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The ability of plants to cope successfully with environmental fluctuations is a result
of their evolution in subaerial environments, where fluctuations in parameters such as
temperature, light, and water availability, are the norm and stable states are the exception.
Despite this, most studies have focused on plant responses to stable stress conditions, which
are certainly more accessible for experimentation than fluctuating conditions. The concept
of environmental fluctuation also includes a sense of predictability: some fluctuations are
predictable, dictated, for example, by circadian rhythms, while others are unpredictable.
Photosynthetic regulation, which takes place at all levels of organisation, from macro-
scopic morphology to the biochemical-molecular level, buffers the effects of fluctuations,
limiting the over-reduction of the photosynthetic apparatus and the consequent produc-
tion of reactive oxygen species. The latter are notorious for their detrimental effects on
cell structures.

This Special Issue of Plants collects twelve high-quality scientific papers, and has
additionally been supported by a large panel of expert reviewers who commented on
the manuscripts. The papers offer a variety of viewpoints, reflecting the diverse sci-
entific backgrounds of the authors. Moreover, due to the variety of plant species that
were analysed in these studies, which are wide-ranging in both their systematic and en-
vironmental positions, this collection is able to present some interesting ecological and
evolutionary insights.

The evolution of processes and structures is key to understanding the biological
world and provides the context for plant responses to environmental fluctuations. Pushan
Bag reviews and interprets the stages in the evolution of antenna systems in land plants,
emphasising how the same antenna proteins can allow the optimisation of light harvesting
in various light environments, which differ greatly in terms of light quality and quantity [1].
An extremely contemporary research topic is the possibility of increasing crop yields by
downsizing the size of antennae [2]. However, this biotechnological operation may have
side effects on the plant’s overall metabolism. Using a mini panel of wheat mutants with
reduced chlorophyll content, Colpo et al. document that, in a fluctuating light environment
such as the natural one, reduced antenna sizes not only impair the control of photosynthetic
electron flow but also negatively influence plant morphogenesis, resulting in lower grain
production [3]. Fluctuations in light intensity pose a significant challenge to photosynthetic
regulation, resulting in a loss of carbon assimilation [4]. By exposing sunflower plants
to pulsed light at different frequencies, Cinq-Mars and Samson conclude that the net
photosynthesis loss at low frequencies (<5 Hz) depends on the shift from linear to cyclic
electron transport around the PSI (CEF), leading to efficient photoprotection, but also a
significant loss in carboxylation capacity [5].

More generally, the “time factor” is certainly decisive in dynamic photosynthesis, and
the literature review by Li, Gao, and Zhang highlights the great diversity of photosynthetic
behaviour among different species and cultivars [6]. In this regard, Wang et al.’s report
is incredibly instructive, demonstrating how the selection of modern rose cultivars has
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led to increased efficiency in their use of fluctuating light, associated with higher levels
of leaf stomatal conductance [7]. For a more comprehensive understanding of dynamic
photosynthesis, Li et al. also list a number of methodological challenges and mention
the importance of moving beyond the “single factor experiment” to consider a broader
spectrum of environmental variables [6]. Taking the orchid species Dendrobium officinale
as their example, Sun et al. provide evidence that the response to fluctuating light under
high-temperature conditions requires, in addition to CEF activation, the water–water cycle
to consume the electrons produced beyond the use capacity of photosynthesis in order to
preserve the integrity of the PSI [8]. The importance of enhancing PSI protection under heat
stress also emerges in the work presented by Filaček et al., who show that pre-acclimation
to high temperature helps wheat develop a thermally resistant form of photosynthesis [9].
Their comparative experiment includes the low-chlorophyll mutant ANK-32A, which is
known for its sensitivity to prolonged, moderate heat stress and could be particularly
susceptible to repeated heatwaves [10]. However, the authors found that this is not the
case [9], which suggests that plant responses to light and temperature fluctuations are
definitely linked to each other but hardly predictable. The combined response to light and
heat is the subject of the study proposed by Krevlaski et al.: using phytochrome mutants of
the model angiosperm Arabidopsis thaliana, the authors offer evidence that a low red/far-red
ratio is favourable for the prevention of PSII photoinhibition under moderate short-term
thermal stress [11]. The stress-protective effect of red light is confirmed by Pashkovskiy
et al., who report their experiment on the consequences of light quality manipulation on
the secondary metabolism in Pinus sylvestris plantlets, observing effects on the quantity of
antioxidants and carotenoids in needles [12].

Generally, high levels of antioxidants in leaves support an effective response to en-
vironmental fluctuations. Particularly intriguing is the case of the minute floating water
plant Lemna minor, which is dealt with in the comprehensive review written by López-
Pozo, Adams, Polutchko, and Demmig-Adams. The authors highlight a number of this
duckweed’s unusual properties which allow it to thrive in a fluctuating environment [13].
Although this information may not be generalizable to other species, the environmental
pressure of the aquatic environment, particularly the floating habitat, has certainly had
a major role in the evolution of duckweed’s photosynthetic traits. Comparative studies
of different species can further our understanding of their photosynthetic response to
environmental fluctuations. This comparative approach was chosen by James Bunce to
study the effect of fluctuating levels of CO2 supply. He discovered that, in four out of five
analysed species, the fluctuations in CO2 decreased the carbon fixation due to lower PSII
photochemical efficiency and stomatal conductance [14]. This finding is methodologically
relevant to the simulation of higher atmospheric CO2 pressure scenarios, the effects of
which have become increasingly evident with the rise of extreme weather events, ranging
from severe drought to heavy rainfall, leading to soil flooding. Crops which are ideal for
land particularly susceptible to recurrent extreme events should have sufficient photosyn-
thetic flexibility to secure food despite such events. This problem is investigated by Chen
et al., who exposed the tropical rainforest crop Plukentia volubilis to waterlogging stress
and explored the possibility of selecting more tolerant lines based on their photosynthetic
traits [15].

We are confident that our readers will appreciate all the papers in this collection for
their scientific richness, variety of experimental approaches, and the diversity of the authors’
writing styles. Our hope is that they will be useful for the development of research on such
a topical and fascinating subject as photosynthesis in an ever-changing environment.
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