Effect of Sowing Date and Environment on Phenology, Growth and Yield of Lentil (Lens culinaris Medikus.) Genotypes
Abstract
:1. Introduction
2. Results
2.1. Temperature at Sowing and Day Length
2.2. Effect of Sowing Date on Phenology
2.3. Effect of Sowing Date on Architecture, Biomass and Related Components
2.4. Effect of Sowing Date on Grain Yield and Yield Components
2.5. Genotypic Yield Responses to Sowing Time
2.5.1. G × E Interactions
2.5.2. Classification of Environments
3. Discussion
4. Materials and Methods
4.1. Experiment Locations, Climatic Data and Management
4.2. Plant Material
4.3. Experiment Design
4.4. Phenological Measurements
4.5. Measurements at Physiological Maturity
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomson, B.; Siddique, K.; Barr, M.; Wilson, J. Grain legume species in low rainfall mediterranean-type environments I. Phenology and seed yield. Field Crop. Res. 1997, 54, 173–187. [Google Scholar] [CrossRef]
- Erskine, W.; Sarker, A.; Kumar, S. Crops that feed the world 3. Investing in lentil improvement toward a food secure world. Food Secur. 2011, 3, 127–139. [Google Scholar] [CrossRef]
- Quinn, M.A. Biological nitrogen fixation and soil health improvement. In The lentil—Botany, Production and Uses; Erskine, W., Muehlbauer, F.J., Sarker, A., Sharma, B., Eds.; Comm Agric Bureau Int.: Wallingford, CT, USA, 2009; pp. 229–247. [Google Scholar]
- FAOSTAT. Statistical databases of the Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#home (accessed on 22 July 2022).
- Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) 2017 Australian Grains, Oilseeds and Pulses; Australian Bureau of Agricultural and Resource Economics and Sciences, Australian Government Department of Agriculture and Water Resource: Canberra, ACT, Australia, 2017.
- Australian Export Grains Innovation Centre (AEGIC) 2022. Available online: https://aegic.org.au/wp-content/uploads/2021/03/AEGIC-Grain-Note-pulses_LR-1.pdf (accessed on 22 July 2022).
- Materne, M.A. Importance of phenology and other Key Factors in Improving the Adaptation of Lentil (Lens culinaris Medikus) in Australia. Ph.D. Thesis, University of Western Australia, Perth, WA, Australia, 2003. [Google Scholar]
- Sadras, V.O.; Rosewarne, G.M.; Lake, L. Australian Lentil Breeding Between 1988 and 2019 Has Delivered Greater Yield Gain Under Stress Than Under High-Yield Conditions. Front. Plant Sci. 2021, 12, 830. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.R.; Tarafdar, S.; Das, M.; Kundagrami, S. Screening lentil (Lens culinaris Medik.) germplasms for heat tolerance. Biosci. Trends 2012, 5, 143–146. [Google Scholar]
- Sinsawat, V.; Leipner, J.; Stamp, P.; Fracheboud, Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot. 2004, 52, 123–129. [Google Scholar] [CrossRef]
- Gaur, P.M.; Samineni, S.; Krishnamurthy, L.; Kumar, S.; Ghanem, M.E.; Beebe, S.; Rao, I.; Chaturvedi, S.K.; Basu, P.S.; Nayyar, H.; et al. High temperature tolerance in grain legumes. Legume Perspect. 2015, 7, 23–24. [Google Scholar]
- Sita, K.; Sehgal, A.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.M.; Nayyar, H. Identification of High-Temperature Tolerant Lentil (Lens culinaris Medik.) Genotypes through Leaf and Pollen Traits. Front. Plant Sci. 2017, 8, 744. [Google Scholar] [CrossRef] [Green Version]
- Delahunty, A.; Nuttall, J.; Nicolas, M.; Brand, J. Response of lentil to high temperature under variable water supply and carbon dioxide enrichment. Crop Pasture Sci. 2018, 69, 1103–1112. [Google Scholar] [CrossRef]
- Bhandari, K.; Siddique, K.H.M.; Turner, N.C.; Kaur, J.; Singh, S.; Agrawal, S.K.; Nayyar, H. Heat Stress at Reproductive Stage Disrupts Leaf Carbohydrate Metabolism, Impairs Reproductive Function, and Severely Reduces Seed Yield in Lentil. J. Crop. Improv. 2016, 30, 118–151. [Google Scholar] [CrossRef]
- Bourgault, M.; Löw, M.; Tausz-Posch, S.; Nuttall, J.G.; Delahunty, A.J.; Brand, J.; Panozzo, J.F.; McDonald, L.; O’Leary, G.J.; Armstrong, R.D.; et al. Effect of a Heat Wave on Lentil Grown under Free-Air CO2 Enrichment (FACE) in a Semi-Arid Environment. Crop Sci. 2018, 58, 803–812. [Google Scholar] [CrossRef]
- Kumar, J.; Kant, R.; Sarker, A.; Singh, N.P. Heat Tolerance in Lentil under Field Conditions. Legume Genom. Genet. 2016, 7, 1–11. [Google Scholar]
- Sita, K.; Sehgal, A.; Bhandari, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.; Nayyar, H. Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J. Sci. Food Agric. 2018, 98, 5134–5141. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int. J. Mol. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Sita, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.M.; Nayyar, H. Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of Lentil (Lens culinaris Medikus) Genotypes Varying in Heat and Drought Sensitivity. Front. Plant Sci. 2017, 8, 1776. [Google Scholar] [CrossRef] [Green Version]
- Richards, M.F.; Preston, A.L.; Napier, T.; Jenkins, L.; Maphosa, L. Sowing date affects the timing and duration of key Chickpea (Cicer arietinum L.) growth phases. Plants 2020, 9, 1257. [Google Scholar] [CrossRef]
- Erskine, W.; Ellis, R.H.; Summerfield, R.J.; Roberts, E.H.; Hussain, A. Characterization of responses to temperature and photoperiod for time to flowering in a world lentil collection. Theor. Appl. Genet. 1990, 80, 193–199. [Google Scholar] [CrossRef]
- Summerfield, R.J.; Roberts, E.H.; Erskine, W.; Ellis, R. Effects of Temperature and Photoperiod on Flowering in Lentils (Lens culinaris Medic.). Ann. Bot. 1985, 56, 659–671. [Google Scholar] [CrossRef]
- Rahman, M.H.U.; Ahmad, I.; Wang, D.; Fahad, S.; Afzal, M.; Ghaffar, A.; Saddique, Q.; Alam Khan, M.; Saud, S.; Hassan, S.; et al. Influence of semi-arid environment on radiation use efficiency and other growth attributes of lentil crop. Environ. Sci. Pollut. Res. 2020, 28, 13697–13711. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.M.; Neupane, S.; Heidecker, T.; Haile, T.A.; Chan, C.; Coyne, C.J.; McGee, R.J.; Udupa, S.; Henkrar, F.; Barilli, E.; et al. Understanding photothermal interactions will help expand production range and increase genetic diversity of lentil (Lens culinaris Medik.). Plants People Planet 2020, 3, 171–181. [Google Scholar] [CrossRef]
- Venugopalan, V.K.; Nath, R.; Sengupta, K.; Nalia, A.; Banerjee, S.; Chandran, M.A.S.; Ibrahimova, U.; Dessoky, E.S.; Attia, A.O.; Hassan, M.M.; et al. The Response of Lentil (Lens culinaris Medik.) to Soil Moisture and Heat Stress Under Different Dates of Sowing and Foliar Application of Micronutrients. Front. Plant Sci. 2021, 12, 679469. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Bhandari, K.; Kumar, S.; Kumar, J.; Vara Prasad, P.V.; Siddique, K.H.M.; Nayyar, H. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell Env. 2019, 42, 198–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, R.; Turner, N.; Siddique, K.; Turner, D.W.; Speijers, J. A water deficit during pod development in lentils reduces flower and pod numbers but not seed size. Aust. J. Agric. Res. 2006, 57, 427–438. [Google Scholar] [CrossRef]
- Shrestha, R.; Turner, N.C.; Siddique, K.; Turner, D.W. Physiological and seed yield responses to water deficits among lentil genotypes from diverse origins. Aust. J. Agric. Res. 2006, 57, 903–915. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A.; Pala, M. Lentil production under supplemental irrigation in a Mediterranean environment. Agric. Water Manag. 2004, 68, 251–265. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Erskine, W.; A Hobson, K.; Knights, E.J.; Leonforte, A.; Khan, T.N.; Paull, J.G.; Redden, R.J.; Materne, M. Cool-season grain legume improvement in Australia—Use of genetic resources. Crop. Pasture Sci. 2013, 64, 347–360. [Google Scholar] [CrossRef]
- Kumar, J.; Basu, P.S.; Srivastava, E.D.; Chaturvedi, S.K.; Nadarajan, N.; Kumar, S. Phenotyping of traits imparting drought tolerance in lentil. Crop. Pasture Sci. 2012, 63, 547–554. [Google Scholar] [CrossRef]
- Sánchez-Gómez, D.; Cervera, M.T.; Escolano-Tercero, M.A.; Vélez, M.D.; de María, N.; Diaz, L.; Sánchez-Vioque, R.; Aranda, I.; Guevara, M. Drought escape can provide high grain yields under early drought in lentils. Theor. Exp. Plant Physiol. 2019, 31, 273–286. [Google Scholar] [CrossRef]
- Ghanem, M.E.; Marrou, H.; Biradar, C.; Sinclair, T.R. Production potential of Lentil (Lens culinaris Medik.) in East Africa. Agric. Syst. 2015, 137, 24–38. [Google Scholar] [CrossRef]
- Lachaâl, M.; Grignon, C.; Hajji, M. Growth rate affects salt sensitivity in two lentil populations. J. Plant Nutr. 2002, 25, 2613–2625. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought stress in plants: An overview. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin, Germany, 2012. [Google Scholar]
- Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N.C.; Berger, J.; Siddique, K.H.M.; Nayyar, H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014, 41, 1148–1167. [Google Scholar] [CrossRef] [Green Version]
- Mondal, M.; Puteh, A.; Malek, M.; Roy, S.; Yusop, M.R. Contribution of morpho-physiological traits on yield of lentil (Lens culinaris Medik). Aust. J. Crop Sci. 2013, 7, 1167–1172. [Google Scholar]
- Hanlan, T.G.; Ball, R.A.; Vandenberg, A. Canopy growth and biomass partitioning to yield in short-season lentil. Can. J. Plant Sci. 2006, 86, 109–119. [Google Scholar] [CrossRef]
- Manning, B.K.; Adhikari, K.N.; Trethowan, R. Impact of sowing time, genotype, environment and maturity on biomass and yield components in faba bean (Vicia faba). Crop. Pasture Sci. 2020, 71, 147–154. [Google Scholar] [CrossRef]
- Sen, J.; Pal, A.; Dutta, D. Evaluation of Some Lentil Genotypes for Drought Tolerance in Context of Drought Tolerance Indices. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 363–372. [Google Scholar] [CrossRef]
- Toklu, F.; Ozkan, H.; Karaköy, T.; Coyne, C.J. Evaluation of advanced lentil lines for diversity in seed mineral concentration, grain yield and yield components. Tarim Bilimleri Derg. 2017, 23, 213–222. [Google Scholar]
- Singh, M.; Kumar, S.; Basandrai, A.K.; Basandrai, D.; Malhotra, N.; Saxena, D.R.; Gupta, D.; Sarker, A.; Singh, K. Evaluation and identification of wild lentil accessions for enhancing genetic gains of cultivated varieties. PLoS ONE 2020, 15, e0229554. [Google Scholar] [CrossRef] [Green Version]
- Richards, M.F.; Maphosa, L.; Preston, A.L. Impact of Sowing Time on Chickpea (Cicer arietinum L.) Biomass Accumulation and Yield. Agronomy 2022, 12, 160. [Google Scholar] [CrossRef]
- Kundu, P.K.; Roy, T.S.; Khan, S.H.; Parvin, K.; Mazed, H.E.M.K. Effect of Sowing Date on Yield and Seed Quality of Soybean. J. Agric. Ecol. Res. Int. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- VSN International, Genstat for Windows 20th Edition, VSN International, Hemel Hempstead, UK. 2019. Available online: Genstat.co.uk. (accessed on 22 July 2022).
2018 | 2019 | |||||||
---|---|---|---|---|---|---|---|---|
SD1 (Mid-April) | SD2 (Late April) | SD3 (Mid-May) | SD4 (Late May) | SD1 (Mid-April) | SD2 (Late April) | SD3 (Mid-May) | SD4 (Late May) | |
TARC | 19.4 | 16.1 | 14.1 | 17.2 | 21.7 | 18.4 | 17.4 | 8.8 |
WWAI | 15.5 | 13.3 | 11.3 | 13.5 | 21.8 | 15.5 | 9.8 | 7.5 |
LFS/YAI | 18.5 | 15.2 | 12.9 | 16.4 | 22.9 | 16.0 | 10.4 | 7.4 |
Experiment | SD | Est (Plants m2) | D50% | D50%F | D10%P | D50%P | DTPM | VD (Days) | FD (Days) | PD (Days) |
---|---|---|---|---|---|---|---|---|---|---|
Emer | ||||||||||
TARC2018 | 1 (mid-April) | 44 | * | 94 | 100 | 111 | 169 | * | 49 | 58 |
2 (late April) | 41 | * | 95 | 98 | 108 | 160 | * | 39 | 53 | |
3 (mid-May) | 34 | * | 98 | 105 | 111 | 154 | * | 28 | 43 | |
4 (late May) | 46 | * | 91 | 101 | 105 | 148 | * | 25 | 43 | |
p value | 0.006 | * | <0.001 | <0.001 | <0.001 | <0.001 | * | <0.001 | <0.001 | |
l.s.d. (p < 0.05) | 6.586 | * | 1.956 | 3.034 | 1.545 | 2.801 | * | 2.679 | 2.854 | |
TARC2019 | 1 (mid-April) | 82 | 6 | 85 | 96 | 101 | 180 | 69 | 75 | 84 |
2 (late April) | 118 | 8 | 91 | 97 | 107 | 169 | 73 | 55 | 71 | |
3 (mid-May) | 118 | 10 | 95 | 100 | 110 | 157 | 74 | 48 | 56 | |
4 (late May) | 116 | 16 | 94 | 97 | 104 | 141 | 69 | 37 | 44 | |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.046 | <0.001 | <0.001 | ||
l.s.d. (p < 0.05) | 9.207 | 0.868 | 3.306 | ns | 3.555 | 1.79 | 4.224 | 6.553 | 5.917 | |
WWAI2018 | 1 (mid-April) | 126 | 4 | 129 | 148 | 152 | 195 | 125 | 50 | 43 |
2 (late April) | 117 | 11 | 124 | 136 | 140 | 180 | 112 | 41 | 40 | |
3 (mid-May) | 123 | 18 | 120 | 129 | 132 | 167 | 102 | 30 | 35 | |
4 (late May) | 109 | 18 | 112 | 119 | 122 | 156 | 94 | 26 | 34 | |
p value | 0.066 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
l.s.d. (p < 0.05) | ns | 0.224 | 1.743 | 0.792 | 0.584 | 0.365 | 1.887 | 1.553 | 0.755 | |
WWAI2019 | 1 (mid-April) | 133 | 7 | 127 | 156 | 160 | 192 | 102 | 61 | 36 |
2 (late April) | 138 | 10 | 127 | 144 | 146 | 179 | 115 | 33 | 36 | |
3 (mid-May) | 148 | 12 | 118 | 131 | 133 | 168 | 102 | 33 | 37 | |
4 (late May) | 139 | 14 | 110 | 120 | 122 | 156 | 91 | 28 | 37 | |
p value | 0.058 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | 0.01 | 0.07 | 0.473 | |
l.s.d. (p < 0.05) | ns | 0.293 | 6.405 | 1.143 | 0.841 | 0.938 | 10.06 | ns | ns | |
LFS2018 | 1 (mid-April) | 145 | 7 | 119 | 147 | 195 | 112 | 49 | 48 | |
2 (late April) | 148 | 14 | 117 | 140 | 181 | 103 | 37 | 41 | ||
3 (mid-May) | 135 | 14 | 112 | 132 | 164 | 98 | 30 | 33 | ||
4 (late May) | 135 | 11 | 104 | 120 | 152 | 93 | 27 | 32 | ||
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | ||
l.s.d. (p < 0.05) | 4.707 | 0.232 | 1.221 | 2.471 | 2.309 | 1.037 | 2.323 | 2.983 | ||
LFS2019 | 1 (mid-April) | 107 | 7 | 136 | 151 | 160 | 189 | 104 | 55 | 38 |
2 (late April) | 106 | 12 | 129 | 138 | 145 | 173 | 105 | 34 | 35 | |
3 (mid-May) | 119 | 12 | 117 | 126 | 132 | 161 | 99 | 26 | 35 | |
4 (late May) | 125 | 19 | 109 | 114 | 117 | 149 | 83 | 23 | 35 | |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | |
l.s.d. (p < 0.05) | 7.873 | 0.717 | 3.7 | 1.027 | 1.463 | 1.087 | 3.607 | 2.652 | 1.192 | |
YAI2018 | 1 (mid-April) | 142 | 7 | 104 | 120 | 129 | 189 | 97 | 64 | 60 |
2 (late April) | 136 | 14 | 104 | 120 | 135 | 173 | 91 | 46 | 38 | |
3 (mid-May) | 140 | 14 | 108 | 123 | 129 | 158 | 94 | 31 | 29 | |
4 (late May) | 132 | 11 | 104 | 115 | 121 | 148 | 93 | 25 | 27 | |
p value | 0.346 | <0.001 | 0.035 | <0.001 | <0.001 | <0.001 | 0.003 | <0.001 | <0.001 | |
l.s.d. (p < 0.05) | ns | 0.132 | 2.719 | 2.152 | 3.108 | 0.73 | 2.659 | 4.181 | 3.502 |
Experiment | SD | Branch Number | Bottom Pod Height (cm) | Top Pod Height (cm) | Plant Height (cm) | Dry Matter (t/ha) | Harvest Index |
---|---|---|---|---|---|---|---|
TARC2018 | 1 (mid-April) | 7 | 15.25 | 29.46 | * | 3.628 | 0.43 |
2 (late April) | 5 | 13.63 | 24.30 | * | 3.595 | 0.42 | |
3 (mid-May) | 6 | 12.83 | 23.25 | * | 2.767 | 0.35 | |
4 (late May) | 4 | 13.00 | 21.99 | * | 1.953 | 0.34 | |
p value | <0.001 | 0.016 | <0.001 | <0.001 | <0.001 | ||
l.s.d. (p < 0.05) | 1.307 | 1.473 | 2.283 | 0.428 | 0.026 | ||
TARC2019 | 1 (mid-April) | 7 | 12.99 | 31.75 | 32.00 | 2.758 | 0.28 |
2 (late April) | 5 | 15.10 | 28.68 | 30.86 | 2.511 | 0.29 | |
3 (mid-May) | 6 | 13.14 | 27.65 | 28.54 | 2.591 | 0.30 | |
4 (late May) | 5 | 11.15 | 21.66 | 22.14 | 1.883 | 0.27 | |
p value | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | 0.273 | |
l.s.d. (p < 0.05) | 0.881 | 1.433 | 2.561 | 2.430 | 0.445 | ns | |
WWAI2018 | 1 (mid-April) | 7 | 22.68 | 39.22 | 41.33 | 3.905 | 0.36 |
2 (late April) | 7 | 22.58 | 38.22 | 40.11 | 3.610 | 0.42 | |
3 (mid-May) | 6 | 21.65 | 31.71 | 35.08 | 3.411 | 0.46 | |
4 (late May) | 6 | 19.45 | 28.95 | 32.77 | 2.606 | 0.50 | |
p value | 0.51 | <0.001 | 0.003 | <0.001 | <0.001 | <0.001 | |
l.s.d. (p < 0.05) | ns | 1.026 | 3.976 | 2.343 | 0.228 | 0.022 | |
WWAI2019 | 1 (mid-April) | 10 | 24.98 | 38.25 | 31.92 | 3.247 | 0.06 |
2 (late April) | 8 | 22.87 | 35.19 | 35.29 | 2.955 | 0.18 | |
3 (mid-May) | 7 | 19.59 | 30.21 | 31.08 | 2.639 | 0.29 | |
4 (late May) | 6 | 16.87 | 26.25 | 28.37 | 2.037 | 0.34 | |
p value | 0.164 | 0.015 | <0.001 | 0.052 | <0.001 | <0.001 | |
l.s.d. (p < 0.05) | ns | 4.287 | 1.406 | 4.462 | 0.212 | 0.042 | |
LFS2018 | 1 (mid-April) | 12 | 18.41 | 48.58 | 40.62 | 7.562 | 0.21 |
2 (late April) | 10 | 18.33 | 39.52 | 37.29 | 6.789 | 0.31 | |
3 (mid-May) | 9 | 15.96 | 45.91 | 33.50 | 6.346 | 0.38 | |
4 (late May) | 8 | 15.17 | 41.62 | 31.92 | 5.424 | 0.44 | |
p value | 0.02 | 0.201 | 0.335 | 0.002 | <0.001 | <0.001 | |
l.s.d. (p < 0.05) | 2.119 | ns | ns | 3.064 | 0.534 | 0.029 | |
LFS2019 | 1 (mid-April) | 5 | 25.60 | 50.99 | 51.67 | 7.453 | 0.10 |
2 (late April) | 7 | 23.31 | 48.10 | 43.58 | 6.583 | 0.17 | |
3 (mid-May) | 6 | 17.29 | 34.52 | 32.25 | 4.953 | 0.25 | |
4 (late May) | 4 | 14.79 | 27.86 | 28.29 | 3.836 | 0.31 | |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
l.s.d. (p < 0.05) | 0.925 | 2.721 | 6.430 | 2.515 | 0.407 | 0.024 | |
YAI2018 | 1 (mid-April) | 11 | 13.27 | 30.61 | 32.64 | 4.051 | 0.18 |
2 (late April) | 11 | 12.26 | 28.72 | 28.42 | 3.617 | 0.30 | |
3 (mid-May) | 8 | 13.46 | 26.62 | 26.94 | 3.484 | 0.39 | |
4 (late May) | 7 | 13.77 | 24.35 | 25.89 | 3.086 | 0.39 | |
p value | <0.001 | 0.51 | 0.004 | <0.001 | 0.3 | <0.001 | |
l.s.d. (p < 0.05) | 1.128 | ns | 2.995 | 2.618 | ns | 0.029 |
Filled Pods | Unfilled Pods | Pod Number | Seeds Per Pod | Seeds Per Plant | 100 Grain Weight (g) | Grain Yield (t/ha) | Machine Grain Yield (t/ha) | ||
---|---|---|---|---|---|---|---|---|---|
TARC2018 | 1 (mid-April) | 9.7 | 1.8 | 11.5 | 1.2 | 11.4 | 4.35 | 1.609 | * |
2 (late April) | 6.3 | 1.2 | 7.5 | 1.2 | 7.3 | 4.19 | 1.541 | * | |
3 (mid-May) | 6.8 | 1.2 | 8.0 | 1.1 | 7.3 | 4.15 | 0.986 | * | |
4 (late May) | 4.5 | 0.6 | 5.1 | 1.1 | 4.5 | 4.13 | 0.678 | * | |
p value | <0.001 | <0.001 | <0.001 | 0.006 | <0.001 | 0.023 | <0.001 | ||
l.s.d. (p < 0.05) | 1.8 | 3.1 | 1.9 | 0.077 | 18.896 | 0.141 | 0.26 | ||
TARC2019 | 1 (mid-April) | 39.3 | 23.5 | 62.6 | 0.7 | 47.2 | 3.93 | 0.789 | * |
2 (late April) | 23.3 | 6.8 | 30.0 | 1.0 | 28.9 | 3.95 | 0.730 | * | |
3 (mid-May) | 28.7 | 8.6 | 37.3 | 0.9 | 34.9 | 3.89 | 0.831 | * | |
4 (late May) | 19.7 | 9.3 | 29.0 | 0.7 | 22.2 | 3.84 | 0.544 | * | |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.372 | 0.014 | ||
l.s.d. (p < 0.05) | 6.244 | 3.345 | 8.441 | 0.088 | 8.799 | ns | 0.185 | ||
WWAI2018 | 1 (mid-April) | 25.3 | 9.8 | 35.1 | 1.4 | 35.4 | 4.59 | 1.380 | 1.200 |
2 (late April) | 29.0 | 6.1 | 35.0 | 1.4 | 39.9 | 4.58 | 1.506 | 1.310 | |
3 (mid-May) | 25.3 | 3.7 | 28.9 | 1.3 | 32.2 | 4.52 | 1.553 | 1.270 | |
4 (late May) | 27.5 | 4.8 | 32.3 | 1.2 | 33.3 | 4.60 | 1.310 | 0.910 | |
p value | 0.747 | 0.011 | 0.209 | <0.001 | 0.528 | 0.376 | 0.025 | <0.001 | |
l.s.d. (p < 0.05) | ns | 3.022 | ns | 0.068 | ns | ns | 0.149 | 0.072 | |
WWAI2019 | 1 (mid-April) | 11.7 | 1.9 | 13.6 | 0.8 | 12.0 | 2.58 | 0.187 | 0.220 |
2 (late April) | 15.8 | 2.2 | 18.0 | 1.1 | 18.8 | 3.11 | 0.519 | 0.541 | |
3 (mid-May) | 15.5 | 3.1 | 18.5 | 1.1 | 19.2 | 3.41 | 0.763 | 0.560 | |
4 (late May) | 18.9 | 1.8 | 20.7 | 1.0 | 19.9 | 3.52 | 0.696 | 0.384 | |
p value | 0.134 | 0.269 | 0.085 | 0.053 | 0.119 | 0.008 | <0.001 | 0.002 | |
l.s.d. (p < 0.05) | ns | ns | ns | 0.172 | ns | 0.324 | 0.064 | 0.109 | |
LFS2018 | 1 (mid-April) | 33.8 | 14.8 | 48.6 | 1.2 | 41.1 | 4.71 | 1.587 | 1.363 |
2 (late April) | 29.3 | 10.2 | 39.5 | 1.3 | 37.9 | 4.70 | 2.080 | 1.853 | |
3 (mid-May) | 34.5 | 11.4 | 45.9 | 1.4 | 48.5 | 4.45 | 2.433 | 2.158 | |
4 (late May) | 34.4 | 7.3 | 41.6 | 1.4 | 48.6 | 4.31 | 2.356 | 2.033 | |
p value | 0.424 | 0.004 | 0.335 | <0.001 | 0.641 | 0.034 | <0.001 | <0.001 | |
l.s.d. (p < 0.05) | ns | 3.204 | ns | 0.083 | ns | 0.254 | 0.207 | 0.202 | |
LFS2019 | 1 (mid-April) | 21.8 | 2.7 | 24.5 | 1.0 | 25.3 | 3.24 | 0.716 | 0.649 |
2 (late April) | 32.4 | 3.3 | 35.7 | 1.1 | 39.5 | 3.35 | 1.171 | 0.967 | |
3 (mid-May) | 31.8 | 3.5 | 35.3 | 1.1 | 38.2 | 3.40 | 1.255 | 1.058 | |
4 (late May) | 25.0 | 4.1 | 29.1 | 1.0 | 29.5 | 3.60 | 1.168 | 0.875 | |
p value | 0.021 | 0.197 | 0.116 | 0.869 | 0.159 | 0.216 | <0.001 | 0.006 | |
l.s.d. (p < 0.05) | 7.015 | ns | ns | ns | ns | ns | 0.153 | 0.173 | |
YAI2018 | 1 (mid-April) | 21.2 | 11.2 | 32.1 | 0.6 | 12.2 | 3.86 | 0.761 | 0.492 |
2 (late April) | 25.9 | 9.2 | 35.1 | 0.6 | 15.2 | 4.06 | 1.119 | 0.631 | |
3 (mid-May) | 29.7 | 6.6 | 36.3 | 0.6 | 18.8 | 4.11 | 1.399 | 0.734 | |
4 (late May) | 27.2 | 5.8 | 33.1 | 0.7 | 17.7 | 3.91 | 1.168 | 0.683 | |
p value | 0.086 | 0.026 | 0.384 | 0.013 | 0.027 | 0.032 | <0.001 | 0.252 | |
l.s.d. (p < 0.05) | ns | 3.621 | ns | 0.046 | 3.993 | 0.173 | 0.231 | ns |
Variety | Maturity Type | Seed Classification | Herbicide Tolerance (Imidazolinone) |
---|---|---|---|
PBA Ace | Mid | Medium red | No |
PBA Blitz | Early | Medium red | No |
PBA Bolt | Early/Mid | Medium red | No |
PBA Hallmark XT | Mid/Late | Medium red | Yes |
PBA Hurricane XT | Mid | Small red | Yes |
Nipper | Mid | Small red | No |
PBA Jumbo2 | Mid | Large red | No |
PBA Greenfield | Mid/Late | Large green | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maphosa, L.; Preston, A.; Richards, M.F. Effect of Sowing Date and Environment on Phenology, Growth and Yield of Lentil (Lens culinaris Medikus.) Genotypes. Plants 2023, 12, 474. https://doi.org/10.3390/plants12030474
Maphosa L, Preston A, Richards MF. Effect of Sowing Date and Environment on Phenology, Growth and Yield of Lentil (Lens culinaris Medikus.) Genotypes. Plants. 2023; 12(3):474. https://doi.org/10.3390/plants12030474
Chicago/Turabian StyleMaphosa, Lancelot, Aaron Preston, and Mark F. Richards. 2023. "Effect of Sowing Date and Environment on Phenology, Growth and Yield of Lentil (Lens culinaris Medikus.) Genotypes" Plants 12, no. 3: 474. https://doi.org/10.3390/plants12030474
APA StyleMaphosa, L., Preston, A., & Richards, M. F. (2023). Effect of Sowing Date and Environment on Phenology, Growth and Yield of Lentil (Lens culinaris Medikus.) Genotypes. Plants, 12(3), 474. https://doi.org/10.3390/plants12030474