004, 58, S221–S229. [Google Scholar] [CrossRef]
- Pratt, C. An Encyclopedia of Shamanism; The Rosen Publishing Group: New York City, NY, USA, 2007; pp. 68–70. [Google Scholar]
- Fuller, T.C.; McClintock, E. Poisonous Plants of California; University of California Press: Berkeley, CA, USA, 1988; pp. 233–235. [Google Scholar]
- Capasso, A.; De Feo, V.; De Simone, F.; Sorrentino, L. Activity-directed isolation of spasmolytic (anti-cholinergic) alkaloids from Brugmansia arborea (L.) Lagerheim. Int. J. Pharmacogn. 1997, 35, 43–48. [Google Scholar] [CrossRef]
- Ghani, A. Cuscohygrine from some solanaceous plants. Indian J. Pharm. Sci. 1985, 47, 127–129. [Google Scholar]
- Zhang, C.; Ma, Y.; Gao, H.; Liu, X.; Chen, L.; Zhang, Q.; Wang, Z.; Li, A. Non-alkaloid components from Sophora flavescens. Zhongguo Zhongyao Zazhi 2013, 38, 3520–3524. [Google Scholar]
- Lin, S.; Zhang, Z.; Shen, Y.; Li, H.; Shan, L.; Liu, R.; Xu, X.; Zhang, W. New lignan glycoside from Senecio chrysanthemoides. Zhongguo Zhongyao Zazhi 2011, 36, 1755–1762. [Google Scholar]
- Luyen, B.T.T.; Tai, B.H.; Nguyen, P.T.; Cha, J.Y.; Lee, H.Y.; Lee, Y.M.; Kim, Y.H. Anti-inflammatory components of Chrysanthemum indicum flowers. Bioorg. Med. Chem. Lett. 2015, 25, 266–269. [Google Scholar] [CrossRef]
- Kurashima, K.; Fujii, M.; Ida, Y.; Akita, H. Simple synthesis of β-D-glycopyranosides using β-glycosidase from almonds. Chem. Pharm. Bull. 2004, 52, 270–275. [Google Scholar] [CrossRef]
- Kim, H.G.; Jung, Y.S.; Oh, S.M.; Oh, H.J.; Ko, J.H.; Kim, D.O.; Kang, S.C.; Lee, Y.G.; Lee, D.Y.; Baek, N.I. Coreolanceolins A–E, new flavanones from the flowers of Coreopsis lanceolate, and their antioxidant and anti-inflammatory effects. Antioxidants 2020, 9, 539–554. [Google Scholar] [CrossRef]
- Matsuda, H.; Morikawa, T.; Toguchida, I.; Harima, S.; Yoshikawa, M. Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: Their inhibitory activities for rat lens aldose reductase. Chem. Pharm. Bull. 2002, 50, 972–975. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Phenolic Phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef]
- Yokozawa, T.; Chen, C.P.; Dong, E.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Study on the Inhibitory Effect of Tannins and Flavonoids against the 1,1-Diphenyl-2-picrylhydrazyl Radical. Biochem. Pharmacol. 1998, 56, 213–222. [Google Scholar] [CrossRef]
- Elo, B.; Villano, C.M.; Govorko, D.; White, L.A. Larval zebrafish as a model for glucose metabolism: Expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J. Mol. Endocrinol. 2007, 38, 433–440. [Google Scholar] [CrossRef]
- Kim, H.G.; Nam, Y.H.; Jung, Y.S.; Oh, S.M.; Trong Nguyen, N.; Lee, M.H.; Kim, D.O.; Kang, D.H.; Lee, D.Y.; Baek, N.I. Aurones and flavonols from Coreopsis lanceolata L. flowers and their anti-oxidant, pro-inflammatory inhibition effects, and recovery effects on alloxan-induced pancreatic islets in zebrafish. Molecules 2021, 26, 6098. [Google Scholar] [CrossRef]
- Desgraz, R.; Bonal, C.; Herrera, P.L. β-Cell regeneration: The pancreatic intrinsic faculty. Trends Endocrinol. Metab. 2011, 22, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Miki, T.; Nagashima, K.; Seino, S. The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic β-cells. J. Mol. Endocrinol. 1999, 22, 113–123. [Google Scholar] [CrossRef]
- Nam, Y.H.; Hong, B.N.; Rodriguez, I.; Park, M.S.; Jeong, S.Y.; Lee, Y.G.; Shim, J.H.; Yasmin, T.; Kim, N.W.; Koo, Y.T.; et al. Steamed ginger may enhance insulin secretion through KATP channel closure in pancreatic β-cells potentially by increasing 1-dehydro-6-gingerdione content. Nutrients 2020, 12, 324–338. [Google Scholar] [CrossRef]
Samples | Antioxidant Capacity (mg VCE 1·g−1 DW 2) | |
---|---|---|
ABTS | DPPH | |
Compound 1 | 50.7 ± 1.5 d3 | 5.2 ± 0.5 c |
Compound 2 | 19.9 ± 1.9 f4 | N.D. 8 |
Compound 3 | 27.4 ± 0.7 e | 3.1 ± 0.5 d |
Compound 4 | 8.6 ± 2.2 g | N.D. |
Compound 5 | 15.6 ± 2.5 f | 2.6 ± 1.1 d |
Compound 6 | 3.1 ± 0.4 h | N.D. |
BAF 5 | 64.3 ± 1.3 b | 16.2 ± 1.8 b |
BAFB 6 | 56.4 ± 0.2 c | 20.1 ± 0.2 b |
BAFE 7 | 513.2 ± 12.9 a | 130.9 ± 3.7 a |
No. | δH, J in Hz | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
2 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 |
3 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 |
4 | 7.26, m | 7.26, m | 7.26, m | 7.26, m | 7.26, m | 7.26, m |
5 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 | 7.32, dd, 8.4, 8.4 |
6 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 | 7.41, br. d, 8.4 |
7 | 4.92, d, 11.6 4.66, d, 11.6 | 4.92, d, 11.6 4.66, d, 11.6 | 2.92, t, 7.2 | 2.93, t, 7.2 | 2.80, t, 7.2 | 2.93, dd, 12.0, 2.4 2.76, dd, 12.0, 6.0 |
8 | - | - | 4.05, m 3.74, m | 4.07, m 3.76, m | 2.92, m | 3.42, m |
9 | - | - | - | - | 4.05, m 3.74, m | 3.94, m |
10 | - | - | - | - | - | 1.20, d, 6.0 (3H) |
1′ | 4.34, d, 7.6 | 4.34, d, 8.0 | 4.30, d, 8.0 | 4.36, d, 8.0 | 4.30, d, 8.0 | 4.17, d, 7.8 |
2′ | 3.23 a) | 3.23 a) | 3.17 a) | 3.23 a) | 3.17 a) | 3.17 a) |
3′ | 3.35 a) | 3.35 a) | 3.35 a) | 3.35 a) | 3.35 a) | 3.35 a) |
4′ | 3.27 a) | 3.27 a) | 3.27 a) | 3.27 a) | 3.27 a) | 3.72 a) |
5′ | 3.31 a) | 3.31 a) | 3.31 a) | 3.31 a) | 3.31 a) | 3.31 a) |
6′ | 3.88, dd, 12.0, 2.0 3.66, dd, 12.0, 5.6 | 3.88, dd, 12.0, 2.0 3.66, dd, 12.0, 5.6 | 3.86, dd, 12.0, 2.0 3.65, dd, 12.0, 5.6 | 3.85, dd, 12.0, 2.0 3.65, dd, 12.0, 5.6 | 3.86, dd, 12.0, 2.0 3.65, dd, 12.0, 5.6 | 4.05, dd, 12.0, 5.4 3.76, dd, 12.0, 1.8 |
1″ | - | 4.90 a) | - | 4.34, d, 8.0 | - | 4.30, d, 7.8 |
2″ | - | 3.38 a) | - | 3.38 a) | - | 3.17 a) |
3″ | - | 3.52 a) | - | 3.52 a) | - | 3.35 a) |
4″ | - | 3.45 a) | - | 3.45 a) | - | 3.57, dd, 7.8, 7.8 |
5″ | - | 3.48 a) | - | 3.48 a) | - | 3.31 a) |
6″ | - | 4.67, br. d, 12.0 4.39, dd, 12.0, 6.0 | - | 4.25, dd, 11.6, 2.0 3.75, dd, 11.6, 6.0 | - | 3.86, br. d, 12.0 3.65, dd, 12.0, 5.4 |
No. | δC | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
1 | 139.0 | 139.0 | 139.0 | 139.0 | 139.0 | 140.2 |
2 | 129.1 | 129.1 | 129.1 | 129.1 | 129.1 | 129.4 |
3 | 129.2 | 129.2 | 129.2 | 129.2 | 129.2 | 130.0 |
4 | 128.6 | 128.6 | 128.6 | 128.6 | 128.6 | 127.2 |
5 | 129.2 | 129.2 | 129.2 | 129.2 | 129.2 | 130.0 |
6 | 129.1 | 129.1 | 129.1 | 129.1 | 129.1 | 129.4 |
7 | 71.7 | 71.5 | 37.2 | 37.2 | 40.2 | 39.3 |
8 | - | 71.7 | 71.5 | 37.2 | 76.6 | |
9 | - | - | - | 71.7 | 88.2 | |
10 | - | - | - | - | - | 17.4 |
1′ | 103.2 | 103.4 | 103.4 | 103.4 | 103.4 | 104.5 |
2′ | 75.1 | 75.0 | 75.0 | 75.0 | 75.0 | 75.2 |
3′ | 78.0 | 78.0 | 78.0 | 78.0 | 78.0 | 78.0 |
4′ | 71.6 | 71.5 | 71.6 | 71.5 | 71.6 | 71.9 |
5′ | 78.0 | 77.9 | 77.9 | 77.9 | 77.9 | 77.8 |
6′ | 62.8 | 69.7 | 62.7 | 69.7 | 62.7 | 69.9 |
1″ | - | 104.8 | - | 104.8 | 104.8 | |
2″ | - | 75.1 | - | 75.1 | 75.1 | |
3″ | - | 77.8 | - | 77.8 | 78.0 | |
4″ | - | 71.4 | - | 71.4 | 71.6 | |
5″ | - | 77.1 | - | 77.1 | 77.8 | |
6″ | - | 62.7 | - | 62.7 | 62.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-G.; Nam, Y.H.; Kang, T.H.; Baek, N.-I.; Lee, M.-H.; Lee, D.Y. Phenylalkyl Glycosides from the Flowers of Brugmansia arborea L. and Their Radical Scavenging Effect and Protective Effect on Pancreatic Islets Damaged by Alloxan in Zebrafish (Danio rerio) Larvae. Plants 2023, 12, 4075. https://doi.org/10.3390/plants12244075
Kim H-G, Nam YH, Kang TH, Baek N-I, Lee M-H, Lee DY. Phenylalkyl Glycosides from the Flowers of Brugmansia arborea L. and Their Radical Scavenging Effect and Protective Effect on Pancreatic Islets Damaged by Alloxan in Zebrafish (Danio rerio) Larvae. Plants. 2023; 12(24):4075. https://doi.org/10.3390/plants12244075
Chicago/Turabian StyleKim, Hyoung-Geun, Youn Hee Nam, Tong Ho Kang, Nam-In Baek, Min-Ho Lee, and Dae Young Lee. 2023. "Phenylalkyl Glycosides from the Flowers of Brugmansia arborea L. and Their Radical Scavenging Effect and Protective Effect on Pancreatic Islets Damaged by Alloxan in Zebrafish (Danio rerio) Larvae" Plants 12, no. 24: 4075. https://doi.org/10.3390/plants12244075
APA StyleKim, H. -G., Nam, Y. H., Kang, T. H., Baek, N. -I., Lee, M. -H., & Lee, D. Y. (2023). Phenylalkyl Glycosides from the Flowers of Brugmansia arborea L. and Their Radical Scavenging Effect and Protective Effect on Pancreatic Islets Damaged by Alloxan in Zebrafish (Danio rerio) Larvae. Plants, 12(24), 4075. https://doi.org/10.3390/plants12244075