Can the Blended Application of Controlled-Release and Common Urea Effectively Replace the Common Urea in a Wheat–Maize Rotation System? A Case Study Based on a Long–Term Experiment
Abstract
:1. Introduction
2. Results
2.1. Grain Yield, N Uptake and N Use Efficiency
2.2. Soil N and C Stocks Dynamics
2.3. Nr Losses, GHG Emissions, N and C Footprint
2.4. Economic Benefit Analysis
3. Discussion
3.1. Grain Yield, N Uptake and N-Use Efficiency
3.2. Soil N and C Stocks Dynamics
3.3. Nr Losses, GHG Emissions, N and C Footprint
3.4. Economic Benefit Analysis
3.5. Sustainable N Management Strategy: Blending Urea Applied at Optimal N Rate
4. Materials and Methods
4.1. Experiment Site, Experimental Design, and Field Management
4.2. Measurements and Evaluation Indicators
4.2.1. Sampling and Chemical Analysis
4.2.2. Environmental Impacts Calculations
4.2.3. Economic Benefits Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Ge, Y.; Ren, Y.; Xu, B.; Luo, W.; Jian, J.; Gu, B.; Chang, J. Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs. Environ. Sci. Technol. 2012, 46, 9420–9427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dou, Z.; He, P.; Ju, X.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Homme, P.; Prud’homme, M. Short-Term Fertilizer Outlook 2016–2017; IFA Strategic Forum: Doha, Qatar, 2016. [Google Scholar]
- Galloway, J.; Aber, J.; Erisman, J.; Seitzinger, S.; Howarth, R.; Cowling, E.; Cosby, B. The nitrogen cascade. Bioscience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- NBSC. Regional Data. National Bureau of Statistics of China. 2018. Available online: http://data.stats.gov.cn/ (accessed on 22 December 2018).
- Zhang, X.; Davidson, E.; Mauzerall, D.; Searchinger, T.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.; Meng, Q.; Hou, P.; Yue, S.; Roemheld, V.; et al. Integrated soil-crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Patil, M.D.; Das, B.S.; Barak, E.; Bhadoria, P.B.S.; Polak, A. Performance of polymer-coated urea in transplanted rice: Effect of mixing ratio and water input on nitrogen use efficiency. Paddy Water Environ. 2010, 8, 189–198. [Google Scholar] [CrossRef]
- Shaviv, A. Advances in controlled-release fertilizers. Adv. Agron. 2001, 71, 1–49. [Google Scholar]
- Zhang, W.; Liang, Z.; He, X.; Wang, X.; Shi, X.; Zou, C.; Chen, X. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.B.; Sun, Y.B.; Zhang, M.; Li, C.L.; Yang, Y.C.; Liu, Z.G.; Li, S.L. Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system. Field Crops Res. 2015, 184, 65–73. [Google Scholar] [CrossRef]
- Timilsena, Y.D.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 2014, 95, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Noellsch, A.J.; Motavalli, P.P.; Nelson, K.A.; Kitchen, N.R. Corn response to conventional and slow-release nitrogen fertilizers across a claypan landscape. Agron. J. 2009, 101, 607–614. [Google Scholar] [CrossRef]
- Zheng, W.K.; Zhang, M.; Liu, Z.G.; Zhou, H.Y.; Lu, H.; Zhang, W.T.; Yang, Y.C.; Li, C.L.; Chen, B.C. Combining controlled-release urea and uncoated urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. Field Crops Res. 2016, 197, 52–62. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, Z.; Zhang, M.; Shi, Y.; Zhu, Q.; Sun, Y.; Zhou, H.; Li, C.; Yang, Y.; Geng, J. Improving crop yields, nitrogen use efficiencies, and profits by using mixtures of coated controlled-released and uncoated urea in a wheat-maize system. Field Crops Res. 2017, 205, 106–115. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, Y.; Du, C.; Zhou, J.; Qin, Y.; Wu, Y. Economic and soil environmental benefits of using controlled-release bulk blending urea in the North China Plain. Land Degrad. Dev. 2017, 28, 2370–2379. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Gao, H.; Li, B.; Wang, H.; Yan, Q.; Ollenburger, M.; Zhang, W. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions. J. Clean. Prod. 2019, 241, 118–205. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Z.; He, X.; Meng, Q.; Hu, Y.; Schmidhalter, U.; Zhang, W.; Zou, C.; Chen, X. Improving grain yield and protein concentration of maize (Zea mays L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crops Res. 2020, 249, 107754. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Z.; Hu, Y.; Schmidhalter, U.; Chen, X. Integrated assessment of agronomic, environmental and ecosystem economic benefits of blending use of controlled-release and common urea in wheat production. J. Clean. Prod. 2021, 287, 125572. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Linquist, B.; Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chan. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Cui, Z.; Yue, S.; Wang, G.; Meng, Q.; Wu, L.; Yang, Z.; Zhang, Q.; Li, S.; Zhang, F.; Chen, X. Closing the yield gap could reduce projected greenhouse gas emission: A case study of maize production in China. Glob. Chan. Biol. 2013, 19, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W.; Kohn, R.; Kitzes, J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef]
- Treseder, K.K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol. Lett. 2008, 11, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Lang, M.; Zhang, L.; Liu, B.; Chen, X. Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil. Sci. Total Environ. 2022, 811, 151402. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosier, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Chan. Bio. 2004, 10, 155–160. [Google Scholar] [CrossRef]
- Grinsven, H.J.M.V.; Holland, M.; Jacobsen, B.H.; Klimont, Z.; Sutton, M.A.; Willems, W.J. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 2013, 47, 3571–3579. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, L.; Liu, T.; Li, C.; Cao, C. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in riceewheat cropping systems in central China. Atmos. Environ. 2015, 122, 636–644. [Google Scholar] [CrossRef]
- Liu, T.Q.; Li, S.H.; Guo, L.G.; Cao, C.G.; Ke, H.J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Ying, H.; Ye, Y.; Cui, Z.; Chen, X. Managing nitrogen for sustainable wheat production. J. Clean. Prod. 2017, 162, 1308–1316. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, J.; Zhai, S.; Ding, X.; Zhang, H.; Sun, S.; Tian, X. Optimal blends of controlled-release urea and conventional urea improved nitrogen use efficiency in wheat and maize with reduced nitrogen application. J Soil Sci. Plant Nut. 2021, 21, 1103–1111. [Google Scholar] [CrossRef]
- Liu, J.; You, L.; Amini, M.; Obers teiner, M.; Herrero, M.; Zehnder, A.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Env. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef]
- Kolberg, R.L.; Westfall, D.G.; Peterson, G.A. Influence of cropping intensity and nitrogen fertilizer rates on in situ nitrogen mineralization. Soil Sci. Soc. Am. J. 1999, 63, 129–134. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chan. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Zuo, W.; Gu, B.; Zou, X.; Peng, K.; Shan, Y.; Yi, S.; Shan, Y.; Gu, C.; Bai, Y. Soil organic carbon sequestration in croplands can make remarkable contributions to China’s carbon neutrality. J. Clean. Prod. 2023, 382, 135268. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, H.; Zhang, M.; Shao, Y.; Wang, J.; Liu, Y.; Li, C. Straw returning combined with controlled-release nitrogen fertilizer affected organic carbon storage and crop yield by changing humic acid composition and aggregate distribution. J. Clean. Prod. 2023, 415, 137783. [Google Scholar] [CrossRef]
- Chu, H.; Lin, X.; Fujii, T.; Morimoto, S.; Yagi, K.; Hu, J.; Zhang, J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 2007, 39, 2971–2976. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, L.; He, X.; Chen, X.; Cui, Z. Long-term optimization of crop yield while concurrently improving soil quality. Land Degrad. Dev. 2019, 30, 897–909. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chan. Biol. 2016, 23, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Halvorson, A.D.; Del Grosso, S.J.; Jantalia, C.P. Nitrogen source effects on soil nitrous oxide emission from strip-till corn. J. Environ. Qual. 2011, 40, 1775–1786. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Song, F. Effects of different coated controlled-release urea on soil ammonia volatilization in farmland. Acta Ecol. Sin. 2011, 31, 7133–7140, (In Chinese with English Abstract). [Google Scholar]
- Yin, M.; Li, Y.; Xu, Y. Comparative effects of nitrogen application on growth and nitrogen use in a winter wheat/summer maize rotation system. J. Inter. Agric. 2017, 16, 2062–2072. [Google Scholar] [CrossRef]
- Zhang, W. Greenhouse Gas Emissions and Reactive Nitrogen Losses Assessment, Mitigation Potentials and Management Approaches of Maize Production in China. Ph.D. Thesis, China Agricultural University, Beijing, China, 2019. [Google Scholar]
- Xia, L.L.; Ti, C.P.; Li, B.L.; Xia, Y.Q.; Yan, X.Y. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Novara, A.; Poma, I.; Sarno, M.; Venezia, G.; Gristina, L. Long-term durum wheat-based cropping systems result in the rapid saturation of soil carbon in the Mediterranean semi-arid environment. Land Deg. Dev. 2016, 27, 612–619. [Google Scholar] [CrossRef]
- ISO-14040; Environmental Management Life Cycle Assessment Principles and Framework. ISO International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO-14044; Environmental Management Life Cycle Assessment Requirements and Guidelines. ISO International Organization for Standardization: Geneva, Switzerland, 2006.
- Liang, Z. Using Controlled Release Fertilizers to Regulate Root-Zone Soil Nitrogen Supply for High-Yield and High-Efficiency Winter Wheat/Summer Maize Population Development China. Ph.D. Thesis, China Agricultural University, Beijing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; pp. 11.1–11.54. [Google Scholar]
- Clark, S.; Khoshnevisan, B.; Sefeedpari, P. Energy efficiency and greenhouse gas emissions during transition to organic and reduced-input practices: Student farm case study. Ecol. Eng. 2016, 88, 186–194. [Google Scholar] [CrossRef]
- Cui, Z.; Yue, S.; Wang, G.; Meng, Q.; Wu, L.; Yang, Z.; Zhang, Q.; Li, S.; Zhang, F.; Chen, X. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environ. Sci. Technol. 2013, 47, 6015–6022. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, Y.; Sui, P.; Gao, W. Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies. Sci. Total Environ. 2013, 456, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Pishgar-Komleh, S.H.; Omid, M.; Heidari, M.D. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy 2013, 59, 63–71. [Google Scholar] [CrossRef]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Determining the Environmental Burdens and Resource Use in the Production of Agricultural Commodities. Final Report to Defra on Project ISO205. 2006. Available online: www.defra.gov.uk (accessed on 22 November 2023).
- Yue, S. Optimum Nitrogen Management for High-Yielding Wheat and Maize Cropping System. Ph.D. Thesis, China Agricultural University, Beijing, China, 2013. [Google Scholar]
Treatment | Average N Uptake (kg ha−1) | NUE in Rotation System (%) | ||
---|---|---|---|---|
Winter Wheat | Summer Maize | Rotation System | ||
CK | 62 b | 86 b | 148 b | / |
CU | 182 a | 191 a | 373 a | 62% a |
BU | 185 a | 184 a | 369 a | 61% a |
Treatment | N-Derived Grain Benefits | N Costs | Labor Costs | Ecological Costs | Health Costs | Private Profitability | Ecosystem Economic Benefit |
---|---|---|---|---|---|---|---|
(USD ha−1) | |||||||
CU | 3206 | 223 | 171 | 349 | 150 | 2812 | 2313 |
BU | 3165 | 244 | 85 | 315 | 135 | 2836 | 2386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xue, W.-T.; Sun, H.; Hu, Y.-C.; Wu, R.; Tian, Y.; Chen, Y.-S.; Ma, L.; Chen, Q.; Du, Y.; et al. Can the Blended Application of Controlled-Release and Common Urea Effectively Replace the Common Urea in a Wheat–Maize Rotation System? A Case Study Based on a Long–Term Experiment. Plants 2023, 12, 4085. https://doi.org/10.3390/plants12244085
Zhang L, Xue W-T, Sun H, Hu Y-C, Wu R, Tian Y, Chen Y-S, Ma L, Chen Q, Du Y, et al. Can the Blended Application of Controlled-Release and Common Urea Effectively Replace the Common Urea in a Wheat–Maize Rotation System? A Case Study Based on a Long–Term Experiment. Plants. 2023; 12(24):4085. https://doi.org/10.3390/plants12244085
Chicago/Turabian StyleZhang, Ling, Wen-Tao Xue, Hao Sun, Yun-Cai Hu, Rong Wu, Ye Tian, Yi-Shan Chen, Liang Ma, Qian Chen, Ying Du, and et al. 2023. "Can the Blended Application of Controlled-Release and Common Urea Effectively Replace the Common Urea in a Wheat–Maize Rotation System? A Case Study Based on a Long–Term Experiment" Plants 12, no. 24: 4085. https://doi.org/10.3390/plants12244085
APA StyleZhang, L., Xue, W. -T., Sun, H., Hu, Y. -C., Wu, R., Tian, Y., Chen, Y. -S., Ma, L., Chen, Q., Du, Y., Bai, Y., Liu, S. -J., & Zou, G. -Y. (2023). Can the Blended Application of Controlled-Release and Common Urea Effectively Replace the Common Urea in a Wheat–Maize Rotation System? A Case Study Based on a Long–Term Experiment. Plants, 12(24), 4085. https://doi.org/10.3390/plants12244085