Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatment of Plant Materials
2.2. Media, Explants Tested and Experimental Procedure
2.3. Culture Conditions and Handling of Embryogenic Calluses
2.4. Optimising Treatment for Chemical Mutagenesis
2.5. Data Collection, Statistical Design and Analysis
3. Results
3.1. Effect of Media on Callus Induction and Somatic Embryogenesis
3.2. Effect of the Explant, the Age of the Explant and the Cultivar on Callus Induction and Somatic Embryogenesis
3.3. Interaction Effects of Media, Genotype and Explant Maturity
3.4. Effect of Ethyl Methanesulfonate on Plant Regeneration from Somatic Embryos
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bornhoff, B.A.; Harst, M.; Zyprian, E.; Topfer, R. Transgenic plants of Vitis vinifera cv. Seyval blanc. Plant Cell Rep. 2005, 24, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.; Chialva, C.; Miras, S.; Lijavetzky, D. New technologies and strategies for grapevine breeding through genetic transformation. Front. Plant Sci. 2021, 12, 767522. [Google Scholar] [CrossRef] [PubMed]
- Carimi, F.; Pathirana, R.; Carra, A. Somatic embryogenesis and Agrobacterium mediated genetic transformation in Vitis. In Somatic Embryogenesis and Genetic Transformation in Plants; Aslam, J., Srivastave, P.S., Sharma, M.P., Eds.; Narosa Publishing House: New Delhi, India, 2013; pp. 199–218. [Google Scholar]
- Li, Z.T.; Dhekney, S.; Dutt, M.; Van Aman, M.; Tattersall, J.; Kelley, K.T.; Gray, D.J. Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell. Dev. Biol.-Plant 2006, 42, 220–227. [Google Scholar] [CrossRef]
- Martinelli, L.; Mandolino, G. Transgenic grapes (Vitis Species). In Transgenic Crops II; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 325–338. [Google Scholar]
- Gambino, G.; Bondaz, J.; Gribaudo, I. Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. Eur. J. Plant Pathol. 2006, 114, 397–404. [Google Scholar] [CrossRef]
- Gambino, G.; Di Matteo, D.; Gribaudo, I. Elimination of Grapevine fanleaf virus from three Vitis vinifera cultivars by somatic embryogenesis. Eur. J. Plant Pathol. 2009, 123, 57–60. [Google Scholar] [CrossRef]
- Goussard, P.G.; Wiid, J.; Kasdorf, G.G.F. The effectiveness of in vitro somatic embryogenesis in eliminating fanleaf virus and leafroll associated viruses from grapevines. S. Afr. J. Enol. Vitic. 1991, 12, 77–81. [Google Scholar] [CrossRef]
- Gambino, G.; Navarro, B.; Vallania, R.; Gribaudo, I.; Di Serio, F. Somatic embryogenesis efficiently eliminates viroid infections from grapevines. Eur. J. Plant Pathol. 2011, 130, 511–519. [Google Scholar] [CrossRef]
- Halperin, W. Alternative morphogenetic events in cell suspensions. Am. J. Bot. 1966, 53, 443–453. [Google Scholar] [CrossRef]
- Horstman, A.; Bemer, M.; Boutilier, K. A transcriptional view on somatic embryogenesis. Regeneration 2017, 4, 201–216. [Google Scholar] [CrossRef]
- Toonen, M.A.J.; Hendriks, T.; Schmidt, E.D.L.; Verhoeven, H.A.; van Kammen, A.; de Vries, S.C. Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta 1994, 194, 565–572. [Google Scholar] [CrossRef]
- Franks, T.; Botta, R.; Thomas, M.R.; Franks, J. Chimerism in grapevines: Implications for cultivar identity, ancestry and genetic improvement. TAG Theor. Appl. Genet. 2002, 104, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, C.; Kieffer, F.; Maillot, P.; Farine, S.; Butterlin, G.; Merdinoglu, D.; Walter, B. Genetic chimerism of Vitis vinifera cv. Chardonnay 96 is maintained through organogenesis but not somatic embryogenesis. BMC Plant Biol. 2005, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Moine, A.; Boccacci, P.; Perrone, I.; Pagliarani, C. Somatic embryogenesis is an effective strategy for dissecting chimerism phenomena in Vitis vinifera cv Nebbiolo. Plant Cell Rep. 2021, 40, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Hoshino, Y.; Mii, M. Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenesmediated transformation of embryogenic calli. J. Exp. Bot. 1994, 45, 649–656. [Google Scholar] [CrossRef]
- Li, Z.T.; Dhekney, S.A.; Dutt, M.; Gray, D.J. An improved protocol for Agrobacterium-mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tissue Organ Cult. 2008, 93, 311–321. [Google Scholar] [CrossRef]
- Ren, C.; Liu, X.; Zhang, Z.; Wang, Y.; Duan, W.; Li, S.; Liang, Z. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci. Rep. 2016, 6, 32289. [Google Scholar] [CrossRef]
- Nakajima, I.; Ban, Y.; Azuma, A.; Onoue, N.; Moriguchi, T.; Yamamoto, T.; Toki, S.; Endo, M. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE 2017, 12, e0177966. [Google Scholar] [CrossRef]
- Torres-Vinals, M.; Sabate-Casaseca, S.; Aktouche, N.; Grenan, S.; Lopez, G.; Porta-Falguera, M.; Torregrosa, L. Large-scale production of somatic embryos as a source of hypocotyl explants for Vitis vinifera micrografting. Vitis 2004, 43, 163–168. [Google Scholar]
- Carimi, F.; Carra, A.; Panis, B.; Pathirana, R. Strategies for conservation of endangered wild grapevine (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi). Acta Hortic. 2016, 1115, 81–86. [Google Scholar] [CrossRef]
- Carimi, F.; Pathirana, R.; Carra, A. Biotechnologies for germplasm management and improvement. In Grapevines—Varieties, Cultivation and Management; Szabo, P.V., Shojania, J., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 199–249. [Google Scholar]
- Carra, A.; Carimi, F.; Bettoni, J.C.; Pathirana, R. Progress and challenges in the application of synthetic seed technology for ex situ germplasm conservation in grapevine (Vitis spp.). In Synthetic Seeds: Germplasm Regeneration, Preservation and Prospects; Faisal, M., Alatar, A.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 439–467. [Google Scholar]
- Jayasankar, S.; Van Aman, M.; Cordts, J.; Dhekney, S.; Li, Z.T.; Gray, D.J. Low temperature storage of suspension culture-derived grapevine somatic embryos and regeneration of plants. In Vitro Cell. Dev. Biol.-Plant 2005, 41, 752–756. [Google Scholar] [CrossRef]
- Das, D.; Nirala, N.; Redoy, M.; Sopory, S.; Upadhyaya, K. Encapsulated somatic embryos of grape (Vitis vinifera L.): An efficient way for storage and propagation of pathogen-free plant material. VITIS-GEILWEILERHOF- 2006, 45, 179. [Google Scholar]
- Gonzalez-Benito, M.E.; Martin, C.; Vidal, J.R. Cryopreservation of embryogenic cell suspensions of the Spanish grapevine cultivars ‘Albarino’ and ‘Tempranillo’. Vitis 2009, 48, 131–136. [Google Scholar]
- Gonzalez-Benito, M.E.; Martin, M.C.; Vidal, J.R. Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions. Cryoletters 2008, 29, 88. [Google Scholar]
- Perera, P.; Pathirana, R.; Vidhanaarachchi, V. Somatic embryogenesis in anther-derived fast-growing callus as a long-term source for doubled-haploid production of coconut (Cocos nucifera L.). J. Natl. Sci. Found. Sri Lanka 2021, 49, 39–49. [Google Scholar] [CrossRef]
- Ahloowalia, B.S.; Maluszynski, M. Induced mutations—A new paradigm in plant breeding. Euphytica 2001, 118, 167–173. [Google Scholar] [CrossRef]
- Pathirana, R. Plant mutation breeding in agriculture. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 1–20. [Google Scholar] [CrossRef]
- Prado, M.J.; Rodriguez, E.; Rey, L.; Gonzalez, M.V.; Santos, C.; Rey, M. Detection of somaclonal variants in somatic embryogenesis-regenerated plants of Vitis vinifera by flow cytometry and microsatellite markers. Plant Cell Tissue Organ Cult. 2010, 103, 49–59. [Google Scholar] [CrossRef]
- Pathirana, R. Mutations in plant evolution, crop domestication and breeding. Trop. Agric. Res. Ext. 2021, 24, 124–157. [Google Scholar] [CrossRef]
- Carimi, F.; Barizza, E.; Gardiman, M.; Lo Schiavo, F. Somatic embryogenesis from stigmas and styles of grapevine. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 249–252. [Google Scholar] [CrossRef]
- Pathirana, R.; Deroles, S.; Hoeata, K.; Montefiori, M.; Tyson, J.; Wang, T.; Datson, P.M.; Hellens, R.P. Fast-tracking kiwifruit breeding through mutagenesis. Acta Hortic. 2016, 1127, 217–222. [Google Scholar] [CrossRef]
- Sanada, T.; Nishida, T.; Ikeda, F. Resistant mutant to black spot disease of Japanese pear ‘Nijisseiki’ induced by gamma rays. J. Jpn. Soc. Hortic. Sci. 1988, 57, 159–166. [Google Scholar] [CrossRef]
- Ben-Hayyim, G.; Goffer, Y. Plantlet regeneration from a NaCl-selected salt-tolerant callus culture of Shamouti orange (Citrus sinensis L. Osbeck). Plant Cell Rep. 1989, 7, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Penna, S.; Sidha, M.A.K.; Rambhatta, G.T. Characterization of radiation induced and tissue culture derived dwarf types in banana by using a SCAR marker. Aust. J. Crop Sci. 2008, 1, 47–52. [Google Scholar]
- Predieri, S.; Magli, M.; Zimmerman, R.H. Pear mutagenesis: In vitro treatment with gamma-rays and field selection for vegetative form traits. Euphytica 1997, 93, 227–237. [Google Scholar] [CrossRef]
- Jain, S.M. Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tissue Organ Cult. 2005, 82, 113–123. [Google Scholar] [CrossRef]
- Predieri, S. Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult. 2001, 64, 185–210. [Google Scholar] [CrossRef]
- Zlenko, V.A.; Kotikov, I.V.; Troshin, L.P. Efficient GA(3)-assisted plant regeneration from cell suspensions of three grape genotypes via somatic embryogenesis. Plant Cell Tissue Organ Cult. 2002, 70, 295–299. [Google Scholar] [CrossRef]
- Zlenko, V.A.; Kotikov, I.V.; Troshin, L.P. Plant regeneration from somatic embryos of interspecific hybrids of grapevine formed in liquid medium. J. Hortic. Sci. Biotechnol. 2005, 80, 461–465. [Google Scholar] [CrossRef]
- Zlenko, V.A.; Kotikov, I.V.; Troshin, L.P. Effects of IAA and BA on development of globular, heart- and torpedo-stage embryos from cell suspensions of three grape genotypes. Sci. Hortic. 2005, 104, 237–247. [Google Scholar] [CrossRef]
- Harst, M. Development of a regeneration protocol for high frequency somatic embryogenesis from explants of grapevines (Vitis spp.). Vitis 1995, 34, 27–29. [Google Scholar]
- Stamp, J.A.; Meredith, C.P. Somatic embryogenesis from leaves and anthers of grapevine. Sci. Hortic. 1988, 35, 235–250. [Google Scholar] [CrossRef]
- Gardiman, M.; Carimi, F.; Meneghetti, S.; Barizza, E.; Schiavo, F.L. Micropropagation and genetic stability of Vitis vinifera, cv Aglianico, plants obtained by somatic embryo-genesis. Italus Hortus 2009, 16, 124–127. [Google Scholar]
- Srinivasan, C.; Mullins, M.G. High-frequency somatic embryo production from unfertilized ovules of grapes. Sci. Hortic. 1980, 13, 245–252. [Google Scholar] [CrossRef]
- Bouamama, B.; Salem-Fnayou, A.B.; Jouira, H.B.; Ghorbel, A.; Mliki, A. Influence of the flower stage and culture medium on the induction of somatic embryogenesis from anther culture in Tunisian grapevine cultivars. J. Int. Sci. Vigne Vin 2007, 41, 185–192. [Google Scholar] [CrossRef]
- Capriotti, L.; Limera, C.; Mezzetti, B.; Ricci, A.; Sabbadini, S. From induction to embryo proliferation: Improved somatic embryogenesis protocol in grapevine for Italian cultivars and hybrid Vitis rootstocks. Plant Cell Tissue Organ Cult. 2022, 151, 221–233. [Google Scholar] [CrossRef]
- Gribaudo, I.; Gambino, G.; Vallania, R. Somatic embryogenesis from grapevine anthers: The optimal developmental stage for collecting explants. Am. J. Enol. Vitic. 2004, 55, 427–430. [Google Scholar] [CrossRef]
- Kikkert, J.R.; Striem, M.J.; Vidal, J.R.; Wallace, P.G.; Barnard, J.; Reisch, B.I. Long-term study of somatic embryogenests from anthers and ovaries of 12 grapevine (Vitis sp.) genotypes. In Vitro Cell. Dev. Biol. Plant 2005, 41, 232–239. [Google Scholar] [CrossRef]
- Schellenbaum, P.; Jacques, A.; Maillot, P.; Bertsch, C.; Mazet, F.; Farine, S.; Walter, B. Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep. 2008, 27, 1799–1809. [Google Scholar] [CrossRef]
- Morgana, C.; Di Lorenzo, R.; Carimi, F. Somatic embryogenesis of Vitis vinifera L. (cv. Sugraone) from stigma and style culture. Vitis 2004, 43, 169–173. [Google Scholar]
- Carra, A.; Sajeva, M.; Abbate, L.; Siragusa, M.; Pathirana, R.; Carimi, F. Factors affecting somatic embryogenesis in eight Italian grapevine cultivars and the genetic stability of embryo-derived regenerants as assessed by molecular markers. Sci. Hortic. 2016, 204, 123–127. [Google Scholar] [CrossRef]
- Gambino, G.; Ruffa, P.; Vallania, R.; Gribaudo, I. Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tissue Organ Cult. 2007, 90, 79–83. [Google Scholar] [CrossRef]
- Miaja, M.L.; Gambino, G.; Vallania, R.; Gribaudo, I. Cryopreservation of Vitis vinifera L. somatic embryos by vitrification or encapsulation-dehydration. Acta Hortic. 2004, 663, 599–603. [Google Scholar] [CrossRef]
- Nakano, M.; Watanabe, Y.; Hoshino, Y. Histological examination of callogenesis and adventitious embryogenesis in immature ovary culture of grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol. 2000, 75, 154–160. [Google Scholar] [CrossRef]
- Acanda, Y.; Prado, M.J.; González, M.V.; Rey, M. Somatic embryogenesis from stamen filaments in grapevine (Vitis vinifera L. cv. Mencía): Changes in ploidy level and nuclear DNA content. In Vitro Cell. Dev. Biol. Plant 2013, 49, 276–284. [Google Scholar] [CrossRef]
- López-Pérez, A.J.; Carreño, J.; Martínez-Cutillas, A.; Dabuza, M. High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis 2005, 44, 79–85. [Google Scholar]
- Vidal, J.; Rama, J.; Taboada, L.; Martin, C.; Ibanez, M.; Segura, A.; González-Benito, M. Improved somatic embryogenesis of grapevine (Vitis vinifera) with focus on induction parameters and efficient plant regeneration. Plant Cell Tissue Organ Cult. 2009, 96, 85–94. [Google Scholar] [CrossRef]
- Nitsch, J.; Nitsch, C. Haploid plants from pollen grains. Science 1969, 163, 85–87. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Franks, T.; Gang He, D.; Thomas, M. Regeneration of transgenic shape Vitis vinifera L. Sultana plants: Genotypic and phenotypic analysis. Mol. Breed. 1998, 4, 321–333. [Google Scholar] [CrossRef]
- Cardoso, H.G.; Campos, M.C.; Pais, M.S.; Peixe, A. Use of morphometric parameters for tracking ovule and microspore evolution in grapevine (Vitis vinifera L., cv. “Aragonez”) and evaluation of their potential to improve in vitro somatic embryogenesis efficiency from gametophyte tissues. In Vitro Cell. Dev. Biol.-Plant 2010, 46, 499–508. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Chen, M.H.; Wang, P.J.; Maeda, E. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants. Plant Cell Rep. 1987, 6, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Mosedale, J.R.; Wilson, R.J.; Maclean, I.M. Climate change and crop exposure to adverse weather: Changes to frost risk and grapevine flowering conditions. PLoS ONE 2015, 10, e0141218. [Google Scholar] [CrossRef] [PubMed]
- Perrin, M.; Gertz, C.; Masson, J.E. High efficiency initiation of regenerable embryogenic callus from anther filaments of 19-grapevine genotypes grown worldwide. Plant Sci. 2004, 167, 1343–1349. [Google Scholar] [CrossRef]
- Perrin, M.; Martin, D.; Joly, D.; Demangeat, G.; This, P.; Masson, J.E. Medium-dependent response of grapevine somatic embryogenic cells. Plant Sci. 2001, 161, 107–116. [Google Scholar] [CrossRef]
- Perl, A.; Saad, S.; Sahar, N.; Holland, D. Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars—A synergistic effect of auxins and the role of abscisic acid. Plant Sci. 1995, 104, 193–200. [Google Scholar] [CrossRef]
- Faure, O.; Aarrouf, J.; Nougarede, A. Ontogenesis, differentiation and precocious germination in anther-derived somatic embryos of grapevine (vitis vinifera L.): Embryonic organogenesis. Ann. Bot. 1996, 78, 29–37. [Google Scholar] [CrossRef]
- Leal, F.; Loureiro, J.; Rodriguez, E.; Pais, M.S.; Santos, C.; Pinto-Carnide, O. Nuclear DNA content of Vitis vinifera cultivars and ploidy level analyses of somatic embryo-derived plants obtained from anther culture. Plant Cell Rep. 2006, 25, 978–985. [Google Scholar] [CrossRef]
- Cutanda, M.; Bouquet, A.; Chatelet, P.; Lopez, G.; Botella, O.; Montero, F.J.; Torregrosa, L. Somatic embryogenesis and plant regeneration of Vitis vinifera cultivars ‘Macabeo’ and ‘Tempranillo’. Vitis 2008, 47, 159–162. [Google Scholar]
- Begum, T.; Dasgupta, T. A comparison of the effects of physical and chemical mutagens in sesame (Sesamum indicum L.). Genet. Mol. Biol. 2010, 33, 761–766. [Google Scholar] [CrossRef]
- Gupta, S.; Datta, A.K.; Pramanik, A.; Biswas, J.; Karmakar, R. X-ray and gamma irradiation induced chromosomal aberrations in plant species as the consequence of induced mutagenesis—An overview. Plant Arch. 2019, 19, 1973–1979. [Google Scholar]
- Von Well, E.; Fossey, A.; Booyse, M. The relationship of the efficiency of energy conversion into growth as an indicator for the determination of the optimal dose for mutation breeding with the appearance of chromosomal abnormalities and incomplete mitosis after gamma irradiation of kernels of Triticum turgidum ssp. durum L. Radiat. Environ. Biophys. 2023, 62, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Bora, L.; Vijayakumar, R.M.; Ganga, M.; Ganesan, N.M.; Sarkar, M.; Kundu, M. Determination of mutagenic sensitivity (LD50) of acid lime [Citrus aurantifolia (Christm.) Swingle] cv. PKM-1 to physical and chemical mutagens. Natl. Acad. Sci. Lett. 2023. [Google Scholar] [CrossRef]
- Cabahug, R.A.M.; Ha, M.K.T.T.; Lim, K.-B.; Hwang, Y.-J. LD50 determination and phenotypic evaluation of three Echeveria varieties induced by chemical mutagens. Toxicol. Environ. Health Sci. 2020, 12, 1–9. [Google Scholar] [CrossRef]
EMS (%) | Chardonnay | Riesling | Sauvignon Blanc | |||
---|---|---|---|---|---|---|
Prediction (%) | SE (%) | Prediction (%) | SE (%) | Prediction (%) | SE (%) | |
0 | 80 | 6 | 69 | 5 | 77 | 4 |
0.01 | 80 | 5 | 65 | 5 | 70 | 5 |
0.05 | 59 | 6 | 71 | 5 | 68 | 5 |
0.1 | 55 | 6 | 59 | 5 | 54 | 5 |
0.25 | 49 | 6 | 37 | 5 | 47 | 6 |
0.5 | 30 | 5 | 28 | 5 | 28 | 5 |
0.75 | 21 | 5 | 13 | 4 | 11 | 3 |
1 | 16 | 4 | 5 | 2 | 7 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathirana, R.; Carimi, F. Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction. Plants 2023, 12, 4126. https://doi.org/10.3390/plants12244126
Pathirana R, Carimi F. Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction. Plants. 2023; 12(24):4126. https://doi.org/10.3390/plants12244126
Chicago/Turabian StylePathirana, Ranjith, and Francesco Carimi. 2023. "Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction" Plants 12, no. 24: 4126. https://doi.org/10.3390/plants12244126
APA StylePathirana, R., & Carimi, F. (2023). Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction. Plants, 12(24), 4126. https://doi.org/10.3390/plants12244126