
Citation: Hasan, U.; Jia, K.; Wang, L.;

Wang, C.; Shen, Z.; Yu, W.; Sun, Y.;

Jiang, H.; Zhang, Z.; Guo, J.; et al.

Retrieval of Leaf Chlorophyll

Contents (LCCs) in Litchi Based on

Fractional Order Derivatives and

VCPA-GA-ML Algorithms. Plants

2023, 12, 501. https://doi.org/

10.3390/plants12030501

Academic Editors: Qiang Cao and

Syed Tahir Ata-Ul-Karim

Received: 24 October 2022

Revised: 5 December 2022

Accepted: 19 December 2022

Published: 21 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Retrieval of Leaf Chlorophyll Contents (LCCs) in Litchi Based
on Fractional Order Derivatives and VCPA-GA-ML Algorithms
Umut Hasan 1,2,† , Kai Jia 3,† , Li Wang 3 , Chongyang Wang 3 , Ziqi Shen 4, Wenjie Yu 5, Yishan Sun 3,
Hao Jiang 3 , Zhicong Zhang 2, Jinfeng Guo 2, Jingzhe Wang 6,7 and Dan Li 3,*

1 Institute of Resources and Ecology, Yili Normal University, Yining 835000, China
2 College of Biological and Geographical Sciences, Yili Normal University, Yining 835000, China
3 Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System,

Guangdong Open Laboratory of Geospatial Information Technology and Application, Research Center of
Guangdong Province for Engineering Technology Application of Remote Sensing Big Data,
Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China

4 Guangzhou Climate and Agrometeorology Center, Guangzhou 510070, China
5 Maoming Meteorological Observatory of Guangdong Province, Maoming 525000, China
6 School of Artificial Intelligence, Shenzhen Polytechnic, Shenzhen 518055, China
7 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences

and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
* Correspondence: lidan@gdas.ac.cn
† These authors contributed equally to this work.

Abstract: The accurate estimation of leaf chlorophyll content (LCC) is a significant foundation in
assessing litchi photosynthetic activity and possible nutrient status. Hyperspectral remote sensing
data have been widely used in agricultural quantitative monitoring research for the non-destructive
assessment of LCC. Variable selection approaches are crucial for analyzing high-dimensional datasets
due to the high danger of overfitting, time-intensiveness, or substantial computational requirements.
In this study, the performance of five machine learning regression algorithms (MLRAs) was investi-
gated based on the hyperspectral fractional order derivative (FOD) reflection of 298 leaves together
with the variable combination population analysis (VCPA)-genetic algorithm (GA) hybrid strategy
in estimating the LCC of Litchi. The results showed that the correlation coefficient (r) between the
0.8-order derivative spectrum and LCC had the highest correlation coefficients (r = 0.9179, p < 0.01).
The VCPA-GA hybrid strategy fully utilizes VCPA and GA while compensating for their limita-
tions based on a large number of variables. Moreover, the model was developed using the selected
14 sensitive bands from 0.8-order hyperspectral reflectance data with the lowest root mean square
error in prediction (RMSEP = 5.04 µg·cm−2). Compared with the five MLRAs, validation results
confirmed that the ridge regression (RR) algorithm derived from the 0.2 order was the most effec-
tive for estimating the LCC with the coefficient of determination (R2 = 0.88), mean absolute error
(MAE = 3.40 µg·cm−2), root mean square error (RMSE = 4.23 µg·cm−2), and ratio of performance to
inter-quartile distance (RPIQ = 3.59). This study indicates that a hybrid variable selection strategy
(VCPA-GA) and MLRAs are very effective in retrieving the LCC through hyperspectral reflectance at
the leaf scale. The proposed methods could further provide some scientific basis for the hyperspec-
tral remote sensing band setting of different platforms, such as an unmanned aerial vehicle (UAV)
and satellite.

Keywords: litchi; leaf chlorophyll content; variable selection; machine learning

1. Introduction

Litchi, as a typical subtropical evergreen fruit tree, is one of the important economic
pillars of farmers in southern China, such as Guangdong province. The timely and rapid
monitoring of the growth and nutrition of this crop is conducive to precise field manage-
ment [1]. Chlorophyll absorbs sunlight and uses its energy to synthesize carbohydrates
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from CO2 and H2O. It plays an important role in vegetation stress, photosynthetic capacity,
and physiological status and thus affects the primary production and crop harvest [2–5].
In addition, the leaf chlorophyll content (LCC) is closely related to the nitrogen (N) con-
tent [6,7] and can be used as a close proxy for the N concentration at the leaf level [8,9].
The nutritional status of crops is also closely related with the chlorophyll. The laboratory
chemical measurement of LCC is destructive and relatively time- and labor-consuming. It
is difficult to meet the practical demands of precise crop management in large or regional
fields [10]. Thus, it is crucial to create quick, non-destructive, and efficient techniques that
can deliver precise LCC estimations.

With the advancement of remote sensing techniques, hyperspectral remote sensing
data, with their abundance of data, continuity, and rich hidden characteristics, have been
widely used to non-destructively and accurately monitor crop chlorophyll contents [9,11].
However, there is a significant chance of over-fitting when modeling spectral data with
a large number of wavelength variables and relatively few samples, which will lead to
subpar or ineffective prediction results of multivariable estimation models. Therefore,
efficient variable (feature) selection techniques have taken center stage in the analysis of
hyperspectral remote sensing data. By alleviating the dimensionality curse, variable selec-
tion can yield faster and more cost-effective variables, improve the predictive performance
of the chosen variables, and make it easier to understand and justify the models that are
generated [12]. Yun et al. [13] confirmed the importance and necessity of variable selection
in complex analysis systems. In recent decades, more and more experts and scholars have
invested in relevant research and proposed many variable selection algorithms. These vari-
able selection algorithms can be summarized into four types: (1) wavelength point-based
selection algorithm, which is characterized by taking each wavelength variable as a unit
and studying it based on four factors: different variable initialization, modeling methods,
evaluation indicators, and selection strategies, and finally selecting the best combination
of variables, such as the successive projections algorithm (SPA) [14], Monte Carlo uninfor-
mative variables elimination (MC-UVE) [15], competitive adaptive reweighted sampling
(CARS) [16], and variable combination population analysis (VCPA) [17]; (2) wavelength
range selection algorithm; its characteristic is that each wavelength range is taken as a unit,
and then, the best combination of interval variables is selected according to different search
strategies. Each interval is composed of several continuous variables, which is consistent
with the continuous band characteristics of vibration and rotation spectra, making the
modeling more interpretable, such as interval partial least-squares (iPLS) [18], interval
random frog (iRF) [19], fisher optimal subspace shrinkage (FOSS) [20], and the interval
variable iterative space shrinkage approach (iVISSA) [21]; (3) hybrid variable selection
algorithm; its characteristic is to combine two or three existing algorithms and optimize
the algorithm by combining the advantages of the algorithm, such as CARS-SPA [22] and
iPLS-SPA [23]; (4) improved variable selection algorithm, which is based on the method
of improving at least one of the four factors of the variable initialization, model method,
evaluation index, and selection strategy, such as stability competitive adaptive reweighted
sampling (SCARS) [24] and variable permutation population analysis (VPPA) [25].

Leaf reflectance is an efficient method for determining the LCC [26–28] since an
increase or reduction in LCC may produce more or less absorption in blue and red wave-
lengths, which ultimately alters the spectral reflectance of leaves. In recent years, hyper-
spectral reflectance data have been used in some studies to estimate LCC at various scales
based on the reaction of leaf reflectance to LCC (Table 1). The current research on crop
LCC is essentially concerned with analyzing the difference in LCC inversion from two
levels of the spatial scale effect and wide and narrow band spectral resolution. The remote
sensing data acquisition platforms are constantly updated from aerospace and aviation to
low altitude; LCC inversion models are continuously improved from traditional empirical
models, such as linear regression (LR), to physical models, such as PROSPECT, and then
to hybrid inversion models by using machine learning algorithms (MLAs). However, in
the studies mentioned above, hyperspectral data only use original spectral reflectance or
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mathematical transformation forms, such as first and second derivatives, and ignore the
potential information contained between them, which may result in the loss of crucial
information and a decline in model accuracy. Zhang et al. [29] analyzed the correlation
between hyperspectral reflectance through fractional order derivatives (FODs) and heavy
metal content in maize leaves and found that FODs can expand the selection space of
sensitive bands. Moreover, few studies have considered the potential interaction impact of
variables through random combinations, while the majority of studies use a single variable
selection approach.

Hence, to address the above difficulties, this study proposed machine learning regres-
sion algorithms (MLRAs) using hyperspectral reflectance data for litchi LCC estimation.
The following are the main objectives of this study: (1) to explore the impact of FODs on
litchi leaf spectra and comparatively analyze the correlation between the litchi LCC and
FOD spectra based on Pearson’s correlation; (2) to explore the hybrid variable selection
algorithm, VCPA coupled with the genetic algorithm (GA), and its potential application in
retrieving the LCC of litchi; (3) to develop MLRAs and evaluate the accuracy of the optimal
litchi LCC estimation model based on FOD-VCPA-GA.



Plants 2023, 12, 501 4 of 18

Table 1. Short overview of LCC monitoring through remote sensing.

Data Source Name of the Sensor Type of Spectra or
Image Data Methods Study Area Object of Study Regression Statistics Research Contents Reference Year of

References

Airborne
Compact Airborne

Spectrographic
Imager (CASI)

Hyperspectral
remote sensing
imagery (HIS)

Lookup-table
(LUT)-based inversion

Ten black spruce
stands near

Sudbury, Ontario
Ten black spruce R2 = 0.47,

RMSE = 4.34 µg/cm2

Estimated LCC from the
CASI imagery by

combining the
geometrical-optical

model 4-Scale and the
modified leaf optical
model PROSPECT

[30] 2008

Ground-based ASD Field-
Spec spectrometer

Hyperspectral
remote sensing
reflectance data

Narrowband vegetation
indices (VIs)

The Naeba
Mountains, Japan Beech leaves

CI (R2 =0.73,
WAIC = 2241.5,

RPD = 1.76)
D2 (R2 = 0.71,
WAIC = 582.4,

RPD = 1.94)

Evaluated the
performances of

hyperspectral indices for
both leaf types within

beech canopies,
developed a new index
for estimating LCC in

both sunlit and
sun-shaded areas.

[5] 2017

Ground-based Gaia hyperspectral
imaging system HSI Linear

extrapolation method

The experimental
greenhouse of China
Agricultural University

Potato R2 = 0.8682

Inverted the LCC of
potato by using the
selected optimal red

edge position

[31] 2018

Ground-based Hyperspectral lidar
(HSL) system HSL

PROSPECT-4 model,
support vector

regression (SVR)

Junchuan County,
Suizhou, China Rice PROSPECT-4 model

inversion (R2 = 0.55)

Investigated the
possibility of estimating

foliar Chl through the
PROSPECT-4 model

using the HSL system.

[32] 2018

Unmanned
Aerial

Vehicle (UAV)

Parrot sequoia
multi-spectral sensor

Multi-spectral
images (MSIs)

Machine learning
regression

algorithms (MLRAs)

ICAR research
complex for NEH

region at
Umiam, Meghalaya

Maize R2 = 0.904,
RMSE = 0.057 mg/gm

Estimated the LCC of a
standing maize plant

from multi-spectral UAV
images by using machine

learning algorithms.

[33] 2019

UAV Cubert S185
hyperspectral sensor HSI

LR (linear regression),
SVR (support

vector regression)

Luozhuang village,
Zhangziying Town,

Daxing District,
Beijing, China

Soybean and maize

MCARI1 for soybean
(MAE = 1.617)

MCARI/OSAVI for
maize (MAE = 2.422);

Retrieved canopy SPAD
values of maize and

soybean by using the 16
VIs at different

observation angles and
their combinations.

[34] 2020



Plants 2023, 12, 501 5 of 18

Table 1. Cont.

Data Source Name of the Sensor Type of Spectra or
Image Data Methods Study Area Object of Study Regression Statistics Research Contents Reference Year of

References

Satellite
Landsat-8

Operational Land
Imager (OLI)

MSI

VIs (vegetation indices),
MLRAs (machine

learning regression
algorithms), LUT

(lookup-table)-based
inversion, and hybrid
regression approaches

Shunyi District,
Beijing, China Winter wheat

MTVI2
(RMSE = 5.99 µg/cm2,

RRMSE = 10.49%)
GPR

(RMSE = 5.50 µg/cm2,
RRMSE = 9.62%)

LUT
(RMSE = 8.08 µg/cm2,

RRMSE = 14.14%)
AL-GPR

(RMSE = 12.43 µg/cm2,
RRMSE = 21.77%)

Evaluated capabilities
and potentials of

Landsat-8 (OLI) imagery
using four different

retrieval methods for
LCC modeling

[35] 2020

UAV Cubert S185
hyperspectral sensor HSI

MLR (multi-variable
linear regression), RF

(random forest), BPNN
(backpropagation neural

network), and SVM
(support vector machine)

Yucheng
Comprehensive

Experiment Station
(YCES) of the

Chinese Academy
of Sciences

Maize and wheat

SVM for maize (R2 = 0.83,
RMSE = 5.80,
MRE = 0.12);

SVM for wheat (R2 = 0.78,
RMSE = 2.80,
MRE = 0.11)

Examined the effects of
spectral information and

spatial scale of
unmanned drone images,
as well as phenological

types and phenology, on
LCC estimation of maize

and wheat.

[36] 2020

Satellite Sentinel-2 MSI PROSPECT-5 leaf
optical model

The Borden Forest
Research Station

Mixed
temperate forest

R2 = 0.849,
RMSE = 0.304 µg/cm2

Estimated LCC from
Sentinel-2 (MSI) data via

a physically based,
two-step

inversion approach

[37] 2021

UAV Pika L hyperspectral
imaging system HSI

Narrowband vegetation
indices (VIs)

Multiple linear
regression (MLR)

A commercial wine
estate at the eastern

base of Helan
Mountain in Ningxia

Province, China

Wine grapes (D735 − D573)/
(D735 + D573) (R2 = 0.50)

Investigated the SPAD
changes of grape leaves

at different growth stages,
and explored a new

method for predicting
these parameters using
hyperspectral imaging.

[38] 2021

Ground-based ASD Field-Spec
spectrometer

Hyperspectral
reflectance data

VIs,
PROSPECT,
PLSR, SVR

Changchun, China
Different plant
species (trees,

bushes, and lianas)

Modified difference ratio
index (MDRI), R2 = 0.92,

RMSE = 5.65 µg/cm2

Developed a new
algorithm for estimating

the LCC of different plant
species by combining SIs

(spectral indices) with
multi-angular

hyperspectral reflectance
of leaves.

[10] 2022



Plants 2023, 12, 501 6 of 18

2. Results
2.1. Correlation Analysis between LCC and FOD Spectra

Figure 1a displays the leaf spectral curves of litchi with various LCCs. As shown in
this figure, the reflectance curves of litchi leaves with different LCCs included one reflection
peak (about 550 nm) and two absorption valleys (450 nm and 670 nm) in the 400–780 nm
(visible) range. Chlorophyll, which has a strong absorption of blue and red light and a high
reflection of green light, is primarily responsible for this property [39]. The leaf reflectance
gradually dropped in the vicinity of 550 nm as the LCC increased.
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Figure 1. Leaf spectral curves of litchi with different LCCs (a); correlation coefficients between LCC
and hyperspectral reflectance between 400 and 900 nm (0–2 order, 0.2 per step) (b). 0 order refers to
the original reflectance, the dash line refers to the cutting line of the different spectral regions.

In the range of 670–750 nm, there was a reflection “steep slope”, and as the LCC
increased, the reflection curve of litchi leaves shifted to the long wave direction. After
750 nm, there were no overt variations in the leaf reflectance of litchi with various LCCs.
At 1450 nm and 1950 nm, there were two absorption valleys that were mostly brought on
by the effect of leaf water content. The spectral features of litchi leaves described above
were comparable to those of green plant leaves.

The linearity of the link between two variables can be confirmed via correlation
analysis. We can determine the existence of a linear relationship between two variables,
its strength, and whether it is positive or negative by looking at the correlation coefficient
(r). In this study, Pearson’s correlation coefficients for LCC and FOD spectra (0–2 order)
were calculated and tested at the 0.01 significance level (r > 0.1465). A thorough outcome
was plotted in Figure 1b. The position of the band with a positive and negative association
with LCC fluctuated with the continual increase in order, and it was primarily dispersed in
the visible near-infrared (VIS-NIR) range (400–900 nm). The reflectance in the 400–497 nm,
665–679 nm, and 756–900 nm regions was positively correlated with the LCC for the original
spectral (0 order) data, while the reflectance in the 498–664 nm and 680–755 nm ranges
was negatively correlated. The maximum absolute value of the correlation coefficient was
shown at 709 nm (r = −0.8542).

Table 2 displays the statistics for the number of bands that passed the 0.01 significance
test (0–2 order). As shown in Table 2, the overall number of bands passing the 0.01 sig-
nificance test and the number of bands positively connected to the LCC were reduced as
the order increased, while the number of bands negatively related to the LCC essentially
increased first and then decreased. At 756 nm of the 0.8 order, the correlation coefficient
reached its greatest value (r = 0.9179), followed by 720 nm of the 1.8 order (r = 0.9020) and
723 nm of the 1.6 order (r = 0.9018). These bands all appeared in the red-edge region, which
is an important indicator area for describing the state of plant pigments. In conclusion, the
results of correlation analysis showed that the correlation between FOD spectra and the
LCC of litchi was greater than the commonly used first- and second-order derivatives, and
it is worthwhile to further investigate its potential for estimating LCC.
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Table 2. Statistical table of the number of spectral bands passing the 0.01 significance test (0–2 order).

Orders Tb Pb Nb rmax Corresponding Bands/nm

0 1946 1720 226 0.8542 709
0.2 1953 1756 197 0.8722 704
0.4 1778 1609 169 0.8835 698
0.6 1631 1426 205 0.8884 694
0.8 1535 1235 300 0.9179 756
1 1340 931 409 0.8929 756

1.2 1264 515 649 0.9015 742
1.4 1086 406 680 0.8994 726
1.6 963 375 588 0.9018 723
1.8 701 290 411 0.9020 720
2 429 197 232 0.9001 718

Tb, Pb, and Nb refer to the number of total, positive, and negative correlation bands that passed the 0.01 signifi-
cance test, respectively (400–2400 nm); rmax refers to the maximum absolute value of correlation coefficient.

2.2. Performance of VCPA-GA Hybrid Strategy for Variable Selection

A VCPA-GA hybrid strategy was proposed to further optimize and extract sensitive
band information from the spectra of 400–900 nm. Figure 2 shows the distribution of
sensitive bands screened using the VCPA-GA hybrid strategy. Variable selection is a critical
and necessary step for the LCC estimation models, as illustrated in Figure 2, where the
variable regions selected using VCPA-GA are similar but the number of sensitive bands
selected has been greatly reduced, with the majority of them being concentrated around
590 nm, 760 nm, and 840 nm. The spectral reflectance near 590 nm and 760 nm was
strongly related to the LCC, which was basically consistent with the results of the Pearson
correlation analysis.
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Dots of the same color respectively represent the characteristic variables screened out under different
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Table 3 shows the statistical results of the VCPA-GA hybrid strategy based on the
0–2-order dataset, including the number of selected variables (Nvar), the number of optimal
PLS latent variables (Nlvs), the root mean square error in calibration (RMSEC),the root mean
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square error in cross validation (RMSECV), and the root mean square error in prediction
(RMSEP). As seen in Table 3, the number of chosen sensitive bands did not exhibit any clear
regularity as the order increased. The 0.2 derivative was the most frequently chosen order
among them (Nvar = 54), while the original spectrum had the fewest bands (Nvar = 5). The
prediction performance of the 0.8 order (RMSEP = 5.04) was better than that of the other
orders, followed by that of the 1.4 order (RMSEP = 5.24) and 1.8 order (RMSEP = 5.25).
FOD spectrum has some potential in determining the LCC of litchi. The variable selection
is a crucial and necessary step in FOD spectral data mining. VCPA-GA hybrid strategy
may fully exploit the benefits of the VCPA and GA algorithms and comprises a great
enhancement to the FOD spectral variable selection.

Table 3. Results of VCPA-GA hybrid strategy based on the hyperspectral datasets (0–2 order).

Orders Nvar Nlvs RMSEC RMSECV RMSEP

0 5 9 3.41 3.61 5.74
0.2 54 10 3.35 3.59 5.42
0.4 16 9 3.38 3.58 5.54
0.6 18 10 3.33 3.55 5.41
0.8 14 10 3.16 3.33 5.04
1 27 8 3.05 3.34 5.61

1.2 19 8 2.81 3.04 5.51
1.4 11 9 2.82 3.14 5.24
1.6 32 9 2.59 3.12 5.86
1.8 15 5 2.82 3.15 5.25
2 43 5 2.59 3.02 5.39

Nvar and NIvs refer to the number of selected variables and the number of optimal PLS latent variables. RMSEC,
RMSECV, and RMSEP refer to the root mean square error in calibration, the root mean square error in cross
validation, and root mean square error in prediction.

2.3. MLRAs for Estimating the LCC of Litchi

After selecting the best sensitive band combination of the 0–2-order derivative through
the VCPA-GA hybrid strategy, five machine learning regression models were constructed for
estimating the LCC of litchi. The training, testing, and validation results of MLRAs are shown in
Table 4. For the training set, the XGBoost model performed best for all datasets of the 0–2 order,
with R2 reaching 0.99, followed by the RF (R2: 0.85~0.92) and SVR (R2: 0.83~0.88) models.
Among them, the training effect for the 0.2-order derivative data with the XGBoost model was
the best with the lowest MAE and RMSE value (MAE = 1.21 µg·cm−2, RMSE = 1.70 µg·cm−2),
followed by that of the 0.4 order with XGBoost (MAE = 2.06 µg·cm−2, RMSE = 2.75 µg·cm−2)
and the 1.6 order with RF (MAE = 2.42 µg·cm−2, RMSE = 3.19 µg·cm−2). There was no
glaring rule discovered for the testing set. The MAE values of SVR and GPR were typically
high in all models of 0–2-order spectra datasets, and the testing effect of the RR model of
the 1.8 order was the best (R2 = 0.85, MAE = 3.59 µg·cm−2, RMSE = 4.67 µg·cm−2).

Table 4. Results of accuracy indicators for all MLRAs based on the hyperspectral datasets (0–2 order),
the units of MAEs and RMSEs are µg·cm−2.

Orders Algorithm Training Set Testing Set Validation Set RPIQ
R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

0

RR 0.82 3.56 4.61 0.82 4.08 5.10 0.83 3.94 5.04 2.77
RF 0.85 3.31 4.30 0.66 5.45 6.94 0.66 6.02 7.20 1.67

XGBoost 0.99 0.53 0.71 0.67 5.46 6.82 0.72 5.34 6.51 1.99
SVR 0.85 3.14 4.26 0.84 3.72 4.76 0.84 3.93 4.92 3.07
GPR 0.85 3.29 4.30 0.83 3.79 4.87 0.85 3.88 4.84 3.13
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Table 4. Cont.

Orders Algorithm Training Set Testing Set Validation Set RPIQ
R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

0.2

RR 0.86 3.17 4.06 0.84 3.75 4.71 0.88 3.40 4.23 3.59
RF 0.91 2.51 3.29 0.77 4.30 5.74 0.80 4.28 5.47 2.57

XGBoost 0.98 1.21 1.70 0.83 3.84 4.96 0.85 3.90 4.84 2.67
SVR 0.88 2.69 4.74 0.84 3.51 4.74 0.81 3.94 5.37 3.09
GPR 0.87 3.03 3.89 0.85 3.67 4.62 0.88 3.55 4.29 3.86

0.4

RR 0.84 3.27 4.43 0.84 3.71 4.83 0.82 4.11 5.21 2.88
RF 0.90 2.64 3.48 0.73 4.74 6.17 0.71 5.46 6.60 1.99

XGBoost 0.94 2.06 2.75 0.76 4.38 5.86 0.73 5.18 6.37 2.47
SVR 0.86 2.95 4.15 0.82 3.82 5.08 0.21 5.40 10.92 1.29
GPR 0.86 3.18 4.09 0.86 3.51 4.43 0.84 3.99 4.88 2.89

0.6

RR 0.87 3.06 4.01 0.85 3.72 4.68 0.86 3.75 4.65 3.44
RF 0.90 2.69 3.54 0.81 2.69 3.54 0.84 3.91 4.95 3.08

XGBoost 0.91 2.56 3.36 0.80 4.03 5.27 0.84 3.98 4.87 3.13
SVR 0.86 2.87 4.06 0.84 2.53 4.75 0.83 3.96 5.14 3.42
GPR 0.88 2.99 3.83 0.85 3.70 4.68 0.87 3.75 4.52 3.89

0.8

RR 0.86 3.10 4.04 0.84 3.81 4.74 0.86 3.76 4.68 3.38
RF 0.91 2.55 3.27 0.81 4.17 5.20 0.85 3.78 4.84 2.81

XGBoost 0.92 2.41 3.10 0.80 4.21 5.36 0.82 4.09 5.27 2.41
SVR 0.86 3.03 4.11 0.82 3.91 5.05 0.86 3.55 4.58 3.36
GPR 0.87 2.98 3.88 0.85 3.74 4.69 0.85 3.86 4.77 3.23

1

RR 0.89 3.02 3.71 0.85 3.68 4.67 0.86 3.60 4.63 3.34
RF 0.89 2.78 3.60 0.84 3.63 4.72 0.85 3.79 4.75 2.48

XGBoost 0.91 2.53 3.25 0.84 3.82 4.71 0.84 3.91 4.98 2.59
SVR 0.84 3.23 4.45 0.82 3.95 5.04 0.83 3.90 5.06 3.05
GPR 0.89 3.02 3.71 0.85 3.68 4.67 0.86 3.60 4.63 3.34

1.2

RR 0.87 3.10 4.00 0.85 3.77 4.63 0.83 4.03 5.10 2.86
RF 0.90 2.58 3.49 0.83 3.73 4.91 0.83 3.78 5.10 2.50

XGBoost 0.93 2.27 2.96 0.83 3.72 4.99 0.82 3.96 5.18 2.82
SVR 0.88 2.58 3.84 0.85 3.61 4.68 0.84 4.06 4.96 2.94
GPR 0.87 3.09 3.99 0.85 3.77 4.64 0.83 4.05 5.13 2.85

1.4

RR 0.84 3.32 4.38 0.84 3.72 4.79 0.82 4.15 5.20 2.99
RF 0.88 2.90 3.78 0.81 3.76 5.19 0.81 4.24 5.37 2.62

XGBoost 0.89 2.67 3.63 0.79 4.15 5.46 0.78 4.69 5.74 2.58
SVR 0.86 2.72 4.09 0.81 4.09 5.24 0.82 4.27 5.29 2.88
GPR 0.84 3.32 4.26 0.84 3.68 4.76 0.82 4.16 5.21 2.92

1.6

RR 0.86 3.11 4.07 0.85 3.74 4.59 0.86 3.56 4.68 2.98
RF 0.92 2.42 3.19 0.81 3.82 5.24 0.85 3.52 4.75 2.79

XGBoost 0.99 0.88 1.24 0.80 3.80 5.35 0.82 4.04 5.28 2.71
SVR 0.86 2.94 4.16 0.84 3.70 4.77 0.83 3.96 5.09 2.85
GPR 0.84 3.31 4.35 0.85 3.70 4.66 0.85 3.67 4.75 3.06

1.8

RR 0.84 3.41 4.37 0.85 3.59 4.67 0.84 3.78 4.96 2.89
RF 0.91 2.47 3.25 0.81 3.76 5.14 0.86 3.42 4.63 2.80

XGBoost 0.97 1.36 1.80 0.81 3.81 5.14 0.84 3.78 4.95 2.88
SVR 0.83 3.27 4.47 0.83 3.74 4.95 0.81 3.97 5.30 2.70
GPR 0.83 3.47 4.46 0.84 3.68 4.78 0.84 3.73 4.91 2.91

2.0

RR 0.86 3.21 4.09 0.83 3.93 4.87 0.82 3.93 4.87 2.66
RF 0.87 3.06 3.89 0.82 3.83 5.10 0.84 3.71 4.94 2.67

XGBoost 0.93 2.23 2.86 0.81 3.87 5.24 0.85 3.34 4.73 2.69
SVR 0.87 2.60 3.88 0.81 3.99 5.22 0.77 4.59 5.93 2.26
GPR 0.85 3.31 4.27 0.84 3.76 4.83 0.83 3.97 5.10 2.75

The validation of the MLRAs for predicting the LCC was conducted using an
independent dataset (n = 47). The validation performance varied between orders and
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models, just as the training and testing sets did, and it remained largely steady at the
0.2 order in five MLRAs in terms of R2, MAE, RMSE, and RPIQ. The rankings were as
follows: RR (R2 = 0.88, MAE = 3.40 µg·cm−2, RMSE = 4.23 µg·cm−2, RPIQ = 3.59) > GPR
(R2 = 0.88, MAE = 3.55 µg·cm−2, RMSE = 4.29 µg·cm−2, RPIQ = 3.86) > XGBoost (R2 = 0.85,
MAE = 3.90 µg·cm−2, RMSE = 4.84 µg·cm−2, RPIQ = 2.67) > SVR (R2 = 0.81, MAE =
3.94 µg·cm−2, RMSE = 5.37 µg·cm−2, RPIQ = 3.09) > RF (R2 = 0.80, MAE = 4.28 µg·cm−2,
RMSE = 5.47 µg·cm−2, RPIQ = 2.57). Our results indicated that the accuracy of the LCC
assessment of litchi was somewhat enhanced by the FOD spectrum and MLRAs, and
especially RR, GPR, and XGBoost, can predict the LCC of litchi well in the two study areas.

The scatterplots of measured and estimated LCCs based on the best MLRA at 0–2 orders are
illustrated in Figure 3a–k. The figure illustrates that the sample data for the best estimation
models at the 0–2 order were almost evenly distributed near the 1:1 line, indicating no
apparent overestimation or underestimation. The models based on the 0-GPR, 0.2-RR,
0.6-GPR, 0.8-RR, and 1-RR all had RPIQ values above 3.0, further demonstrating the
feasibility and effectiveness of using the FOD spectra to predict the LCC of litchi.

Plants 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

SVR 0.87 2.60 3.88 0.81 3.99 5.22 0.77 4.59 5.93 2.26 
GPR 0.85 3.31 4.27 0.84 3.76 4.83 0.83 3.97 5.10 2.75 

The validation of the MLRAs for predicting the LCC was conducted using an inde-
pendent dataset (n = 47). The validation performance varied between orders and models, 
just as the training and testing sets did, and it remained largely steady at the 0.2 order in 
five MLRAs in terms of R2, MAE, RMSE, and RPIQ. The rankings were as follows: RR (R2 
= 0.88, MAE = 3.40 μg ∙ cmିଶ, RMSE = 4.23 μg ∙ cmିଶ, RPIQ = 3.59) > GPR (R2 = 0.88, MAE = 
3.55 μg ∙ cmିଶ, RMSE = 4.29 μg ∙ cmିଶ, RPIQ = 3.86) > XGBoost (R2 = 0.85, MAE = 3.90 μg ∙cmିଶ, RMSE = 4.84 μg ∙ cmିଶ, RPIQ = 2.67) > SVR (R2 = 0.81, MAE = 3.94 μg ∙ cmିଶ, RMSE = 
5.37 μg ∙ cmିଶ, RPIQ = 3.09) > RF (R2 = 0.80, MAE = 4.28 μg ∙ cmିଶ, RMSE = 5.47 μg ∙ cmିଶ, 
RPIQ = 2.57). Our results indicated that the accuracy of the LCC assessment of litchi was 
somewhat enhanced by the FOD spectrum and MLRAs, and especially RR, GPR, and 
XGBoost, can predict the LCC of litchi well in the two study areas. 

The scatterplots of measured and estimated LCCs based on the best MLRA at 0–2 
orders are illustrated in Figure 3a–k. The figure illustrates that the sample data for the best 
estimation models at the 0–2 order were almost evenly distributed near the 1:1 line, indi-
cating no apparent overestimation or underestimation. The models based on the 0-GPR, 
0.2-RR, 0.6-GPR, 0.8-RR, and 1-RR all had RPIQ values above 3.0, further demonstrating 
the feasibility and effectiveness of using the FOD spectra to predict the LCC of litchi. 

 
Figure 3. Scatterplots with the marginal histograms of measured and estimated LCCs based on the 
best MLRA at the 0–2 order. (a): 0-GPR; (b): 0.2-RR; (c): 0.4-GPR; (d): 0.6-GPR; (e): 0.8-RR; (f): 1-RR; 
(g): 1.2-SVR; (h): 1.4-RR; (i): 1.6-RR; (j): 1.8-RF; (k): 2-XGBoost. 

Figure 3. Scatterplots with the marginal histograms of measured and estimated LCCs based on the
best MLRA at the 0–2 order. (a): 0-GPR; (b): 0.2-RR; (c): 0.4-GPR; (d): 0.6-GPR; (e): 0.8-RR; (f): 1-RR;
(g): 1.2-SVR; (h): 1.4-RR; (i): 1.6-RR; (j): 1.8-RF; (k): 2-XGBoost.

3. Materials and Methods
3.1. Study Area

Guangdong is the most important litchi-producing area in China, with the cultiva-
tion area and output ranking first among all provinces and regions in the country. In
this study, two commercial ‘Guiwei’ litchi orchards, normally operated by local farmers,
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were selected as the study area (Figure 4). One (Litchi orchard 1) was located in Yangxi
County of Yangjiang City (111◦22′–111◦48′ E, 21◦29′–21◦55′ N), and the other (Litchi or-
chard 2) was in Dianbai District of Maoming City (110◦54′–111◦29′ E, 21◦22′–21◦59′ N).
The above two areas belong to a subtropical monsoon climate, with sufficient sunshine,
abundant rainfall, and a pleasant climate. The annual average temperature is about 23 ◦C,
the vegetation is evergreen, and the flowers are always in bloom. Litchi is one of the spe-
cialties of the two places. Data collection was carried out at the flower bud differentiation
(28 December 2020) and the blooming florescence (19 March 2021) stages. The selected
trees were in good condition.
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Figure 4. Distribution of sampling sites in Guangdong Province of China. Litchi orchard 1: Yangxi
County, Yangjiang City; Litchi orchard 2: Dianbai District, Maoming City.

3.2. Hyperspectral Measurements and Preprocessing

In total, 49 ‘Guiwei’ litchi trees (25 in Yangxi county and 24 in Dianbai District) were
selected. Moreover, the longitude and latitude information of each tree was recorded using
a GPS. Six leaves of each litchi tree were collected and put into fresh-keeping bags for later
spectral measurements and chlorophyll extraction. Hyperspectral data for the litchi leaves
were measured using an ASD FieldSpec3 spectrometer (Analytical Spectral Devices, Inc.,
Boulder, CO, USA) [5] with the range 350–2500 nm. To reduce the influence of the solar
altitude angle, the spectral measurement was carried out at 10:00–14:00 Beijing time with
cloudless and sunny weather. Every 3–5 min, the spectral reflectance was calibrated using
a standardized whiteboard (25 cm × 25 cm, 100% reflectance). Ten spectral curves were
collected for each leaf sample, with a measurement interval of 0.1 s. The average value of
the 10 spectral curves was taken as the spectral data of this leaf sample. In total, 294 leaves
were collected. There were 294 sets of data. One group of data was removed because of
data damage. Thus, 293 sets of data were used for the analysis.

The edge bands 350–399 nm and 2401–2500 nm with high optical noise were re-
moved [40]. The remaining spectral curves, as the original reflectance spectrum, were
smoothed using the Savitzky-Golay filtering method [41]. Then, the fractional order deriva-
tive (FOD) of the smoothed spectral data was calculated with the Grünwald-Letnikov
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(G-L) algorithm as shown in the Equation (1) [42] using a program in Matlab R2021a (The
MathWorks Inc.: Natick, MA, USA).

dvf(x)
dxv ≈ f(x) + (−v)f(x− 1) +

(−v)(−v + 1)
2

f(x− 2) + · · · Γ(−v + 1)
m!Γ(−v + m + 1)

f(x−m) (1)

where Γ is the Gamma function, x is the value of the corresponding point, m is the difference
between the upper and lower bounds of the differential, and v is the order allowed to vary
from 0–2 (increment by 0.2 at each step) in this study. In addition, v = 0 indicated that the
spectral data comprised the original reflectance.

3.3. Determination of the LCC

In this study, SPAD-502 plus portable chlorophyll meter (minola Osaka company)
was used to measure the leaf chlorophyll content of litchi. Since the value read from the
SPAD-502 plus is unitless, it needs to be converted into LCC (µg·cm−2), and the conversion
process was completed using Equation (2) [43].

The chlorophyll content of the selected trees ranged from 12.44 to 73.95 µg·cm−2. The
descriptive statistics of leaf chlorophyll content are presented in Figure 5.

Cab = 6.34299× exp(SPAD× 0.04379)− 6.10629
(

RMSD = 5.4 µg·cm−2
)

(2)
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Figure 5. Statistical results of the litchi LCC for the training, testing, and validation datasets (SD:
standard deviation, CV: coefficient of variation), the little dark gray dots in the diamond shape are
the samples.

3.4. VCPA-GA Hybrid Strategy for Variable Selection

VCPA is a relatively new variable selection algorithm. The first step is to use an
exponentially decreasing function (EDF) to count the remaining variables. Binary matrix
sampling (BMS) [44] is utilized in each EDF run to create the population of various variable
combinations. Then, using the model population analysis (MPA) [45], the variable subset
with the lowest cross validation root mean square error (RMSECV) was found using the
top 10% of the sub models. When all EDF runs are finished, VCPA looks through the
14 remaining variables to get the best variable subset. GA uses the selection, exchange,
and mutation operators to describe the biological world’s natural selection and genetic
mechanisms. Through continuous genetic iterations, the variables with better objective
function values are retained, and the variables with lower objective function values are
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deleted until the desired results are obtained. This has been widely used in feature variable
screening [46].

The two main steps of the VCPA-GA hybrid method are shown in Figure 6. This
strategy’s specifics was described in Yun et al. [47]. A calibration set (193 samples) and
an independent test set (100 samples) were created from the dataset. Once the model
establishment and variable selection were completed in the calibration set, an independent
test set was used to verify the calibration model. As a modeling technique, partial least
square (PLS) was employed. Using 5-fold cross validation (CV) with a range of 1 to 10,
the ideal number of PLS latent variables was determined. All data were centered before
preprocessing so that the mean of each column would be zero. Fifty replications of VCPA-
GA (
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3.5. The Evaluation of the Proposed MLRMs

For this study, hyperspectral sensitive bands selected using a VCPA-GA hybrid strat-
egy were taken as independent variables with LCCs as dependent variables. Then, 293 mea-
sured LCC values were randomly divided into three parts: 187 as a training set, 59 as a
testing set and 47 as a validation set for validating model performance, as shown in Figure 5.

Five MLRAs were selected to explore and analyze hyperspectral reflection data for
LCC modeling based on their fast training, strong performance, and popularity in different
application fields. These five MLRAs were Ridge regression (RR), random forest (RF),
extreme Gradient Boosting (XGBoost), support vector regression (SVR), and Gaussian
processes regression (GPR). Here, RR [48] is a biased estimation regression method specially
used for the analysis of collinear data. It is essentially an enhanced least squares estimate
technique. It is more practical and dependable to derive regression coefficients by giving up
the least square method’s impartial aspect, but at the expense of losing some information
and lowering accuracy. As for the RF model [49], decision trees are built for each sample
that is extracted based on RF using the bootstrap resampling approach, and the predicted
average values of all the decision trees are used as the final prediction results. A distributed
gradient enhancement toolkit called XGBoost [50] has been tuned for great performance,
adaptability, and portability. It provides a decision tree with gradient boosting (GBDT).
Being more than ten times faster than standard toolkits, it is now the best and quickest open
source improvement tree toolkit. Prior to moving on to linear modeling, SVR [35] maps
training samples to a high-dimensional space and then transforms a nonlinear problem in
a low-dimensional space into a linear problem in a high-dimensional environment. Here,
nonlinear issues were converted into linear ones using a radial basis function. GPR [51] is a
nonparametric model for regression analysis of data using Gaussian process priors. It is
based on the Bayesian framework. By using past data for training, it can convert a prior
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distribution into a posterior model and produce predictions with statistical significance.
The above five MLRAs were implemented using the scikit learn Python package.

The agreement between the measured and predicted LCC values was evaluated using
the coefficient of determination (R2), mean absolute error (MAE), root mean square error
(RMSE), and ratio of performance to inter quartile distance (RPIQ) generated during
prediction (Equations (3)–(6)).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (3)

MAE =
1
n ∑n

i=1|(yi − ŷi)| (4)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(5)

RPIQ =
Q3 −Q1
RMSE

(6)

where n is the number of samples, yi is the ith measured LCC of each sample, ŷi is the ith
estimated LCC of each sample, yi is the mean LCC, and Q1 and Q3 are the first and third
quartiles, respectively.

4. Discussion

The LCC is a key indicator of a crop’s physiological status, and changes in it can be
used to assess a crop’s photosynthetic ability, growth and development stage, nutrition,
stress from humans or the environment, illnesses, and pests. Hyperspectral remote sens-
ing technology has become a non-destructive way to estimate the LCC and may provide
detailed information about how vegetation differs from soil, water, and other ground
objects in terms of its spectral reflection characteristics. Numerous spectral transmission
techniques have been studied in the past, such as integer derivatives, continuum-removal
transformations, and mathematical transformations. Integer derivatives are particularly
good at enhancing absorption features, lowering background noise, and eliminating base-
line drafts [52]. However, they cannot detect gradual tilts or curvatures and useful target
variables. In recent times, FOD has received an increasing amount of attention in the
processing of hyperspectral data to widen the selection space for sensitive bands. In this
study, we calculated the 0–2-order derivative of spectral reflectance of litchi leaves in incre-
ments of 0.2. Pearson correlation analysis showed that the absolute value of the correlation
coefficient between the 0.8-order derivative spectrum at 756 nm and LCC reached a maxi-
mum, with the r of 0.9179 (Table 2). The proposed VCPA-GA hybrid strategy had the best
performance in the FOD datasets. Especially, the generalization of the proposed hybrid
variable selection strategy had RMSEP values of 5.04, 5.24, and 5.25 µg·cm−2 for the LCC
using 0.8-, 1.4-, and 1.8-order spectral data, respectively (Table 4). Compared with that of
the first and second-order derivatives, the accuracy of the LCC estimation model based on
the FOD was significantly improved. An explanation for this may be because compared
to integer-order spectral data, the FOD spectra offer a superior balance among spectral
resolution, spectral information, and noise.

The findings of our research are consistent with the previous research conclusions to a
certain extent. Cui et al. [53] investigated the potential of using the FOD for estimating the
soil copper content and found that the model using the 0.8-order FOD spectra performed
the best, and the R2 and RPD of the validation set were 0.6416 and 1.63, respectively. Jin and
Wang [54] created hyperspectral indices using FOD spectra to retrieve the leaf mass per area
(LMA), and results showed that the 0.3-order FOD indices provided the highest accuracies
to trace LMA and at the same time had the least sensitivity to random noise. In short, the
FOD spectra are, in general, superior or at least compatible to the original reflectance or
first- and second-order derivatives and could further promote the practical application of
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hyperspectral remote sensing in estimating plant physiological and biochemical parameters,
as mentioned above. Thus, we suggest that FOD analysis is efficient to identify the best
band combination that could be applied to a large measurement database with a wide
variety of plant leaves and field conditions from various remote sensing platforms.

Variable selection technology plays a key role in eliminating irrelevant or uninforma-
tive variables and reducing data dimension in hyperspectral data. Yun et al. [47] used the
VCPA-based hybrid strategy with iteratively retaining informative variables (IRIVs) and
GA to select the optimized variables in near-infrared (NIR) spectral datasets for beer, cotton,
and tablets. The findings demonstrated that when compared to other approaches, the
VCPA-IRIV and VCPA-GA significantly improve model prediction performance and that
the modified VCPA step is a very successful method for removing the unhelpful variables.
This also provides methodological support for our study. In this study, VCPA gradually
reduced the number of variables based on EDF until all hyperspectral bands were reduced
and optimized. Then, a modified version of VCPA was combined with GA to create a
hybrid approach for variable selection in order to get beyond the current limiting problem
associated with GA for a high number of variables. By choosing too few variables, VCPA
has another problem that our hybrid strategy can assist in overcoming. The original VCPA
only chooses less than 14 variables, but it has components that could cause the variable
space to continuously contract. Although GA is a useful optimization tool, it has a number
of limitations when working with many variables. There were 501 variables in this litchi
hyperspectral dataset from 400 nm to 900 nm. Finding the ideal variable subset for GA
would be exceedingly challenging given this enormous variable space. The variable space
decreased from 501 to 100 when modified VCPA was used as the initial step, making it
much simpler to identify the ideal variable subset in this highly compressed and optimal
space. It is clear from Table 3 that the RMSEC and RMSECV decrease as the order increases,
indicating that the variable space is constantly optimized. Additionally, the 0.2-order
derivative sensitive band combination chosen by VCPA-GA for LCC prediction using the
RR model has the best accuracy. Compared with previous studies, our research proved that
the suggested VCPA-GA hybrid approach may successfully be applied to hyperspectral
reflectance with FODs. It could also ensure MLRA’s accuracy and avoid model overfitting.

MLRAs, such as SVR, RF, BPNN, and kernel-based extreme learning machine (KELM),
have been widely used for estimating crop biochemical properties [32,33,36,55]. In our
study, for the purpose of investigating and evaluating FOD spectral data optimized using
the VCPA-GA approach for litchi LCC modeling, five MLRAs were developed taking into
account their quick training, good performance, and popularity in numerous application
areas. A comparison of them revealed that the accuracy of the models was different for the
data of various FOD spectra. Among them, the RR model, based on 0.2-order derivative
spectra, can estimate the LCC of litchi well. The performance of GPR and XGBoost closely
followed the performance of RR (Table 4) in terms of R2, RMSE, and RPIQ. The stochastic
gradient of XGBoost, which enhances the method, may prevent overfitting, can enhance
prediction accuracy, and can be used to explain why it has greater accuracy. Additionally,
the XGBoost ensemble can handle noisy data based on the deployment of a number of
decision-based tree classifiers. There are numerous such instances where the XGBoost
model was effectively used to forecast soil characteristics and nutrients [56,57]. Future
research could also look into combining radiative transfer models (RTMs) and machine
learning algorithms to accurately estimate the chlorophyll content at both the leaf and
canopy scales, in addition to investigating other advanced machine learning techniques,
such as stochastic gradient boosting (SGB), Cubist (CB), and deep learning.

5. Conclusions

In this study, we investigated the performance of five MLRAs and assessed the poten-
tial of fractional order derivatives and a VCPA-GA hybrid variable selection strategy to
enhance the hyperspectral estimate of litchi LCC. Compared with the common first and
second derivatives, the correlation coefficient between the FOD spectrum and LCC was
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improved, reaching 0.9179 at the 0.8 order (756 nm), followed by the 1.8 order (0.9020,
720 nm) and 1.6 order (0.9018, 723 nm). The VCPA-GA hybrid method improved upon
VCPA’s ability to shrink the variable space constantly, and combined it with GA for further
optimization. To investigate how this hybrid approach could be improved, hyperspectral
datasets (0–2 order) of litchi leaves were used. The findings demonstrated that the VCPA-
GA hybrid strategy fully utilizes the benefits of both VCPA and GA while compensating for
their shortcomings. It fixes the issue of VCPA’s propensity to choose fewer variables and
removes GA’s restrictions when working with a large number of variables. Additionally, as
compared to the commonly used first- and second-order derivatives, this hybrid strategy
performs noticeably better with FOD spectral data, demonstrating the effectiveness of
employing FOD spectral data to compress and optimize the variable space. As a result, for
FOD spectral data, VCPA-GA is an effective substitute for variable selection approaches.

From the performance of the MLRAs, we found that the training effect of the XG-
Boost algorithm was the best for the 0 order, with the highest R2 (0.99) and lowest MAE
(0.53 µg·cm−2) and RMSE (0.71 µg·cm−2). During validation, RR also showed the highest
accuracy at the 0.2 order, with R2 = 0.88, MAE = 3.40 µg·cm−2, RMSE = 4.23 µg·cm−2, and
RPIQ = 3.59. It is important to note that the VCPA-GA hybrid method is a broad one that
may be used with other optimization or variable selection strategies to obtain even greater
optimization. Although it was used in this study based on hyperspectral datasets of litchi
leaves, it might also be used with other high-dimensional datasets from scales including
the canopy, landscape, and region.
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