Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia
Abstract
:1. Introduction
2. Results
2.1. Salinity Levels and Length of the Pneumatophores
2.2. Weight of MPs in Soil Samples
2.3. Discriminant Analysis of Soil and Pneumatophore Samples Based on Presence of Plastic
2.4. Polymer Identification
2.5. Trace Element Detection
3. Discussion
3.1. Contamination, Chemical Composition and Distribution of MPs in Bima City Bay
3.2. Contamination, Chemical Composition and Distribution of TEs in Bima City Bay
3.3. Composition of Plastics and Concentrations of TEs in the Soil and Plant Samples
4. Materials and Methods
4.1. Experimental Locations
4.2. Sample Collection
4.3. Quantitative Assessment of the Presence of Microplastics in Soil Sediments
4.4. Analysis of MPs with Fourier Transform Infrared Spectroscopy (FT-IR)
4.5. Polymer Identification
4.6. Plant Metal Extractions and ICP-OES
4.7. Soil Metal Extractions and ICP-OES
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hildering, A.; Keessen, A.; van Rijswick, H.F. Tackling pollution of the Mediterranean Sea from land-based sources by an integrated ecosystem approach and the use of the combined international and European legal regimes. Utrecht Law Rev. 2009, 5, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Tiquio, M.G.J.P.; Marmier, N.; Francour, P. Management frameworks for coastal and marine pollution in the European and South East Asian regions. Ocean Coast. Manag. 2017, 135, 65–78. [Google Scholar] [CrossRef]
- Bonanno, G.; Veneziano, V.; Orlando-Bonaca, M. Comparative assessment of trace element accumulation and biomonitoring in seaweed Ulva lactuca and seagrass Posidonia oceanica. Sci. Total Environ. 2020, 718, 137413. [Google Scholar] [CrossRef] [PubMed]
- Arisekar, U.; Shakila, R.J.; Shalini, R.; Jeyasekaran, G. Pesticides contamination in the Thamirabarani, a perennial river in peninsular India: The first report on ecotoxicological and human health risk assessment. Chemosphere 2021, 267, 129251. [Google Scholar] [CrossRef]
- Adyasari, D.; Pratama, M.A.; Teguh, N.A.; Sabdaningsih, A.; Kusumaningtyas, M.A.; Dimova, N. Anthropogenic impact on Indonesian coastal water and ecosystems: Current status and future opportunities. Mar. Pollut. Bull. 2021, 171, 112689. [Google Scholar] [CrossRef] [PubMed]
- Hodson, M.E.; Duffus-Hodson, C.A.; Clark, A.; Prendergast-Miller, M.; Thorpe, K.L. Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates. Environ. Sci. Technol. 2017, 51, 4714–4721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willis, K.A.; Eriksen, R.; Wilcox, C.; Hardesty, B.D. Microplastic Distribution at Different Sediment Depths in an Urban Estuary. Front. Mar. Sci. 2017, 4, 419. [Google Scholar] [CrossRef] [Green Version]
- Wicaksono, E.A.; Werorilangi, S.; Galloway, T.S.; Tahir, A. Distribution and seasonal variation of microplastics in Tallo river, Makassar, Eastern Indonesia. Toxics 2021, 9, 129. [Google Scholar] [CrossRef]
- Dusaucy, J.; Gateuille, D.; Perrette, Y.; Naffrechoux, E. Microplastic pollution of worldwide lakes. Environ. Pollut. 2021, 284, 117075. [Google Scholar] [CrossRef]
- Barros, J.; Seena, S. Plastisphere in freshwaters: An emerging concern. Environ. Pollut. 2021, 290, 118123. [Google Scholar] [CrossRef]
- Pehlivan, N.; Gedik, K. Particle size-dependent biomolecular footprints of interactive microplastics in maize. Environ. Pollut. 2021, 277, 116772. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Kelly, F.J. Plastic and human health: A micro issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Pignattelli, S.; Broccoli, A.; Renzi, M. Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci. Total Environ. 2020, 727, 138609. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, A.; Narayan Vaidya, A.; Kumar, A.R. Microplastic properties and their interaction with hydrophobic organic contaminants: A review. Environ. Sci. Pollut. Res. 2022, 29, 49490–49512. [Google Scholar] [CrossRef]
- Cholewińska, P.; Moniuszko, H.; Wojnarowski, K.; Pokorny, P.; Szeligowska, N.; Dobicki, W.; Polechoński, R.; Górniak, W. The Occurrence of Microplastics and the Formation of Biofilms by Pathogenic and Opportunistic Bacteria as Threats in Aquaculture. Int. J. Environ. Res. Public Health 2022, 19, 8137. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Rahman, M.S.; Alom, J.; Hasan, M.S.; Johir, M.A.H.; Mondal, M.I.H.; Lee, D.Y.; Park, J.; Zhou, J.L.; Yoon, M.H. Microplastic particles in the aquatic environment: A systematic review. Sci. Total Environ. 2021, 775, 145793. [Google Scholar] [CrossRef]
- Yin, K.; Wang, D.; Zhao, H.; Wang, Y.; Guo, M.; Liu, Y.; Li, B.; Xing, M. Microplastics pollution and risk assessment in water bodies of two nature reserves in Jilin Province: Correlation analysis with the degree of human activity. Sci. Total. Environ. 2021, 799, 149390. [Google Scholar] [CrossRef]
- Mbengue, S.; Alleman, L.Y.; Flament, P. Metal-bearing fine particle sources in a coastal industrialized environment. Atmos. Res. 2017, 183, 202–211. [Google Scholar] [CrossRef]
- Duman, F.; Cicek, M.; Sezen, G. Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 2007, 16, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Mandal, S.K.; González, A.G.; Pokrovsky, O.S.; Jana, T.K. Storage and recycling of major and trace element in mangroves. Sci. Total Environ. 2021, 780, 146379. [Google Scholar] [CrossRef] [PubMed]
- Wattigney, W.A.; Irvin-Barnwell, E.; Li, Z.; Ragin-Wilson, A. Biomonitoring of mercury and persistent organic pollutants in Michigan urban anglers and association with fish consumption. Int. J. Hyg. Environ. Health 2019, 222, 936–944. [Google Scholar] [CrossRef]
- Abdelhady, A.A.; Khalil, M.M.; Ismail, E.; Mohamed, R.S.; Ali, A.; Snousy, M.G.; Fan, J.; Zhang, S.; Yanhong, L.; Xiao, J. Potential biodiversity threats associated with the metal pollution in the Nile–Delta ecosystem (Manzala lagoon, Egypt). Ecol. Indic. 2019, 98, 844–853. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, M.; Ma, X.; Song, Y.; Zuo, S.; Li, H.; Deng, W. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Sci. Total Environ. 2021, 788, 147620. [Google Scholar] [CrossRef]
- Arifin, Z.; Puspitasari, R.; Miyazaki, N. Heavy metal contamination in Indonesian coastal marine ecosystems: A historical perspective. Coast. Mar. Sci. 2012, 35, 227–233. [Google Scholar]
- Kusnadi, E.A.; Triandiza, T. Assessment of sediment quality in the waters around of Ternate city, North of Maluku, Indonesia based on an index analysis approach. IOP Conf. Series Earth Environ. Sci. 2020, 517, 012016. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemia Pierwiastków Śladowych; Wydawnictwo naukowe PWN: Warsaw, Poland, 1999. (In Polish) [Google Scholar]
- Maghsodian, Z.; Sanati, A.M.; Ramavandi, B.; Ghasemi, A.; Sorial, G.A. Microplastics accumulation in sediments and Periophthalmus waltoni fish, mangrove forests in southern Iran. Chemosphere 2021, 264, 128543. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: London, UK, 2016. [Google Scholar]
- Usman, A.R.; Alkredaa, R.S.; Al-Wabel, M.I. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol. Environ. Saf. 2013, 97, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B. The protective service of mangrove ecosystems: A review of valuation methods. Mar. Pollut. Bull. 2016, 109, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Sidik, F.; Supriyanto, B.; Krisnawati, H.; Muttaqin, M.Z. Mangrove conservation for climate change mitigation in Indonesia. Wiley Interdiscip. Rev. Clim. Change 2018, 9, e529. [Google Scholar] [CrossRef]
- Santini, N.S.; Reef, R.; Lockington, D.A.; Lovelock, C.E. The use of fresh and saline water sources by the mangrove Avicennia marina. Hydrobiologia 2015, 745, 59–68. [Google Scholar] [CrossRef]
- Purnobasuki, H. Structure of Lenticels on the Pneumatophores of Avicennia marina: As Aerating Device Deliver Oxygen in Mangrove’s root. J. BIOTA 2011, 16, 309–315. [Google Scholar] [CrossRef]
- Rahaman, S.; Biswas, S.K.; Rahaman, M.S.; Ghosh, A.K.; Sarder, L.; Siraj, S.M.S.; Islam, S.S. Seasonal nutrient distribution in the Rupsha-Passur tidal river system of the Sundarbans mangrove forest, Bangladesh. Ecol. Process. 2014, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Zamprogno, G.C.; Caniçali, F.B.; dos Reis Cozer, C.; Otegui, M.B.P.; Graceli, J.B.; da Costa, M.B. Spatial distribution of microplastics in the superficial sediment of a mangrove in Southeast Brazil: A comparison between fringe and basin. Sci. Total Environ. 2021, 784, 146963. [Google Scholar] [CrossRef]
- Maghsodian, Z.; Sanati, A.M.; Tahmasebi, S.; Shahriari, M.H.; Ramavandi, B. Study of microplastics pollution in sediments and organisms in mangrove forests: A review. Environ. Res. 2022, 208, 112725. [Google Scholar] [CrossRef]
- Zhou, Q.; Tu, C.; Fu, C.; Li, Y.; Zhang, H.; Xiong, K.; Zhao, X.; Li, L.; Waniek, J.J.; Luo, Y. Characteristics and distribution of microplastics in the coastal mangrove sediments of China. Sci. Total Environ. 2020, 703, 134807. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Not, C.; Cannicci, S. Mangroves as unique but understudied traps for anthropogenic marine debris: A review of present information and the way forward. Environ. Pollut. 2021, 271, 116291. [Google Scholar] [CrossRef] [PubMed]
- Rizal, A.; Sahidin, A.; Herawati, H. Economic value estimation of mangrove ecosystems in Indonesia. Biodivers. Int. J. 2018, 2, 98–100. [Google Scholar] [CrossRef] [Green Version]
- Garcés-Ordóñez, O.; Castillo-Olaya, V.A.; Granados-Briceño, A.F.; García, L.M.B.; Díaz, L.F.E. Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta, Colombian Caribbean. Mar. Pollut. Bull. 2019, 145, 455–462. [Google Scholar] [CrossRef] [PubMed]
- El Ashmawy, A.A.; Masoud, M.S.; Yoshimura, C.; Dilini, K.; Abdel-Halim, A.M. Accumulation of heavy metals by Avicennia marina in the highly saline Red Sea coast. Environ. Sci. Pollut. Res. 2021, 28, 62703–62715. [Google Scholar] [CrossRef] [PubMed]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Naqash, N.; Prakash, S.; Kapoor, D.; Singh, R. Interaction of freshwater microplastics with biota and heavy metals: A review. Environ. Chem. Lett. 2020, 18, 1813–1824. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef]
- Abbasi, S.; Moore, F.; Keshavarzi, B.; Hopke, P.K.; Naidu, R.; Rahman, M.M.; Oleszczuk, P.; Karimi, J. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Sci. Total Environ. 2020, 744, 140984. [Google Scholar] [CrossRef]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kim, K.H.; Kirkham, M.B. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Hao, X.; Wang, J.; Zhang, Y. Distribution of low-density microplastics in the mollisol farmlands of northeast China. Sci. Total Environ. 2020, 708, 135091. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Riksen, M.J.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastic. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Ljung, E.; Olesen, K.B.; Andersson, P.G.; Fältström, E.; Vollertsen, J.; Wittgren, H.B.; Hagman, M. Mikroplaster i kretsloppet. Sven. Vatten Utveckl. Rapp. 2018, 13, 1–48. [Google Scholar]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Dierkes, G.; Lauschke, T.; Becher, S.; Schumacher, H.; Földi, C.; Ternes, T. Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal. Bioanal. Chem. 2019, 411, 6959–6968. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.; Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [Green Version]
- Vollertsen, J.; Hansen, A.A. Microplastic in Danish Wastewater: Sources, Occurrences and Fate; Environmental Project 1906; The Danish Environmental Protection Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- Darmawan, A. Perilaku Masyarakat dalam Mengelola Sampah di Kota Bima Nusa Tenggara Barat. J. Pembang. Wil. Kota 2014, 10, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Isobe, A.; Kubo, K.; Tamura, Y.; Nakashima, E.; Fujii, N. Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 2014, 89, 324–330. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 6366, Vinylidene Chloride. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Vinylidene-chloride (accessed on 15 October 2022).
- Short, R.D.; Winston, J.M.; Minor, J.L.; Hong, C.B.; Seifter, J.; Lee, C.C. Toxicity of vinylidene chloride in mice and rats and its alteration by various treatments. J. Toxicol. Environ. Health Part A Curr. Issues 1977, 3, 913–921. [Google Scholar] [CrossRef]
- Posthuma, A.R.; Kraus, J.G.; Rutherford, J.A. Cleanup of a Vinylidene Chloride and Phenol Spill. In Management of Toxic and Hazardous Wastes; Lewis Publishers, Inc.: Chelsea, MI, USA, 1985; pp. 297–306. [Google Scholar]
- Sathishkumar, K.; Rangan, V.; Gao, X.; Uppu, R.M. Methyl vinyl ketone induces apoptosis in murine GT1-7 hypothalamic neurons through glutathione depletion and the generation of reactive oxygen species. Free. Radic. Res. 2007, 41, 469–477. [Google Scholar] [CrossRef]
- Sugawara, H.; Norimoto, H.; Zhou, Z. Methyl vinyl ketone disrupts neuronal survival and axonal morphogenesis. J. Toxicol. Sci. 2022, 47, 375–380. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 6570, Methyl Vinyl Ketone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-vinyl-ketone (accessed on 23 September 2022).
- Moore, C.J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008, 108, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Moroni, M.; Lupo, E.; La Marca, F. Hydraulic separation of plastic wastes. In Use of Recycled Plastics in Eco-Efficient Concrete; Elsevier: Berlin, Germany, 2019; pp. 1–492. [Google Scholar] [CrossRef]
- Atwood, E.C.; Falcieri, F.M.; Piehl, S.; Bochow, M.; Matthies, M.; Franke, J.; Carniel, S.; Sclavo, M.; Laforsch, C.; Siegert, F. Coastal accumulation of microplastic particles emitted from the Po River, Northern Italy: Comparing remote sensing and hydrodynamic modelling with in situ sample collections. Mar. Pollut. Bull. 2019, 138, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Kazour, M.; Terki, S.; Rabhi, K.; Jemaa, S.; Khalaf, G.; Amara, R. Sources of microplastics pollution in the marine environment: Importance of wastewater treatment plant and coastal landfill. Mar. Pollut. Bull. 2019, 146, 608–618. [Google Scholar] [CrossRef]
- Birch, G.; Nath, B.; Chaudhuri, P. Effectiveness of remediation of metal-contaminated mangrove sediments (Sydney estuary, Australia). Environ. Sci. Pollut. Res. 2015, 22, 6185–6197. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chen, F.-A.; Hsu, M.J. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environ. Pollut. 2008, 155, 320–326. [Google Scholar] [CrossRef]
- Einollahipeer, F.; Khammar, S.; Sabaghzadeh, A. A study on heavy metal concentration in sediment and mangrove (Avicenia marina) tissues in Qeshm island, Persian Gulf. J. Nov. Appl. Sci. 2013, 2, 498–504. [Google Scholar]
- Arisekar, U.; Shakila, R.J.; Shalini, R.; Jeyasekaran, G.; Sivaraman, B.; Surya, T. Heavy metal concentrations in the macroalgae, seagrasses, mangroves, and crabs collected from the Tuticorin coast (Hare Island), Gulf of Mannar, South India. Mar. Pollut. Bull. 2021, 163, 111971. [Google Scholar] [CrossRef]
- Harris, A.; Xanthos, S.J.; Galiotos, J.K.; Douvris, C. Investigation of the metal content of sediments around the historically polluted Potomac River basin in Washington DC, United States by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Microchem. J. 2018, 142, 140–143. [Google Scholar] [CrossRef]
- Srikanth, S.; Kaihekulani, S.; Lum, Y.; Chen, Z. Mangrove root: Adaptations and ecological importance. Trees 2015, 30, 451–465. [Google Scholar] [CrossRef]
- Chen, T.; Cai, X.; Wu, X.; Karahara, I.; Schreiber, L.; Lin, J. Casparian strip development and its potential function in salt tolerance. Plant Signal. Behav. 2011, 6, 1499–1502. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wen, X.; Huang, D.; Du, C.; Deng, R.; Zhou, Z.; Tao, J.; Li, R.; Zhou, W.; Wang, Z.; et al. Interactions between microplastics/nanoplastics and vascular plants. Environ. Pollut. 2021, 290, 117999. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.; Dey, T.K.; Jamal, M. Microplastic/nanoplastic toxicity in plants: An imminent concern. Environ. Monit. Assess. 2023, 195, 27. [Google Scholar] [CrossRef]
- Sun, X.D.; Yuan, X.Z.; Jia, Y.; Feng, L.J.; Zhu, F.P.; Dong, S.S.; Liu, J.; Kong, X.; Tian, H.; Duan, J.L.; et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 2020, 15, 755–760. [Google Scholar] [CrossRef] [PubMed]
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, A.A.S.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [Green Version]
- Helmberger, M.S.; Tiemann, L.K.; Grieshop, M.J. Towards an ecology of soil microplastics. Funct. Ecol. 2020, 34, 550–560. [Google Scholar] [CrossRef] [Green Version]
- Kannan, N.; Thirunavukkarasu, N.; Suresh, A.; Rajagopal, K. Analysis of heavy metals accumulation in mangroves and associated mangroves species of Ennore mangrove ecosystem, east coast India. Indian J. Sci. Technol. 2016, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Coppock, R.L.; Cole, M.; Lindeque, P.K.; Queirós, A.M.; Galloway, T.S. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 2017, 230, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Van Ranst, E.; Verloo, M.; Demeyer, A.; Pauwels, J.M. Manual for the Soil Chemistry and Fertility Laboratory: Analytical Methods for Soils and Plants Equipment, and Management of Consumables; Faculty Agricultural and Applied Biological Sciences, Ghent University: Ghent, Belgium, 1999; pp. 1–243. [Google Scholar]
- Sujka, K.; Koczoń, P. The application of FT-IR spectroscopy in discrimination of differently originated and aged whisky. Eur. Food Res. Technol. 2018, 244, 2019–2025. [Google Scholar] [CrossRef]
Location | Soil | Pneumatophores | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rural Area | Hotel Area | Market Area | River Mouth Area | Port Area | Rural Area | Hotel Area | Market Area | River Mouth Area | Port Area | |
Rural area | 0 | 0 | ||||||||
Hotel area | 1.146 | 0 | 0.524 | 0 | ||||||
Market area | 1.215 | 0.657 | 0 | 0.471 | 0.071 | 0 | ||||
River mouth area | 1.738 | 1.613 | 0.958 | 0 | 0.534 | 0.345 | 0.378 | 0 | ||
Port area | 1.076 | 1.231 | 0.702 | 0.665 | 0 | 0.387 | 0.137 | 0.095 | 0.329 | 0 |
Location | Fe | Ba | Cd | Co | Cr | Cu | Mn | Mo | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
Soil | |||||||||||
Rural area | 3099 b* (±59.5) | 7.09 b (±0.73) | 0.25 b (±0.01) | 1.65 b (±0.02) | 1.27 bc (±0.04) | 3.60 b (±0.52) | 90.5 a (±18.5) | 0.11 b (±0.01) | 0.67 b (±0.04) | 0.80 bc (±0.09) | 7.55 b (±0.42) |
Hotel area | 2015 c (±104) | 5.69 b (±0.02) | 0.14 c (±0.01) | 1.17 c (±0.04) | 1.09 c (±0.06) | 1.06 c (±0.16) | 46.1 b (±2.84) | 0.19 ab (±0.01) | 0.43 c (±0.04) | 0.42 c (±0.06) | 3.51 c (±0.41) |
Market area | 3459 ab (±91.5) | 17.4 a (±3.08) | 0.30 ab (±0.01) | 2.00 a (±0.08) | 1.31 bc (±0.04) | 4.05 ab (±0.41) | 66.3 ab (±7.40) | 0.23 a (±0.02) | 0.83 b (±0.04) | 1.69 ab (±0.36) | 8.39 b (±0.57) |
River mouth area | 3684 a (±122) | 12.0 ab (±0.46) | 0.35 a (±0.02) | 2.04 a (±0.07) | 1.79 a (±0.10) | 5.53 a (±0.32) | 72.5 ab (±5.89) | 0.22 a (±0.03) | 1.04 a (±0.07) | 1.88 a (±0.30) | 13.7 a (±1.45) |
Port area | 3762 a (±155) | 10.2 b (±1.59) | 0.34 a (±0.03) | 2.19 a (±0.09) | 1.36 b (±0.05) | 2.65 bc (±0.49) | 76.0 ab (±7.31) | 0.18 ab (±0.03) | 0.83 b (±0.05) | 0.83 bc (±0.08) | 7.91 b (±0.46) |
Pneumatophores | |||||||||||
Rural area | 1130 a (±162) | 3.57 a (±0.32) | 0.05 b (±0.01) | 0.54 a (±0.06) | 1.30 a (±0.18) | 1.98 bc (±0.28) | 126 a (±26.6) | 0.23 a (±0.05) | 1.20 a (±0.19) | 6.08 a (±0.41) | 14.0 a (±1.11) |
Hotel area | 738 ab (±133) | 1.45 b (±0.21) | 0.08 a (±0.00) | 0.26 b (±0.02) | 1.12 a (±0.27) | 1.39 c (±0.13) | 34.1 b (±3.56) | 0.27 a (±0.05) | 2.42 a (±0.95) | 5.09 ab (±0.39) | 11.5 a (±1.44) |
Market area | 724 ab (±130) | 3.14 a (±0.44) | 0.06 ab (±0.01) | 0.39 ab (±0.05) | 0.74 a (±0.15) | 3.49 a (±0.35) | 41.0 b (±4.45) | 0.16 a (±0.01) | 0.82 a (±0.05) | 4.04 b (±0.08) | 11.1 a (±0.98) |
River mouth area | 471 b (±41.3) | 1.62 b (±0.14) | 0.04 bc (±0.00) | 0.34 b (±0.03) | 1.63 a (±0.80) | 2.56 ab (±0.11) | 36.8 b (±3.46) | 0.25 a (±0.07) | 2.89 a (±1.48) | 3.67 b (±0.41) | 11.3 a (±1.83) |
Port area | 533 b (±61.9) | 2.37 ab (±0.23) | 0.03 c (±0.00) | 0.31 b (±0.02) | 0.83 a (±0.03) | 1.61 bc (±0.21) | 34.0 b (±4.58) | 0.13 a (±0.02) | 1.13 a (±0.31) | 5.62 a (±0.42) | 11.4 a (±1.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moniuszko, H.; Malonga, W.A.M.; Koczoń, P.; Thijs, S.; Popek, R.; Przybysz, A. Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia. Plants 2023, 12, 462. https://doi.org/10.3390/plants12030462
Moniuszko H, Malonga WAM, Koczoń P, Thijs S, Popek R, Przybysz A. Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia. Plants. 2023; 12(3):462. https://doi.org/10.3390/plants12030462
Chicago/Turabian StyleMoniuszko, Hanna, Win Ariga Mansur Malonga, Piotr Koczoń, Sofie Thijs, Robert Popek, and Arkadiusz Przybysz. 2023. "Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia" Plants 12, no. 3: 462. https://doi.org/10.3390/plants12030462
APA StyleMoniuszko, H., Malonga, W. A. M., Koczoń, P., Thijs, S., Popek, R., & Przybysz, A. (2023). Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia. Plants, 12(3), 462. https://doi.org/10.3390/plants12030462