Exploring the Medicinal Potential of Achillea grandifolia in Greek Wild-Growing Populations: Characterization of Volatile Compounds, Anti-Inflammatory and Antioxidant Activities of Leaves and Inflorescences
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of the Studied Essential Oils
2.2. Biological Activities
3. Materials and Methods
3.1. Collection of Plant Material
3.2. Essential Oil Isolation
3.3. Gas Chromatography-Mass Spectrometry
3.4. In Vitro Experiments
3.4.1. Inhibition of Linoleic Acid Lipid Peroxidation
3.4.2. Soybean Lipoxygenase Inhibition Study In Vitro
3.4.3. Interaction with DPPH
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nemeth, E. Achillea species used medicinally in Hungary. Isr. J. Plant Sci. 2010, 58, 279–289. [Google Scholar] [CrossRef]
- Baumann, H. The Greek Wild Flowers and Plant Lore in Ancient Greece; Herbert Press: London, UK, 1993. [Google Scholar]
- Benedek, B.; Kopp, B. Achillea millefolium L. s.l. revisited: Recent findings confirm the traditional use. Wien Med. Wochenschr. 2007, 157, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Constantinidis, T.H.; Kalpoutzakis, E. A new species of Achillea (Asteraceae: Anthemideae) from south-east Peloponnisos, Greece. Bot. J. Linn. Soc. 2005, 47, 249–256. [Google Scholar] [CrossRef]
- Baytop, T. (Ed.) Türkiye’de Bitkiler ile Tedavi (Treatment with Plants in Turkey); Istanbul University Publications: Istanbul, Turkey, 1999; Volume 40, p. 176. [Google Scholar]
- Ezer, N.; Arısan, Ö.M. Folk medicines in Merzifon (Amasya, Turkey). Turk. J. Bot. 2006, 30, 223–230. [Google Scholar]
- Honda, G.; Yeşilada, E.; Tabata, M.; Sezik, E.; Fujita, T.; Takeda, Y.; Takaishi, Y.; Tanaka, T. Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kutahya, Denizli, Mugla, Aydin provinces. J. Ethnopharmacol. 1996, 53, 75–87. [Google Scholar] [CrossRef]
- Tuzlaci, E.; Erol, M.K. Turkish folk medicinal plants. Part II: Eğirdir (Isparta). Fitoterapia 1999, 70, 593–610. [Google Scholar] [CrossRef]
- Sezik, E.; Yeşilada, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in Turkey X. Folk medicine in Central Anatolia. J. Ethnopharmacol. 2001, 75, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Bernath, J. Biological activities of yarrow species (Achillea spp.). Curr. Pharm. Des. 2008, 14, 3151–3167. [Google Scholar] [CrossRef] [PubMed]
- Vitalini, S.; Iriti, M.; Puricelli, C.; Ciuchi, D.; Segale, A.; Fico, G. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)—An alpine ethnobotanical study. J. Ethnopharmacol. 2013, 145, 517–529. [Google Scholar] [CrossRef]
- Huber-Morath, A. Achillea L. In Flora of Turkey and the East Aegean Islands; Davis, P.H., Ed.; Edinburgh University Press: Edinburgh, UK, 1975; Volume 5, pp. 224–252. [Google Scholar]
- Franzen, R. Achillea L. In Mountain Flora of Greece; Strid, A., Tan, K., Eds.; Edinburgh University Press: Edinburgh, UK, 1991; Volume 2, pp. 431–450. [Google Scholar]
- Hanlidou, E.; Kokkalou, E.; Kokkini, S. Volatile constituents of Achillea grandifolia. Planta Med. 1992, 58, 105–107. [Google Scholar] [CrossRef]
- Stojanović, J.P.; Stojanović, G.S.; Stojanović-Radić, Z.Z.; Zlatković, B.K.; Ickovski, J.D.; Zlatanović, I.G.; Jovanović, S.Č.; Miti, Z.S. Essential oils of six Achillea species: Chemical profiles, antimicrobial potential and toxicity toward crustaceans. Chem. Biodivers. 2022, 19, e202100905. [Google Scholar] [CrossRef] [PubMed]
- Drobac, M.M.; Kukić-Marković, J.M.; Milenković, M.T.; Niketić, M.S.; Petrović, S.D. The chemical composition, antimicrobial and antiradical properties of the essential oil of Achillea grandifolia aerial parts from Serbia. Bot. Serb. 2021, 45, 233–240. [Google Scholar] [CrossRef]
- Stankovic, N.; Mihajilov-Krstev, T.; Zlatkovic, B.; Matejic, J.; Jovanovic, V.S.; Kocic, B.; Comic, L. Comparative study of composition, antioxidant, and antimicrobial activities of essential oils of selected aromatic plants from Balkan peninsula. Planta Med. 2016, 82, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Radulović, N.S.; Blagojević, P.D.; Skropeta, D.; Zarubica, A.R.; Zlatković, B.K.; Palić, R.M. Misidentification of tansy, Tanacetum macrophyllum, as yarrow, Achillea grandifolia: A health risk or benefit? Nat. Prod. Commun. 2010, 5, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, M.; Petrovic, S.; Milenkovic, M.; Kukic, J.; Couladis, M.; Tzakou, O. Composition and antiradical capacity of Achillea grandifolia essential oil from Serbia. Planta Med. 2008, 74, 1191. [Google Scholar] [CrossRef]
- Özek, G. Phytochemical characterization of Achillea grandifolia Friv. essential oil and its potent against oxidative damage, acetylcholinesterase and α-amylase. Eskişehir Technol. Univ. J. Sci. Technol. Appl. Sci. Eng. 2018, 19, 671–684. [Google Scholar] [CrossRef]
- Küçükbay, F.Z.; Çetin, H. Determination of some essential elements and composition of the essential oils of Achillea grandifolia Friv.(Asteraceae) from different localities. Anal. Chem. Lett. 2012, 2, 337–350. [Google Scholar] [CrossRef]
- Suleimenov, Y.M.; Atazhanova, G.A.; Ozek, T.; Demirci, B.; Kulyyasov, A.T.; Adekenov, S.M.; Baser, K.H.C. Essential oil composition of three species of Achillea from Kazakhstan. Chem. Nat. Compd. 2001, 37, 447–450. [Google Scholar] [CrossRef]
- Tzakou, O.; Loukis, A.; Verykokidou, E.; Roussis, V. Chemical constituents of the essential oil of Achillea ligustica All. from Greece. J. Essent. Oil Res. 1995, 7, 549–550. [Google Scholar] [CrossRef]
- Tzakou, O.; Couladis, M.; Milenkovic, M.; Vucicevic, D.; Kovacevic, N. Composition and antimicrobial activity of Achillea coarctata essential oils from Greece. J. Essent. Oil-Bear. Plants 2009, 12, 541–545. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.Z.; Nguyen, H.T. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Mohammadhosseinia, M.; Sarker, S.D.; Akbarzadeh, A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar] [CrossRef]
- Magiatis, P.; Skaltsounis, A.L.; Chinou, I.; Haroutounian, S.A. Chemical composition and in-vitro antimicrobial activity of the essential oils of three Greek Achillea species. Z. Naturforsch. 2002, 57, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Tzakou, O.; Loukis, A. Chemical composition of the essential oil of Achillea umbellata growing in Greece. Nat. Prod. Res. 2009, 23, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, T.; Fokialakis, N.; Kovacevic, N.; Chinou, I. Essential oil composition of Achillea lingulata and A. umbellata. Flavour Fragr. J. 2007, 22, 184–187. [Google Scholar] [CrossRef]
- Chatzopoulou, P.; Katsiotis, S.T.; Baerheim-Svendsen, A. An ascaridole containing essential oil of the Achillea millefolium L. complex growing wild in northern Greece. J. Essent. Oil Res. 1992, 4, 457–459. [Google Scholar] [CrossRef]
- Ilardi, V.; D’Agostino, G.; Bruno, M. The chemical composition of the aerial parts essential oil of Achillea cretica L. (Asteraceae) growing wild in Crete (Greece). Nat. Prod. Res. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Elsayed, S.A.; Madkor, H.R.; Saad Eldien, H.M.; Mohafez, O.M. Yarrow oil ameliorates ulcerative colitis in mice model via regulating the ΝΚ-κB and PPAR-γ pathways. Intest. Res. 2021, 19, 194–205. [Google Scholar] [CrossRef]
- Alomair, M.K.; Alabduladheem, L.S.; Almajed, M.A.; Alobaid, A.A.; Alkhalifah, E.A.R.; Younis, N.S.; Mohamed, M.E. Achillea millefolium essential oil mitigates peptic ulcer in rats through Nrf2/HO-1 pathway. Molecules 2022, 27, 7908. [Google Scholar] [CrossRef] [PubMed]
- Benedek, B.; Kopp, B.; Melzig, M.F. Achillea millefolium L. s.l.- Is the anti-inflammatory activity mediated by protease inhibition? J. Ethnopharmacol. 2007, 113, 312–317. [Google Scholar] [CrossRef]
- Villalva, M.; Silvan, J.M.; Alarcón-Cavero, T.; Villanueva-Bermejo, D.; Jaime, L.; Santoyo, S.; Martinez-Rodriguez, A.J. Antioxidant, anti-inflammatory, and antibacterial properties of an Achillea millefolium L. extract and its fractions obtained by supercritical anti-solvent fractionation against Helicobacter pylori. Antioxidants 2022, 11, 1849. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2005; pp. 217, 2567–2570. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed as-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Massada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons: New York, NY, USA, 1976. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Hadjipavlou-Litina, D.; Pontiki, E. Aryl-acetic and cinnamic acids as lipoxygenase inhibitors with antioxidant, anti-inflammatory and anticancer activity. Methods Mol. Biol. 2015, 1208, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Hodaj-Çeliku, E.; Tsiftsoglou, O.; Shuka, L.; Abazi, S.; Hadjipavlou-Litina, D.; Lazari, D. Antioxidant activity and chemical composition of essential oils of some aromatic and medicinal plants from Albania. Nat. Prod. Commun. 2015, 12, 785–790. [Google Scholar] [CrossRef]
- Peperidou, A.; Kapoukranidou, D.; Kontogiorgis, C.; Hadjipavlou-Litina, D. Multitarget molecular hybrids of cinnamic acids. Molecules 2014, 19, 20197–20226. [Google Scholar] [CrossRef] [PubMed]
Mountain | Mt. Menoikio (-M) | Mt. Pelion (-P) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Percentage of Yield | 0.25% | 0.16% | 0.38% | 0.12% | Retention Times | |||||
a Compounds | b MF | c tR | d RIexp | e RIlit | AG-I-M | AG-L-M | AG-I-P | AG-L-P | ||
1 | Santolina triene | C10H16 | 6.454 | 903 | 906 | 0.2 ± 0.01 | nd | nd | RI, MS | |
2 | Tricyclene | C10H16 | 7.101 | 920 | 921 | nd | nd | 0.3 ± 0.01 | nd | RI, MS |
3 | α-Pinene | C10H16 | 7.621 | 931 | 932 | 0.5 ± 0.01 | nd | 0.2 ± 0.00 | nd | RI, MS Co-GC |
4 | Camphene | C10H16 | 8.287 | 948 | 946 | 0.8 ± 0.01 | 0.1 ± 0.01 | 5.9 ± 0.14 | 3.9 ± 0.01 | RI, MS |
5 | Sabinene | C10H16 | 9.257 | 971 | 969 | 4.1 ± 0.27 | 0.3 ± 0.01 | nd | nd | RI, MS |
6 | β-Pinene | C10H16 | 9.417 | 975 | 974 | 0.2 ± 0.00 | 0.1 ± 0.00 | 0.1 ± 0.01 | nd | RI, MS, Co-GC |
7 | Dehydro-1,8-Cineole | C10H16O | 9.983 | 989 | 988 | nd | 0.1 ± 0.00 | nd | nd | RI, MS |
8 | δ-2-Carene | C10H16 | 10.160 | 994 | 1001 | 1.5 ± 0.01 | 0.1 ± 0.01 | nd | nd | RI, MS |
9 | Hexyl acetate | C8H16O2 | 10.752 | 1008 | 1007 | nd | 0.2 ± 0.00 | nd | nd | RI, MS |
10 | α-Terpinene | C10H16 | 11.084 | 1016 | 1014 | 6.4 ± 0.19 | 0.1 ± 0.01 | nd | nd | RI, MS |
11 | p-Cymene | C10H14 | 11.442 | 1025 | 1022 | 1.6 ± 0.07 | 0.4 ± 0.01 | 2.00 ± 0.11 | 0.4 ± 0.03 | RI, MS, Co-GC |
12 | 1,8-Cineole | C10H18O | 11.704 | 1032 | 1026 | 11.9 ± 0.52 | 20.0 ± 0.62 | 2.2 ± 0.07 | 1.3 ± 0.06 | RI, MS, Co-GC |
13 | trans-β-Ocimene | C10H16 | 12.384 | 1048 | 1044 | 0.2 ± 0.01 | nd | nd | nd | RI, MS |
14 | γ-Terpinene | C10H16 | 12.809 | 1059 | 1054 | 0.3 ± 0.01 | 0.4 ± 0.01 | nd | nd | RI, MS, Co-GC |
15 | cis-Sabinene hydrate | C10H18O | 13.339 | 1072 | 1065 | 0.2 ± 0.01 | 0.4 ± 0.17 | nd | nd | RI, MS |
16 | Artemisia alcohol | C10H18O | 13.735 | 1081 | 1080 | 0.5 ± 0.00 | nd | nd | nd | RI, MS |
17 | Terpinolene | C10H16 | 13.879 | 1085 | 1086 | 0.2 ± 0.01 | 0.1 ± 0.00 | nd | nd | RI, MS |
18 | Linalool | C10H18O | 14.591 | 1102 | 1095 | 0.6 ± 0.01 | 0.7 ± 0.01 | nd | nd | RI, M, Co-GC MS |
19 | cis-Thujone | C10H16O | 14.816 | 1108 | 1101 | 36.9 ± 0.93 | 50.8 ± 1.45 | 1.5 ± 0.04 | nd | RI, MS |
20 | trans-Thujone | C10H16O | 15.253 | 1120 | 1112 | 3.6 ± 0.03 | 5.5 ± 0.11 | 0.1 ± 0.01 | nd | RI, MS |
21 | cis-p-Menth-2-en-1-ol | C10H18O | 15.492 | 1126 | 1118 | 0.1 ± 0.00 | 0.2 ± 0.01 | nd | nd | RI, MS |
22 | trans-Sabinol | C10H16O | 16.089 | 1141 | 1137 | 0.9 ± 0.02 | 1.1 ± 0.05 | nd | nd | RI, MS |
23 | Camphor | C10H16O | 16.376 | 1149 | 1141 | 10.0 ± 0.27 | 5.5 ± 0.08 | 70.5 ± 1.07 | 83.2 ± 0.85 | RI, MS |
24 | trans-Verbenol | C10H16O | 16.652 | 1145 | 1140 | nd | nd | nd | 1.20± 0.01 | RI, MS |
25 | cis-Chrysanthenol | C10H16O | 16.991 | 1165 | 1160 | nd | 0.2 ± 0.01 | nd | nd | RI, MS |
26 | Borneol | C10H18O | 17.317 | 1173 | 1165 | 2.4 ± 0.51 | 3.6 ± 0.21 | 2.2 ± 0.18 | 3.7 ± 0.24 | RI, MS, Co-GC |
27 | Terpinen-4-ol | C10H18O | 17.651 | 1182 | 1174 | 0.9 ± 0.01 | 2.2 ± 0.14 | nd | nd | RI, MS, Co-GC |
28 | α-Terpineol | C10H18O | 18.244 | 1197 | 1186 | 1.2 ± 0.03 | 3.1 ± 0.02 | nd | nd | RI, MS, Co-GC |
29 | trans-Piperitol | C10H18O | 18.757 | 1212 | 1207 | nd | 0.1 ± 0.01 | nd | nd | RI, MS |
30 | Ascaridole | C10H16O2 | 19.870 | 1242 | 1234 | 7.3 ± 0.08 | nd | nd | nd | RI, MS |
31 | Bornyl acetate | C12H20O2 | 21.408 | 1285 | 1287 | nd | nd | 3.2 ± 0.04 | nd | RI, MS |
32 | Eugenol | C10H12O2 | 23.806 | 1356 | 1356 | 0.2 ± 0.01 | 0.1 ± 0.00 | nd | nd | RI, MS |
33 | cis-Jasmone | C11H16O | 25.173 | 1396 | 1392 | 3.4 ± 0.15 | 0.7 ± 0.01 | 3.2 ± 0.33 | 1.8 ± 0.02 | RI, MS |
34 | Methyl eugenol | C11H14O2 | 25.473 | 1405 | 1403 | tr | nd | nd | nd | RI, MS |
35 | β-Caryophyllene | C15H24 | 25.867 | 1418 | 1417 | 0.4 ± 0.00 | nd | nd | nd | RI, MS, Co-GC |
36 | 10-epi-β-Acoradiene | C15H24 | 27.765 | 1478 | 1474 | 0.6 ± 0.02 | nd | nd | nd | RI, MS |
37 | trans-Nerolidol | C15H26O | 30.351 | 1563 | 1561 | 0.3 ± 0.01 | 0.1 ± 0.01 | nd | nd | RI, MS |
38 | Caryophyllene oxide | C15H24O | 30.954 | 1583 | 1582 | 0.5 ± 0.02 | 0.8 ± 0.09 | nd | nd | RI, MS, Co-GC |
Total % | 97.9 | 97.0 | 91.4 | 95.5 | ||||||
Monoterpene Hydrocarbons | 17.0 | 1.6 | 8.5 | 4.30 | ||||||
Oxygenated Monoterpenes | 76.7 | 93.6 | 79.7 | 89.4 | ||||||
Sesquiterpene Hydrocarbons | 1.0 | nd | nd | nd | ||||||
Oxygenated Sesquiterpenes | 0.8 | 0.9 | nd | nd |
Results | Interaction (%) with the Stable Free Radical of DPPH | Inhibition of LOX (%) | Inhibition of Lipid Peroxidation (%) | |
---|---|---|---|---|
Time | 20 min | 60 min | ||
Concentration | 20 μL | 20 μL | 10 μL | 10 μL |
AG-I-M | 11.0 | 14.9 | 30 | 47 |
AG-L-M | 7.6 | 32.1 | 70 | n.a. |
AG-I-P | 2 | n.a | 51 | n.a. |
AG-L-P | 7 | n.a | 70 | n.a. |
NDGA | 81.0 | 93.0 | 92.0 | |
TROLOX | 96.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiftsoglou, O.S.; Atskakani, M.-E.; Krigas, N.; Stefanakis, M.K.; Gounaris, C.; Hadjipavlou-Litina, D.; Lazari, D. Exploring the Medicinal Potential of Achillea grandifolia in Greek Wild-Growing Populations: Characterization of Volatile Compounds, Anti-Inflammatory and Antioxidant Activities of Leaves and Inflorescences. Plants 2023, 12, 613. https://doi.org/10.3390/plants12030613
Tsiftsoglou OS, Atskakani M-E, Krigas N, Stefanakis MK, Gounaris C, Hadjipavlou-Litina D, Lazari D. Exploring the Medicinal Potential of Achillea grandifolia in Greek Wild-Growing Populations: Characterization of Volatile Compounds, Anti-Inflammatory and Antioxidant Activities of Leaves and Inflorescences. Plants. 2023; 12(3):613. https://doi.org/10.3390/plants12030613
Chicago/Turabian StyleTsiftsoglou, Olga S., Maria-Eleni Atskakani, Nikos Krigas, Michalis K. Stefanakis, Christos Gounaris, Dimitra Hadjipavlou-Litina, and Diamanto Lazari. 2023. "Exploring the Medicinal Potential of Achillea grandifolia in Greek Wild-Growing Populations: Characterization of Volatile Compounds, Anti-Inflammatory and Antioxidant Activities of Leaves and Inflorescences" Plants 12, no. 3: 613. https://doi.org/10.3390/plants12030613
APA StyleTsiftsoglou, O. S., Atskakani, M. -E., Krigas, N., Stefanakis, M. K., Gounaris, C., Hadjipavlou-Litina, D., & Lazari, D. (2023). Exploring the Medicinal Potential of Achillea grandifolia in Greek Wild-Growing Populations: Characterization of Volatile Compounds, Anti-Inflammatory and Antioxidant Activities of Leaves and Inflorescences. Plants, 12(3), 613. https://doi.org/10.3390/plants12030613