Phytoremediation of Potentially Toxic Elements: Role, Status and Concerns
Abstract
:1. Introduction
2. Sources of Heavy Metals or PTEs
3. Major Impacts of PTEs
3.1. Impacts on Human
3.2. Impacts on Plants
3.3. Impact on Aquatic Life
3.4. Impacts on Soil Health
4. Methods to Tackle PTE Pollution
4.1. Conventional Methods
4.1.1. Chemical Precipitation
4.1.2. Electro Dialysis
4.1.3. Coagulation/Flocculation
4.1.4. Ultrafiltration
4.1.5. Reverse Osmosis (RO)
4.1.6. Adsorption
5. Eco-Technological/Green Approach
5.1. Phytoextraction
5.2. Rhizofiltration
5.3. Phytostabilization
5.4. Phytovolatilization
5.5. Phytorestoration
6. Recent Advances in Phytoremediation
6.1. Role of Genetic Engineering in Phytoremediation
6.2. Role of Microbes in Phytoremediation of PTEs
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, X.; Yao, J.; Wang, F.; Yuan, Z.; Liu, J.; Jordan, G.; Knudsen, T.S.; Avdalovic, J. Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas. J. Hazard. Mater. 2018, 349, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Mahiya, S.; Lofrano, G.; Sharma, S.K. Heavy metals in water, their adverse health effects and biosorptive removal: A review. Int. J. Chem. 2014, 3, 132–149. [Google Scholar]
- Al-Rubaie, A.S.A.; Al-Kubaisa, A.R.A. Removal of Lead from water using aquatic plants (Ceratophyllumdemersum and Eichhorina crassipes). Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 45–51. [Google Scholar]
- Song, H.; Kumar, A.; Zhang, Y. Microbial-induced carbonate precipitation prevents Cd2+ migration through the soil profile. Sci. Total Environ. 2022, 844, 157167. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kumar, A.; Zhang, Y. A novel approach for the removal of Pb2+ and Cd2+ from wastewater by sulfur-ferromagnetic nanoparticles (SFMNs). Chemosphere 2022, 287, 132156. [Google Scholar] [CrossRef] [PubMed]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Kumar, A.; Jigyasu, D.K.; Subrahmanyam, G.; Mondal, R.; Shabnam, A.A.; Cabral-Pinto, M.M.S.; Malyan, S.K.; Chaturvedi, A.K.; Gupta, D.K.; Fagodiya, R.K.; et al. Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere 2021, 275, 129996. [Google Scholar] [CrossRef]
- Pourret, O.; Hursthouse, A. It’s time to replace the term ‘Heavy Metals’ with ‘Potentially Toxic Elements’ when reporting environmental research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [Green Version]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.; Low, F.; Lee, B.H.; Alstrup, A.K.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef]
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M.; Shabnam, A.A.; Jigyasu, D.K.; Malyan, S.K.; Fagodiya, R.K.; Khan, S.A.; Yu, Z.-G. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2020, 268, 128855. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Can, H.; Dogan, I. Phytoremediation using genetically engineered plants to remove metals: A review. Environ. Chem. Lett. 2021, 19, 669–698. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy metal contamination: An alarming threat to environment and human health. In Environmental Biotechnology: For Sustainable Future; Springer: Singapore, 2019; pp. 103–125. [Google Scholar]
- Available online: www.statista.com (accessed on 2 June 2021).
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics and lonomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [Green Version]
- Awa, S.H.; Hadibarata, T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; de Araujo, A.S.F.; Singh, R.P. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front. Environ. Sci. 2017, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Chormare, R.; Kumar, M.A. Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. Chemosphere 2022, 302, 134836. [Google Scholar] [CrossRef]
- Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Shah, S.M.A.; et al. Heavy metal contamination of natural foods is a serious health issue: A review. Sustainability 2021, 14, 161. [Google Scholar] [CrossRef]
- Rzymski, P.; Tomczyk, K.; Rzymski, P.; Poniedziałek, B.; Opala, T.; Wilczak, M. Impact of heavy metals on the female reproductive system. Ann. Agric. Environ. Med. 2015, 22, 259–264. [Google Scholar] [CrossRef]
- Zafarzadeh, A.; Rahimzadeh, H.; Mahvi, A.H. Health risk assessment of heavy metals in vegetables in an endemic esophageal cancer region in Iran. Health Scope 2018, 7, e12340. [Google Scholar] [CrossRef] [Green Version]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World-New Tricks for an Old Dog? IntechOpen: London, UK, 2019; Volume 10, pp. 70–90. [Google Scholar]
- Yang, F.; Massey, I.Y. Exposure routes and health effects of heavy metals on children. Biometals 2019, 32, 563–573. [Google Scholar]
- Rzymski, P.; Rzymski, P.; Tomczyk, K.; Niedzielski, P.; Jakubowski, K.; Poniedziałek, B.; Opala, T. Metal status in human endometrium: Relation to cigarette smoking and histological lesions. Environ. Res. 2014, 132, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Gorain, B.; Choudhury, H.; Roychoudhury, S.; Sengupta, P. Environmental and occupational exposure of metals and female reproductive health. Environ. Sci. Pollut. Res. 2021, 29, 62067–62092. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Saxena, G.; Purchase, D.; Mulla, S.I.; Saratale, G.D.; Bharagava, R.N. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Swizerland, 2019; Volume 249, pp. 71–131. [Google Scholar] [CrossRef] [Green Version]
- Genchi, G.; Lauria, G.; Catalano, A.; Carocci, A.; Sinicropi, M.S. Arsenic: A Review on a Great Health Issue Worldwide. Appl. Sci. 2022, 12, 6184. [Google Scholar] [CrossRef]
- Kravchenko, J.; Darrah, T.H.; Miller, R.K.; Lyerly, H.K.; Vengosh, A. A review of the health impacts of barium from natural and anthropogenic exposure. Environ. Geochem. Health 2014, 36, 797–814. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Drake, P.; Hazelwood, K.J. Exposure related health effects of silver and silver compounds: A review. Ann. Occup. Hyg. 2005, 49, 575–585. [Google Scholar]
- Sharma, S.S.; Dietz, K.J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 2009, 14, 43–50. [Google Scholar] [CrossRef] [PubMed]
- DalCorso, G.; Manara, A.; Furini, A. An overview of heavy metal challenge in plants: From roots to shoots. Metallomics 2013, 5, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, A.; Javaid, A. Oxidative Stress in Plants Exposed to Heavy Metals. In Organic Solutes, Oxidative Stress, and Antioxidant Enzymes under Abiotic Stressors; CRC Press: Boca Raton, FL, USA, 2021; pp. 133–152. [Google Scholar]
- Sciedlecka, A.; Krupa, Z. Functions of Enzymes in Heavy Metal Treated Plants. In Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Rehman, A.U.; Nazir, S.; Irshad, R.; Tahir, K.; Rehman, K.U.; Islam, R.U.; Wahab, Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J. Mol. Liq. 2021, 321, 114455. [Google Scholar] [CrossRef]
- Asgher, M.; Per, T.S.; Verma, S.; Pandith, S.A.; Masood, A.; Khan, N.A. Ethylene Supplementation Increases PSII Efficiency and Alleviates Chromium-Inhibited Photosynthesis Through Increased Nitrogen and Sulphur Assimilation in Mustard. J. Plant Growth Regul. 2018, 37, 1300–1317. [Google Scholar] [CrossRef]
- Asgher, M.; Ahmed, S.; Sehar, Z.; Gautam, H.; Gandhi, S.G.; Khan, N.A. Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). J. Hazard. Mater. 2021, 401, 123365. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Barker, J.; Liu, G.; Hasanuzzaman, M.; Li, Y.; Ramakrishnan, M.; Mokhberdoran, F. Co-application of 24-epibrassinolide and titanium oxide nanoparticles promotes pleioblastus pygmaeus plant tolerance to Cu and Cd toxicity by increasing antioxidant activity and photosynthetic capacity and reducing heavy metal accumulation and translocation. Antioxidants 2022, 11, 451. [Google Scholar] [PubMed]
- Rahman, R.; Upadhyaya, H. Aluminium toxicity and its tolerance in plant: A review. J. Plant Biol. 2021, 64, 101–121. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effects on plants and Bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef] [Green Version]
- Anjum, N.A.; Gill, S.S.; Gill, R.; Hasanuzzaman, M.; Duarte, A.C.; Pereira, E.; Ahmad, I.; Tuteja, R.; Tuteja, N. Metal/metalloid stress tolerance in plants: Role of ascorbate, its redox couple, and associated enzymes. Protoplasma 2014, 251, 1265–1283. [Google Scholar] [CrossRef]
- Wani, P.A.; Khan, M.S.; Zaidi, A. Toxic effects of heavy metal on germination and physiological processes of plants. In Toxicity of Heavy Metal to Legumes and Bioremediation; Zaidi, A., Wani, P.A., Khan, M.S., Eds.; Springer-Verlag Wien: Vienna, Austria, 2012; pp. 45–66. [Google Scholar]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Metals 2018, 10, 115–132. [Google Scholar]
- Singh, U.K.; Kumar, B. Pathways of heavy metals contamination and associated human health risk in Ajay River Basin, India. Chemosphere 2017, 174, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Kalamdhad, A.S. Effects of heavy metals on soil, plants, human health and aquatic life. Int. J. Res. Chem. Environ. 2011, 1, 15–21. [Google Scholar]
- Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience 2020, 10, 2148–2166. [Google Scholar]
- Chu, D. Effects of heavy metals on soil microbial community. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012009. [Google Scholar] [CrossRef]
- Jiang, B.; Adebayo, A.; Jia, J.; Xing, Y.; Deng, S.; Guo, L.; Liang, Y.; Zhang, D. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J. Hazard. Mater. 2019, 362, 187–195. [Google Scholar] [CrossRef]
- Chauvin, C.; Trambolho, M.; Hedde, M.; Makowski, D.; Cérémonie, H.; Jimenez, A.; Villenave, C. Soil nematodes as indicators of heavy metal pollution: A meta-analysis. Open J. Soil Sci. 2020, 10, 579–601. [Google Scholar] [CrossRef]
- Soliman, N.K.; Moustafa, A.F. Industrial solid waste for heavy metals adsorption features and challenges; a review. J. Mater. Res. Technol. 2020, 9, 10235–10253. [Google Scholar] [CrossRef]
- Crini, G.; Lichfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Gunatilake, S.K. Methods of removing heavy metals from industrial wastewater. Methods 2015, 1, 12–18. [Google Scholar]
- Wang, C.; Alpatova, A.; McPhedran, K.N.; Gamal El-Din, M. Coagulation/flocculation process with polyaluminum chloride for the remediation of oil sands process-affected water: Performance and mechanism study. J. Environ. Manag. 2015, 160, 254–262. [Google Scholar] [CrossRef]
- Awasthi, K.K.; Awasthi, G.; Tiwari, Y.; Singh, T.; Awasthi, A.; Srivastava, S.; Tripathi, R.D. Quality improvement of Reverse Osmosis waste water through plant based technique: A mini-review. Int. J. Plant Environ. 2020, 6, 156–161. [Google Scholar] [CrossRef]
- Lakherwal, D. Adsorption of Heavy Metals: A Review. Int. J. Environ. Res. Dev. 2014, 4, 41–48. [Google Scholar]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Qasem, N.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Sharma, S.; Pathak, H. Basic techniques of phytoremediation. Int. J. Sci. Eng. Res. 2019, 5, 584–605. [Google Scholar]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lv, X.; Jia, H.; Hua, L.; Ren, X.; Muhammad, H.; Wei, T.; Ding, Y. Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance. J. Environ. Sci. 2020, 88, 361–369. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, J.; Wang, X.; Pan, M.; Lin, Q.; Khan, K.Y.; Yan, B.; Li, T.; He, Z.; Yang, X.; et al. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. J. Hazard. Mater. 2021, 405, 123832. [Google Scholar] [CrossRef]
- Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.; Chang, J. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J. Hazard. Mater. 2021, 402, 123431. [Google Scholar] [CrossRef]
- Ahmad, Z.; Khan, S.M.; Page, S. Politics of the natural vegetation to balance the hazardous level of elements in marble polluted ecosystem through phytoremediation and physiological responses. J. Hazard. Mater. 2021, 414, 125451. [Google Scholar] [CrossRef]
- Yan, L.; Van, L.Q.; Sonne, C.; Yang, Y.; Yang, H.; Gu, H.; Ma, N.L.; Lam, S.S.; Peng, W. Phytoremediation of radionuclides in soil, sediments and water. J. Hazard. Mater. 2020, 407, 124771. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Anum, S.; Khan, S.M.; Chaudhary, H.J.; Ahmad, Z.; Afza, R. Phytoremediation of nickel polluted ecosystem through selected ornamental plant species in the presence of bacterium Kocuriarhizophila. Bioremediation J. 2019, 23, 215–226. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Wang, L.A.; Urbanovich, O.; Nagorskaya, L.; Li, X.; Tang, L. A review on phytoremediation of mercury contaminated soils. J. Hazard. Mater. 2020, 400, 123138. [Google Scholar] [CrossRef] [PubMed]
- Bian, F.; Zhong, Z.; Li, C.; Zhang, X.; Gu, L.; Huang, Z.; Gai, X.; Huang, Z. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. J. Hazard. Mater. 2021, 416, 125898. [Google Scholar] [CrossRef] [PubMed]
- Lasat, M.M. Phytoextraction of toxic metals. J. Environ. Qual. 2002, 31, 109–120. [Google Scholar]
- Agnihotri, A.; Seth, C.S. Transgenic Brassicaceae: A promising approach for phytoremediation of heavy metals. In Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Academic Press: Cambridge, MA, USA, 2019; pp. 239–255. [Google Scholar]
- Srivastava, N. Phytoremediation of toxic metals/metalloids and pollutants by Brassicaceae plants. In The Plant Family Brassicaceae; Springer: Singapore, 2020; pp. 409–435. [Google Scholar]
- Kumar, P.S.; Gunasundari, E. Bioremediation of heavy metals. In Bioremediation: Applications for Environmental Protection and Management; Springer: Singapore, 2018; pp. 165–195. [Google Scholar]
- Hassinen, V.H.; Tuomainen, M.; Peräniemi, S.; Schat, H.; Kärenlampi, S.O.; Tervahauta, A.I. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspicaerulescens. J. Exp. Bot. 2009, 60, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Shoji, R.; Yajima, R.; Yano, Y. Arsenic speciation for the phytoremediation by the Chinese brake fern, Pteris vitata. J. Environ. Sci. 2008, 20, 1463–1468. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Bartucca, M.L.; Cerri, M.; Del Buono, D.; Forni, C. Use of Biostimulants as a New Approach for the Improvement of Phytoremediation Performance—A Review. Plants 2022, 11, 1946. [Google Scholar] [CrossRef]
- Lakshmi, K.S.; Sailaja, V.M.; Reddy, M.A. Phytoremediation-A promising technique in waste water treatment. Int. J. Sci. Res. Manag. 2017, 5, 5480–5489. [Google Scholar] [CrossRef]
- Skuza, L.; Szućko-Kociuba, I.; Filip, E.; Bożek, I. Natural molecular mechanisms of plant hyperaccumulation and hypertolerance towards heavy metals. Int. J. Mol. Sci. 2022, 23, 9335. [Google Scholar] [CrossRef]
- Adiloglu, S. Heavy metal removal with phytoremediation. In Advances in Bioremediation and Phytoremediation; Shiomi, N., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Turgut, C.; Pepe, M.K.; Cutright, T.J. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut. 2004, 131, 147–154. [Google Scholar] [CrossRef]
- Ashraf, S.; Ahmad, S.R.; Ali, Q.; Ashraf, S.; Majid, M.; Zahir, Z.A. Acidified Cow Dung-Assisted Phytoextraction of Heavy Metals by Ryegrass from Contaminated Soil as an Eco-Efficient Technique. Sustainability 2022, 14, 15879. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.; Yavaş, I.; Ünay, A.; Abdel-Daim, M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, M.S. Soil Contamination, Remediation and Plants: Prospects and Challenges. In Soil Remediation and Plants, Prospects and Challenges; Academic Press: Cambridge, MA, USA, 2015; pp. 525–546. [Google Scholar]
- Srivastava, S.; Anand, V.; Singh, P.; Roy, A.; Pallavi, S.; Bist, V.; Kaur, J.; Srivastava, S.; Katiyar, R.; Srivastava, S. Microbial systems as a source of novel genes for enhanced phytoremediation of contaminated soils. In Microbe Mediated Remediation of Environmental Contaminants; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2021; pp. 177–198. [Google Scholar]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Peer, W.A.; Baxter, I.R.; Richards, E.L.; Freeman, J.L.; Murphy, A.S. Phytoremediation and hyperaccumulator plants. In Molecular Biology of Metal Homeostasis and Detoxification, Topics in Current Genetics; Tamas, M.J., Martinoia, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 14. [Google Scholar]
- Sylvain, B.; Mikael, M.H.; Florie, M.; Emmanuel, J.; Marilyne, S.; Sylvain, B.; Domenico, M. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena 2016, 136, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Jeevanantham, S.; Saravanan, A.; Hemavathy, R.V.; Kumar, P.S.; Yaashikaa, P.R.; Yuvaraj, D. Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. Environ. Technol. Innov. 2019, 13, 264–276. [Google Scholar] [CrossRef]
- Pandey, N.; Chandra, J.; Xalxo, R.; Sahu, K. Concept and Types of Phytoremediation. In Approaches to the Remediation of Inorganic Pollutants; Springer: Singapore, 2021; pp. 281–302. [Google Scholar]
- Jilani, G.; Shamsi, I.H.; Zhang, D.; Hina, K. Recent advances in phytoremediation of heavy metals-contaminated soils: A review. In Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 23–41. [Google Scholar]
- Issaka, S.; Ashraf, M.A. Phytorestoration of mine spoiled: “Evaluation of natural phytoremediation process occurring at ex-tin mining catchment. In Phytorestoration of Abandoned Mining and Oil Drilling Sites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 219–248. [Google Scholar]
- Sivaramakrishnan, M.; Sivarajasekar, N.; Vivek, J.; Thanaraj, P.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanism, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar]
- Ashraf, M.; Ahmad, M.S.A.; Ozturk, M. Plant Adaptation and Phytoremediation; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Shackira, A.M.; Puthur, J.T. Enhanced phytostabilization of cadmium by a halophyte—Acanthus ilicifolius L. Int. J. Phytoremediation 2017, 19, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Chinmayee, M.D.; Mahesh, B.; Pradesh, S.; Mini, I.; Swapna, T.S. The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Appl. Biochem. Biotechnol. 2012, 167, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Gomez, S.; Mateos-Naranjo, E.; Andrades-Moreno, L. Accumulation and tolerance characteristics of cadmium in a halophyte Cd-hyperaccumulator, Arthrocnemummacrostachyum. J. Hazard. Mater. 2010, 184, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Kanu, S.A.; Okonkwo, J.O.; Dakora, D.F. Aspalathus linearis (Rooibos tea) as potential phytoremediation agent: A review on tolerance mechanisms for aluminum. Environ. Rev. 2013, 21, 85–92. [Google Scholar] [CrossRef]
- Kaushik, S. Phytoremediation—Use of green plants to remove pollutants. Environmental Biotechnology, Biotech Articles, 2011. Available online: https://biotecharticles.com/Environmental-Biotechnology-Article/Phytoremediation-Use-of-green-plants-to-remove-pollutants-704.html (accessed on 2 June 2021).
- Beath, O.A.; Eppso, H.F.; Gilbert, G.S. Selenium distribution in and seasonal variation of vegetation type occurring on seleniferous soils. J. Am. Pharm. Assoc. 2002, 26, 394–405. [Google Scholar]
- Zhao, L.; Li, T.; Zhang, X.; Chen, G.D.; Zheng, Z.C.; Yu, H.Y. Pb uptake and phytostabilization potential of the mining ecotype of Athyrium wardii (Hook.) grown in Pb contaminated soil. CLEAN–Soil Air Water 2016, 44, 1184–1190. [Google Scholar] [CrossRef]
- Nedjimi, B.; Daoud, Y. Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 2009, 204, 316–324. [Google Scholar]
- Cambrolle, J.; Mancilla-Leyton, J.M.; Munoz-Valles, S.; Cambron-Sena, A.; Figueroa, M.E. Advances in the use of Halimioneportulacoides stem cuttings for phytoremediation of Zn polluted soils. Estuar. Coast. Shelf Sci. 2016, 175, 10–14. [Google Scholar] [CrossRef]
- Mukhtar, A.A.; Abdullahi, I.L. Heavy metals phytoremediation using Typha domingensis flourishing in an industrial effluent drainage in Kano, Nigeria. Bayero J. Pure Appl. Sci. 2017, 10, 277–280. [Google Scholar] [CrossRef]
- Hazra, M.; Avishek, K.; Pathak, G. Phytoremedial Potential of Typha latifolia, Eichornia crassipes and Monochoriahastata found in Contaminated Water Bodies Across Ranchi City (India). Int. J. Phytoremediation 2015, 17, 835–840. [Google Scholar] [CrossRef]
- Meyers, D.E.; Auchterlonie, G.J.; Webb, R.I.; Wood, B. Uptake and localization of lead in the root system of Brassica juncea. Environ. Poll. 2008, 153, 323–332. [Google Scholar] [CrossRef] [PubMed]
- De Cabo, L.; Serafini, R.; Arreghini, S.; de Iorio, A.F. On-Site and Full-Scale Applications of Phytoremediation to Repair Aquatic Ecosystems with Metal Excess. In Phytoremediation: Management of Environmental Contaminants; Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L., Eds.; Springer: Cham, Switzerland, 2015; Volume 2. [Google Scholar]
- Angelova, V.R.; Ivanova, R.I.; Todorov, J.M.; Ivanov, K.I. Potential of Rapeseed (Brassicanapus L.) for phytoremediation of soils contaminated with heavy metals. J. Environ. Prot. Ecol. 2017, 18, 468–478. [Google Scholar]
- Materac, M.; Wyrwicka, A.; Sobiecka, E. Phytoremediation techniques in wastewater treatment. Environ. Biotechnol. 2015, 11, 10–13. [Google Scholar] [CrossRef]
- Radziemska, M.; Vaverkova, M.D.; Baryla, A. Phytoremediation-management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health 2017, 14, 958. [Google Scholar] [CrossRef] [Green Version]
- Delgado-González, C.R.; Madariaga-Navarrete, A.; Fernández-Cortés, J.M.; Islas-Pelcastre, M.; Oza, G.; Iqbal, H.M.; Sharma, A. Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. Int. J. Environ. Res. Public Health 2021, 18, 5215. [Google Scholar] [CrossRef]
- Abdallah, M.A.M. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllumdemersum and Lemna gibba L. Environ. Technol. 2012, 33, 1609–1614. [Google Scholar] [CrossRef]
- Hosman, M.E.; El-Feky, S.S.; Elshahawy, M.I.; Shaker, E.M. Mechanism of phytoremediation potential of Flax (Linum usitatissimum L.) to Pb, Cd and Zn. Asian J. Plant Sci. Res. 2017, 7, 30–40. [Google Scholar]
- Saleem, M.H.; Ali, S.; Hussain, S.; Kamran, M.; Chattha, M.S.; Ahmad, S.; Aqeel, M.; Rizwan, M.; Aljarba, N.H.; Alkahtani, S.; et al. Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants 2020, 9, 496. [Google Scholar] [CrossRef] [Green Version]
- Ehsan, M.; Santamaría-Delgado, K.; Alderete-Chavez, A.; De la Cruz-Landero, N.; Jaén-Contreras, D.; Molumeli, P.A. Phytostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Span. J. Agric. Res. 2009, 7, 390. [Google Scholar] [CrossRef]
- Ruiz Olivares, A.; Carillo-Gonzales, R.; del Carmen, M.A.; Gonzales-Chavez, A.; Hernandez, R.M.S. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J. Environ. Manag. 2013, 114, 316–323. [Google Scholar] [CrossRef]
- Chen, G.C.; Liu, Z.; Zhang, J.; Owens, G. Phytoaccumulation of copper in willow seedlings under different hydrological regimes. Ecol. Eng. 2012, 44, 285–289. [Google Scholar] [CrossRef]
- Shackira, A.M.; Puthur, J.T. Phytostabilization of heavy metals: Understanding of principles and practices. In Plant-Metal Interactions; Springer: Cham, Switzerland, 2019; pp. 263–282. [Google Scholar]
- Yadav, R.; Singh, S.; Kumar, A.; Singh, A.N. Phytoremediation: A wonderful cost-effective tool. In Cost Effective Technologies for Solid Waste and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 179–208. [Google Scholar]
- Kavitha, B.; Jothimani, P.; Ponmani, S.; Sangeetha, R. Phytoremediation of Heavy Metals-A Review. Int. J. Res. Stud. Biosci. 2013, 1, 17–23. [Google Scholar]
- Pollard, A.J.; Powell, K.D.; Harper, F.A.; Smith, J.A.C. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci. 2002, 21, 539–566. [Google Scholar] [CrossRef]
- Buhari, M.; Sulaiman, B.; Vyas, N.L.; Badaru, S.; Harisu, U. Role of biotechnology in phytoremediation. J. Bioremediation Biodegrad. 2016, 7, 330. [Google Scholar]
- Raj, D.; Kumar, A.; Maiti, S.K. Mercury remediation potential of Brassica juncea (L.) Czern. For clean-up of flyash contaminated sites. Chemosphere 2020, 248, 125857. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ansari, M.I.; Srivastava, S.; Saxena, G.; Gupta, K. Genetic engineering to reduce toxicity and increase accumulation of toxic metals in plants. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Springer: Singapore, 2020; pp. 481–501. [Google Scholar]
- Saxena, P.; Singh, N.K.; Singh, A.K.; Pandey, S.; Thanki, A.; Yadav, T.C. Recent advances in phytoremediation using genome engineering CRISPR–Cas9 technology. Bioremediation Pollut. 2020, 125–141. [Google Scholar]
- Wang, C.; Na, G.; Bermejo, E.S.; Chen, Y.; Banks, J.A.; Salt, D.E.; Zhao, F.J. Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol. 2018, 217, 206–218. [Google Scholar] [CrossRef]
- Kumar, K.; Shinde, A.; Aeron, V.; Verma, A.; Arif, N.S. Genetic engineering of plants for phytoremediation: Advances and challenges. J. Plant Biochem. Biotechnol. 2022, 1–19. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef]
- LeBlanc, M.S.; McKinney, E.C.; Meagher, R.B.; Smith, A.P. Hijacking membrane transporters for arsenic phytoextraction. J. Biotechnol. 2013, 163, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Hua, C.Y.; Jia, M.R.; Fu, J.W.; Liu, X.; Han, Y.H.; Liu, Y.; Rathinasabapathi, B.; Cao, Y.; Ma, L.Q. Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environ. Sci. Technol. 2017, 51, 10387–10395. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kumar, R.; Hajam, Y.A.; Rani, R. Role of biotechnology in phytoremediation. In Phytoremediation; Academic Press: Cambridge, MA, USA, 2022; pp. 437–454. [Google Scholar]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants—Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef] [PubMed]
- Ojuederie, O.B.; Babalola, O.O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Bano, A.; Singh, S.P.; Sharma, S.; Xia, C.; Nadda, A.K.; Lam, S.S.; Tong, Y.W. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. Chemosphere 2022, 306, 135538. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, J.; Wu, Y.; Luo, S.; Chen, B.; Ma, L.; Pan, F.; Feng, Y.; Yang, X. Promotion of the root development and Zn uptake of Sedum alfredii was achieved by an endophytic bacterium Sasm05. Ecotoxicol. Environ. Saf. 2019, 172, 97–104. [Google Scholar] [CrossRef]
- Kong, Z.; Glick, B.R. The Role of Plant Growth Promoting Bacteria in Metal Phytoremediation. Adv. Microb. Physiol. 2017, 71, 97–132. [Google Scholar]
- Raklami, A.; Oubane, M.; Meddich, A.; Hafidi, M.; Marschner, B.; Heinze, S.; Oufdou, K. Phytotoxicity and genotoxicity as a new approach to assess heavy metals effect on Medicago sativa L.: Role of metallo-resistant rhizobacteria. Environ. Technol. Innov. 2021, 24, 101833. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, S.; Banerjee, S.; Mukherjee, S.; Ganguli, A.; Mondal, S. Heavy metals bio-removal potential of the isolated Klebsiella Sp TIU20 strain which improves growth of economic crop plant (Vigna radiata L.) under heavy metals stress by exhibiting plant growth promoting and protecting traits. Biocatal. Agric. Biotechnol. 2021, 38, 102204. [Google Scholar] [CrossRef]
- González Henao, S.; Ghneim-Herrera, T. Heavy Metals in Soils and the Remediation Potential of Bacteria Associated with the Plant Microbiome. Front. Environ. Sci. 2021, 9, 604216. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wang, X.; Yang, X.; Cui, Z. Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum. Chemosphere 2019, 224, 716–725. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, A.K.; Udayan, A.; Kumar, S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresour Technol. 2021, 326, 124750. [Google Scholar] [CrossRef] [PubMed]
- Saha, L.; Tiwari, J.; Bauddh, K.; Ma, Y. Recent Developments in Microbe–Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front. Microbiol. 2021, 12, 731723. [Google Scholar] [CrossRef] [PubMed]
PTE | Source(s) | Effects | Reference(s) |
---|---|---|---|
Arsenic (As) | Pesticides, fungicides, metal smelters | Carcinogen causes skin, lung, liver and bladder cancer. In addition, causes darkening of the skin | [28,29,30] |
Barium (Ba) | Rodenticides, pharmaceuticals, cosmetics, diesel engines | Vomiting, abdominal cramps, diarrhea, difficulty in breathing, hypo or hypertension, numbness, paralysis or death | [31] |
Cadmium (Cd) | Welding, electroplating, pesticides, fertilizers, batteries, nuclear plants | Stomachache, vomiting, diarrhea, kidney problems, liver damage, fragile bones, cause itai-itai | [24,29] |
Chromium (Cr) | Mining, electroplating, textile, tanneries | Carcinogen, nose ulcers, asthma, cough, skin problems, kidney and liver damage | [28,29] |
Lead (Pb) | Paint, batteries, pesticides, automobile emissions, mining, burning of coal | Weakness, hypertension, anemia, brain and kidney damage, miscarriage, impotence | [28,29] |
Mercury (Hg) | Pesticides, batteries, paper industries | Minimata disease, nervous disorders, kidney damage, tremors, impaired vision and hearing, loss of memory | [28,29] |
Selenium (Se) | Mining, agricultural wastes, petrochemicals, | Nausea, vomiting, diarrhea, sclerosis, respiratory tract irritation, bronchitis, stomach pains, bronchial spasms and cough | [32,33] |
Silver (Au) | Industries, mining, silver plating, | Blue–grey discoloration of the skin called Argyria, breathing problems, lung and throat irritation, stomach pain, skin problems such as rashes, swelling and inflammation | [34] |
Taxa | Family | Heavy Metal(s) | Media | Mechanism | Reference(s) |
---|---|---|---|---|---|
Agrostis capillaris | Poaceae | As | Wetlands | Phytostabilization | [99] |
A. tenuis | Poaceae | Pb | Soil | Phytostabilization | [47] |
Amaranthus spinosus | Amaranthaceae | Cu, Pb and Cd | Soil | Phytostabilization | [91] |
Arabidopsis thaliana | Brassicaceae | Hg | Soil | Phytovolatilization | [46,100] |
Arthrocnemum macrostachyum | Amaranthaceae | Cd | Water | Phytostabilization | [29,101] |
Aspalathus linearis | Fabaceae | Al | Soil | Phytostabilization | [102] |
Astragalus racemosus | Fabaceae | Se | Soil | Phytovolatilization | [103,104] |
Athyrium wardii | Athyriaceae | Pb and Cd | Soil | Phytostabilization | [105] |
Atriplex halimus | Amaranthaceae | Cd | Wetlands | Phytostabilization | [106] |
Atriplex portulacoides | Amaranthaceae | Zn | Soil | Phytostabilization | [29,35,107] |
Avicennia marina | Acanthaceae | As | Wetlands | Phytostabilization | [99] |
Azolla filiculoides | Salviniaceae | Cd, Pb and Cu | Water | Phytoextraction | [108,109] |
A. pinnata | Salviniaceae | Pb, Hg and Cd | Water | Phytoextraction | [87] |
Brassica juncea | Brassicaceae | Pb, Se, Zn and Hg | Soil | Phytoextraction | [110] |
B. oleraceae | Brassicaceae | Cd and Zn | Soil | Phytoextraction | [111] |
B. chinensis | Brassicaceae | U | Soil | Phytoextraction | [88] |
B. juncea | Brassicaceae | U | Soil | Phytostabilization | [97,110] |
B. napus | Brassicaceae | Cd, Cr, Cu, Ni, Pb, Se, and Zn | Soil | Phytovolatilization | [112] |
Callitriche stagnalis | Plantaginaceae | U | Water | Rhizofiltration | [113] |
Canna glauca | Cannaceae | As | Water | Phytoextraction | [97] |
Deschampsia cespitosa | Poaceae | As | Wetlands | Phytostabilization | [99] |
Eleocharis acicularis | Cyperaceae | Cu, Zn, As, Cd and Pb | Water | Phytoextraction | [99,109] |
Festuca rubra | Poaceae | Zn, Cd, Hg, Cu | Mine tailings | Phytostabilization | [99,114] |
Helianthus annus | Asteraceae | U | Soil, Water | Phytostabilization | [97,115] |
Ipomoea aquatic | Convolvulaceae | Pb and Cr | Water | Rhizofiltration | [115] |
Iris pseuda-corus | Iridaceae | Cr and Zn | Water | Rhizofiltration | [115] |
Lemna gibba | Araceae | As | Water | Phytoextraction | [116] |
L. minor | Araceae | Cd, Se, and Cu | Water, Soil | Phytostabilization | [115] |
Lepironia articulata | Cyperaceae | Pb | Water | Rhizofiltration | [115] |
Linum usitatissimum | Linaceae | Cd | Soil | Phytoextraction | [117,118] |
Lolium perenne | Poaceae | Cu, Pb, Zn, Cr | Soil, Water | Phytostabilization | [97,99,115] |
Ludwigia stolonifera | Onagraceae | Cd, Zn, Ni, Pb | Water | Phytostabilization | [115] |
Lupinus uncinatus | Fabaceae | Cd | Soils | Phytostabilization | [119] |
Mentha aquatic | Lamiaceae | Ni | Water | Rhizofiltration | [115] |
Nelumbo nucifera | Nelumbonaceae | Cd, Co, Pb, Ni and Zn | Wetlands | Phytoextraction | [115] |
Nicotiana tabacum | Solanaceae | Cd, Pb, Hg | Soil | Phytostabilization, phytovolatilization | [44] |
Oenanthe javanica | Apiaceae | Hg | Water | Phytostabilization | [115] |
Phragmites australis | Poaceae | Ni, Mo, Se, Cu, Pb and Zn | Wetlands | Phytoextraction | [90,97,115] |
Pistia stratiotes | Araceae | Cd, Cu, Fe, Hg, Mn and Pb | Water | Phytoextraction | [115] |
Plantago major | Plantaginaceae | Pb | Water | Rhizofiltration | [115] |
Potamogeton natans | Potamogetonaceae | U, Pb, Cd and Zn | Water | Rhizofiltration | [115] |
P. pectinatus | Potamogetonaceae | U and Cd | Water | Rhizofiltration | [111,113] |
P. pusillus | Potamogetonaceae | Cr and Cu | Water | Phytoextraction | [113] |
Pteris vittata | Pteridaceae | As | Water | Phytoextraction, phytostabilization | [97,115] |
Ricinus communis | Euphorbiaceae | Cd, Cu, Mn, Pb, and Zn | Soils | Phytostabilization | [120] |
Salix babylonica | Salicaceae | Cu | Wetlands | Phytoextraction | [121] |
Salvinia biloba | Salviniaceae | Pb | Water | Phytoextraction | [115] |
Silene vulgaris | Caryophyllaceae | As | Wetlands | Phytostabilization | [122] |
Triglochin maritime | Juncaginaceae | Hg | Wetlands | Phytostabilization | [122] |
Typha domingensis | Typhaceae | Al, Fe, Zn, Hg and Pb | Water | Phytoextraction | [115] |
T. latifolia | Typhaceae | Mn, Cd, Zn, Co, Ni and Cr | Water | Phytoextraction | [97,115] |
Vallisneria natans | Hydrocharitaceae | As | Water | Rhizofiltration | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, Z.A.; Ahmad, Z.; Asgher, M.; Bhat, J.A.; Sharma, M.; Kumar, A.; Sharma, V.; Kumar, A.; Pant, S.; Lukatkin, A.S.; et al. Phytoremediation of Potentially Toxic Elements: Role, Status and Concerns. Plants 2023, 12, 429. https://doi.org/10.3390/plants12030429
Wani ZA, Ahmad Z, Asgher M, Bhat JA, Sharma M, Kumar A, Sharma V, Kumar A, Pant S, Lukatkin AS, et al. Phytoremediation of Potentially Toxic Elements: Role, Status and Concerns. Plants. 2023; 12(3):429. https://doi.org/10.3390/plants12030429
Chicago/Turabian StyleWani, Zishan Ahmad, Zeeshan Ahmad, Mohd Asgher, Jahangeer A. Bhat, Manju Sharma, Ashish Kumar, Virbala Sharma, Amit Kumar, Shreekar Pant, Alexander S. Lukatkin, and et al. 2023. "Phytoremediation of Potentially Toxic Elements: Role, Status and Concerns" Plants 12, no. 3: 429. https://doi.org/10.3390/plants12030429
APA StyleWani, Z. A., Ahmad, Z., Asgher, M., Bhat, J. A., Sharma, M., Kumar, A., Sharma, V., Kumar, A., Pant, S., Lukatkin, A. S., & Anjum, N. A. (2023). Phytoremediation of Potentially Toxic Elements: Role, Status and Concerns. Plants, 12(3), 429. https://doi.org/10.3390/plants12030429