Leaf Extracts of Invasive Woody Species Demonstrate Allelopathic Effects on the Growth of a Lawn Grass Mixture
Abstract
:1. Introduction
2. Results
2.1. Metabolic Analysis
2.2. Analysis of Elemental Composition
2.3. Assessment of the Allelopathic Activity of the Leaf Litter of the Invasive Woody Species toward Two Herbaceous Plants
2.3.1. Assessment of the Allelopathic Activity of the Leaf Fall of Invasive Woody Species on the Seed Germination of Test Plants
2.3.2. Assessment of the Allelopathic Activity of the Leaf Fall of Invasive Woody Species on the Growth of Test Plants
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. The Profiling of Secondary Metabolites
4.3. The Profiling of Chemical Elements
4.4. An Assay of the Allelopathic Activity of Leaf Litter toward Two Herbaceous Plants
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callaway, R.M.; Ridenou, W.M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Eco. Environ. 2004, 2, 436–443. [Google Scholar] [CrossRef]
- Inderjit, I.; Seastedt, T.R.; Callaway, R.M.; Pollock, J.L.; Kaur, J. Allelopathy and plant invasions: Traditional, congeneric, and bio-geographical approaches. Biol. Invasions 2008, 10, 875–890. [Google Scholar] [CrossRef]
- Kalisz, S.; Kivlin, S.N.; Bialic-Murphy, L. Allelopathy is pervasive in invasive plants. Biol. Invasions 2021, 23, 367–371. [Google Scholar] [CrossRef]
- Orr, S.; Rudgers, J.; Clay, K. Invasive Plants can Inhibit Native Tree Seedlings: Testing Potential Allelopathic Mechanisms. Plant Ecol. 2005, 181, 153–165. [Google Scholar] [CrossRef]
- Inderjit, I.; Simberloff, D.; Kaur, H.; Kalisz, S.; Bezemer, T.M. Novel chemicals engender myriad invasion mechanisms. New Phytol. 2021, 232, 1184–1200. [Google Scholar] [CrossRef] [PubMed]
- Rafikova, O.S.; Veselkin, D.V. Leaf water extracts from invasive Acer negundo do not inhibit seed germination more than leaf extracts from native species. Manag. Biol. Invasions 2022, 13, 705–723. [Google Scholar] [CrossRef]
- Zhang, P.; Li, B.; Wu, J.; Hu, S. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: A meta-analysis. Ecol. Lett. 2019, 22, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Bialic-Murphy, L.; Brouwer, N.L.; Kalisz, S. Direct effects of a non-native invader erode native plant fitness in the forest understory. J. Ecol. 2019, 108, 189–198. [Google Scholar] [CrossRef]
- Dai, Z.C.; Wang, X.Y.; Qi, S.S.; Cai, H.H.; Sun, J.F.; Huang, P.; Du, D.L. Effects of leaf litter on inter-specific competitive ability of the invasive plant Wedelia trilobata. Ecol. Res. 2016, 31, 367–374. [Google Scholar] [CrossRef]
- Medina-Villar, S.; Castro-Díez, P.; Alonso, A.; Cabra-Rivas, I.; Parker, I.M.; Pérez-Corona, E. Do the invasive trees Ailanthus altissima and Robinia pseudoacacia alter litterfall dynamics and soil properties of riparian ecosystems in Central Spain? Plant Soil 2015, 396, 311–324. [Google Scholar] [CrossRef]
- Stanek, M.; Piechnik, Ł.; Stefanowicz, A.M. Invasive red oak (Quercus rubra L.) modifies soil physicochemical properties and forest understory vegetation. For. Ecol. Manag. 2020, 472, 118253. [Google Scholar] [CrossRef]
- Wallace, J.; Eggert, S.; Meyer, J.; Webster, J. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 1997, 227, 102–104. [Google Scholar] [CrossRef]
- Fargen, C.; Emery, S.; Carreiro, M. Influence of Lonicera maackii invasion on leaf litter decomposition and macroinvertebrate communities in an Urban Stream. Nat. Area J. 2015, 35, 392–403. [Google Scholar] [CrossRef]
- Krevš, A.; Darginavičienė, J.; Gylytė, B.; Grigutytė, R.; Jurkonienė, S.; Karitonas, R.; Kučinskienė, A.; Pakalnis, R.; Sadauskas, K.; Vitkus, R.; et al. Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition. Environ. Pollut. 2013, 173, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Krevš, A.; Kučinskienė, A. Influence of invasive Acer negundo leaf litter on benthic microbial abundance and activity in the littoral zone of a temperate river in Lithuania. Knowl. Manag. Aquat. Ecosyst. 2017, 418, 26. [Google Scholar] [CrossRef]
- Wan, H.; Liu, W.; Wan, F. Allelopathic effect of Ageratina adenophora (Spreng.) leaf litter on four herbaceous plants in invaded regions. Chin. J. Eco-Agric. 2011, 19, 130–134. [Google Scholar] [CrossRef]
- Ali, K.W.; Shinwari, M.I.; Khan, S. Screening of 196 medicinal plant species leaf litter for allelopathic potential. Pak. J. Bot. 2019, 51, 2169–2177. [Google Scholar] [CrossRef]
- Kuglerová, L.; García, L.; Pardo, I.; Mottiar, Y.; Richardson, J.S. Does leaf litter from invasive plants contribute the same support of a stream ecosystem function as native vegetation? Ecosphere 2017, 8, e01779. [Google Scholar] [CrossRef]
- Ellison, A.M.; Bank, M.S.; Clinton, B.D.; Colburn, E.A.; Elliott, K.; Ford, C.R.; Foster, D.R.; Kloeppel, B.D.; Knoepp, J.D.; Lovett, G.M.; et al. Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 2005, 3, 479–486. [Google Scholar] [CrossRef]
- Fernandez, C.; Santonja, M.; Gros, R.; Monnier, Y.; Chomel, M.; Baldy, V.; Bousquet-Mélou, A. Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession. J. Chem. Ecol. 2013, 39, 298–311. [Google Scholar] [CrossRef]
- Nikolaeva, A.A.; Golosova, E.V.; Shelepova, O.V. Allelopathic activity of Acer negundo L. leaf litter as a vector of invasion species into plant communities. BIO Web Conf. 2021, 38, 00088. [Google Scholar] [CrossRef]
- Quan, W.; Wang, A.; Li, C.; Xie, L. Allelopathic potential and allelochemical composition in different soil layers of Rhododendron delavayi forest, southwest China. Front. Ecol. Environ. 2022, 10, 963116. [Google Scholar] [CrossRef]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic. nutritional and ecological relevance in the soil system. Plant Soil. 2019, 442, 23–48. [Google Scholar] [CrossRef]
- Šćepanović, M.; Košćak, L.; Šoštarčić, V.; Pismarović, L.; Milanović-Litre, A.; Kljak, K. Selected phenolic acids inhibit the initial growth of Ambrosia artemisiifolia L. Biology 2022, 11, 482. [Google Scholar] [CrossRef] [PubMed]
- Vergutz, L.; Manzoni, S.; Porporato, A.; Novais, R.F.; Jackson, R.B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012, 82, 205–220. [Google Scholar] [CrossRef]
- Berg, B.; Davey, M.P.; De Marco, A.; Emmett, B.; Faituri, M.; Hobbie, S.E.; Johansson, M.B.; Liu, C.; McClaugherty, C.; Norell, L.; et al. Factors influencing limit values for pine needle litter decomposition: A synthesis for boreal and temperate pine forest systems. Biogeochemistry 2010, 100, 57–73. [Google Scholar] [CrossRef]
- De Marco, A.; Spaccini, R.; Vittozzi, P.; Esposito, F.; Berg, B.; Virzo De Santo, A. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol. Biochem. 2012, 51, 1–15. [Google Scholar] [CrossRef]
- Parfenova, E.I.; Yarilova, E.A. Guide to Micromorphological Studies in Soil Science; Nauka Publisher: Moscow, Russia, 1977; 198p. (In Russian) [Google Scholar]
- Aleman-Ramirez, J.L.; Moreira, J.; Torres-Arellano, S.; Longoria, A.; Okoye, P.U.; Sebastian, P.J. Preparation of a heterogeneous catalyst from moringa leaves as a sustainable precursor for biodiesel production. Fuel 2021. 284, 118983. [CrossRef]
- Karim, A.A.; Kumar, M.; Mohapatra, S.; Singh, S.K. Nutrient rich biomass and effluent sludge wastes co-utilization for production of biochar fertilizer through different thermal treatments. J. Clean. Prod. 2019, 228, 570–579. [Google Scholar] [CrossRef]
- Santonja, M.; Bousquet-Mélou, A.; Greff, S.; Ormeño, E.; Fernandez, C. Allelopathic effects of volatile organic compounds released from Pinus halepensis needles and roots. Ecol. Evol. 2019, 9, 8201–8213. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium. Available online: https://www.cabi.org/ISC (accessed on 12 October 2022).
- Marinova, G.; Batchvarov, V. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulg. J. Agric. Sci. 2011, 17, 11–24. [Google Scholar]
- Han, X.; Yang, K.; Gross, R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 2012, 31, 134–178. [Google Scholar] [CrossRef]
- Motyleva, S.M.; Kulikov, I.M.; Marchenko, L.A. EDS analysis for fruit Prunus elemental composition determination. Mater. Sci. Forum 2017, 888, 314–318. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book, 2nd ed.; Wiley: Chichester, UK, 2013; ISBN 978-1-118-44896-0. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation: Vienna, Austria, 2023. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package, R Package Version 2.6-4; R Foundation: Vienna, Austria, 2022. Available online: https://CRAN.R-project.org/package=vegan(accessed on 23 August 2023).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Use R! Springer: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|
Length (Vetch Hypocotyls) | Length (Oat Shoots) | Phenolic and Aliphatic Acids | Esters | Carbohydrates | Polyphenols | Glycosides | Amino Acids | ||
Spearman’s Correlation Coefficients | Length (vetch hypocotyls) | <0.01 | 0.72 | <0.01 | 0.82 | 0.95 | 0.41 | ||
Length (oat shoot) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |||
Phenolic and aliphatic acids | −0.41 | −0.23 | <0.01 | 0.43 | <0.01 | <0.01 | <0.01 | ||
Esters | 0.01 | −0.27 | −0.23 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Carbohydrates | −0.28 | −0.40 | 0.03 | 0.64 | <0.01 | <0.01 | <0.01 | ||
Polyphenols | 0.01 | −0.21 | 0.43 | 0.32 | 0.26 | <0.01 | <0.01 | ||
Glycosides | 0.00 | −0.17 | 0.14 | 0.52 | 0.49 | 0.71 | <0.01 | ||
Amino acids | −0.03 | −0.20 | 0.31 | 0.7 | 0.14 | 0.54 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelepova, O.V.; Tkacheva, E.V.; Ivanovskii, A.A.; Ozerova, L.V.; Vinogradova, Y.K. Leaf Extracts of Invasive Woody Species Demonstrate Allelopathic Effects on the Growth of a Lawn Grass Mixture. Plants 2023, 12, 4084. https://doi.org/10.3390/plants12244084
Shelepova OV, Tkacheva EV, Ivanovskii AA, Ozerova LV, Vinogradova YK. Leaf Extracts of Invasive Woody Species Demonstrate Allelopathic Effects on the Growth of a Lawn Grass Mixture. Plants. 2023; 12(24):4084. https://doi.org/10.3390/plants12244084
Chicago/Turabian StyleShelepova, Olga V., Ekaterina V. Tkacheva, Aleksandr A. Ivanovskii, Ludmila V. Ozerova, and Yulia K. Vinogradova. 2023. "Leaf Extracts of Invasive Woody Species Demonstrate Allelopathic Effects on the Growth of a Lawn Grass Mixture" Plants 12, no. 24: 4084. https://doi.org/10.3390/plants12244084
APA StyleShelepova, O. V., Tkacheva, E. V., Ivanovskii, A. A., Ozerova, L. V., & Vinogradova, Y. K. (2023). Leaf Extracts of Invasive Woody Species Demonstrate Allelopathic Effects on the Growth of a Lawn Grass Mixture. Plants, 12(24), 4084. https://doi.org/10.3390/plants12244084