Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination
Abstract
:1. Introduction
2. Results
2.1. Effect of NTP/Cold Plasma on Inactivation of Fusarium spp. (Group 1)
2.2. Effect of Non-Thermal Plasma/Cold Plasma on Degradation/Decontamination of DON Mycotoxin (Group 2)
3. Discussion
3.1. Effect of NTP/Cold Plasma on Inactivation of Fusarium spp. (Group 1)
3.2. Effect of NTP/Cold Plasma on Degradation/Decontamination of DON Mycotoxin (Group 2)
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karlsson, I.; Persson, P.; Friberg, H. Fusarium Head Blight from a Microbiome Perspective. Front. Microbiol. 2021, 12, 628373. [Google Scholar] [CrossRef] [PubMed]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampersad, S.N. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens 2020, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Summerell, B.A. Resolving Fusarium: Current Status of the Genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef]
- Buerstmayr, M.; Steiner, B.; Buerstmayr, H. Breeding for Fusarium head blight resistance in wheat—Progress and challenges. Plant Breed. 2020, 139, 429–454. [Google Scholar] [CrossRef]
- D’Mello, J.P.F.; Placinta, C.M.; Macdonald, A.M.C. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Anim. Feed Sci. Technol. 1999, 80, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Ji, F.; He, D.; Olaniran, A.O.; Mokoena, M.P.; Xu, J.; Shi, J. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Prod. Process. Nutr. 2019, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Fumagalli, F.; Ottoboni, M.; Pinotti, L.; Cheli, F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins 2021, 13, 572. [Google Scholar] [CrossRef]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef] [Green Version]
- Gautier, C.; Pinson-Gadais, L.; Richard-Forget, F. Fusarium Mycotoxins Enniatins: An Updated Review of Their Occurrence, the Producing Fusarium Species, and the Abiotic Determinants of Their Accumulation in Crop Harvests. J. Agric. Food Chem. 2020, 68, 4788–4798. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Verschuren, J.; De Clerck, K.; Kiekens, P.; Leys, C. Non-thermal plasma treatment of textiles. Surf. Coat. Technol. 2008, 202, 3427–3449. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine. Agric. Food Ind. Appl. Sci. 2021, 11, 4809. [Google Scholar]
- Du, C.; Yan, J. Surface Sterilization by Atmospheric Pressure Non-thermal Plasma. In Plasma Remediation Technology for Environmental Protection; Du, C., Yan, J., Eds.; Springer: Singapore, 2017; pp. 61–73. [Google Scholar]
- Laskowska, M.; Boguslawska-Was, E.; Kowal, P.; Holub, M.; Dabrowski, W. Efficiency of using non-thermal plasma in microbiology and medicine. Postepy Mikrobiologii 2016, 55, 172–181. [Google Scholar]
- Tanaka, H.; Hori, M. Medical applications of non-thermal atmospheric pressure plasma. J. Clin. Biochem. Nutri. 2017, 60, 29–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyzek, S.; Uhrin, F.; Holubová, L.; Tomeková, J.; Ďurovcová, I.; Špačková, J.; Ševčovičová, A.; Gálová, E. Potential Use of Non-thermal Plasma in Oncotherapy. Chemicke Listy 2019, 113, 500–504. [Google Scholar]
- Kajiyama, H.; Utsumi, F.; Nakamura, K.; Tanaka, H.; Toyokuni, S.; Hori, M.; Kikkawa, F. Future perspective of strategic non-thermal plasma therapy for cancer treatment. J. Clin. Biochem. Nutr. 2017, 60, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Mendoza, B.; Lopez-Callejas, R.; Rodriguez-Mendez, B.G.; Eguiluz, R.P.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Betancourt-Angeles, M.; Reyes-Frias, M.D.; Reboyo-Barrios, D.; Chavez-Aguilar, E. Healing of wounds in lower extremities employing a non-thermal plasma. Clin. Plasma Med. 2019, 16, 100094. [Google Scholar] [CrossRef]
- Saleem, M.; Naz, M.Y.; Shoukat, B.; Shukrullah, S.; Hussain, Z. Functionality and applications of non-thermal plasma activated textiles: A review. In Proceedings of the 4th International Conference on Materials Science and NanoTechnology (MSNANO), Faisalabad, Pakistan, 3–5 March 2020. [Google Scholar]
- Pandiyaraj, K.N.; Vasu, D.; Ramkumar, M.C.; Deshmukh, R.R.; Ghobeira, R. Improved degradation of textile effluents via the synergetic effects of Cu-CeO2 catalysis and non-thermal atmospheric pressure plasma treatment. Sep. Purif. Technol. 2021, 258, 118037. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Palma, V. Enhanced azo dye removal in aqueous solution by H2O2 assisted non-thermal plasma technology. Environ. Technol. Innov. 2020, 19, 100969. [Google Scholar] [CrossRef]
- Świecimska, M.; Tulik, M.; Šerá, B.; Golińska, P.; Tomeková, J.; Medvecká, V.; Bujdáková, H.; Oszako, T.; Zahoranová, A.; Šerý, M. Non-Thermal Plasma Can Be Used in Disinfection of Scots Pine (Pinus sylvestris L.). Seeds Infected Fusarium Oxysporum. For. 2020, 11, 837. [Google Scholar]
- Šerá, B.; Zahoranová, A.; Bujdáková, H.; Šerý, M. Disinfection from pine seeds contaminated with Fusarium circinatum Nirenberg & O’Donnell using non-thermal plasma treatment. Roman. Rep. Phy. 2019, 71, 701. [Google Scholar]
- Mandal, R.; Singh, A.; Singh, A.P. Recent developments in cold plasma decontamination technology in the food industry. Trends. Food Sci. Technol. 2018, 80, 93–103. [Google Scholar] [CrossRef]
- Sonawane, S.K.; Marar, T.; Patil, S. Non-thermal plasma: An advanced technology for food industry. Food Sci. Technol. Internat. 2020, 26, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Kulawik, P.; Tiwari, B.K. Recent advancements in the application of non-thermal plasma technology for the seafood industry. Crit. Review. Food Sci. Nutri. 2019, 59, 3199–3210. [Google Scholar] [CrossRef] [PubMed]
- Birania, S.; Attkan, A.K.; Kumar, S.; Kumar, N.; Singh, V.K. Cold plasma in food processing and preservation: A review. J. Food Process Eng. 2022, 45, 14110. [Google Scholar] [CrossRef]
- Orellana, L.E.; Plaza, M.D.; Perez, F.; Cedeno, Y.; Perales, O. Non-thermal Methods for Food Preservation. In Food Microbiology and Food Safety; Juneja, V., Dwivedi, H., Sofos, J., Eds.; Springer: New York, NY, USA, 2017; pp. 299–326. [Google Scholar]
- Asl, P.J.; Rajulapati, V.; Gavahian, M.; Kapusta, I.; Putnik, P.; Khaneghah, A.M.; Marszalek, K. Non-thermal plasma technique for preservation of fresh foods: A review. Food Cont. 2022, 134, 108560. [Google Scholar] [CrossRef]
- Chacha, J.S.; Zhang, L.Y.; Ofoedu, C.E.; Suleiman, R.A.; Dotto, J.M.; Roobab, U.; Agunbiade, A.O.; Duguma, H.T.; Mkojera, B.T.; Hossaini, S.M.; et al. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016–2021). Foods 2021, 10, 1430. [Google Scholar] [CrossRef]
- Scholtz, V.; Jirešová, J.; Šerá, B.; Julák, J. A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods 2021, 10, 2927. [Google Scholar] [CrossRef]
- Zhang, B.; Li, R.H.; Yan, J.C. Study on activation and improvement of crop seeds by the application of plasma treating seeds equipment. Arch. Biochem. Biophys. 2018, 655, 37–42. [Google Scholar] [CrossRef]
- Perez-Piza, M.C.; Prevosto, L.; Grijalba, P.E.; Zilli, C.G.; Cejas, E.; Mancinelli, B.; Balestrasse, K.B. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon 2019, 5, 01495. [Google Scholar] [CrossRef] [Green Version]
- Perez-Piza, M.C.; Cejas, E.; Zilli, C.; Prevosto, L.; Mancinelli, B.; Santa-Cruz, D.; Yannarelli, G.; Balestrasse, K. Enhancement of soybean nodulation by seed treatment with non-thermal plasmas. Sci. Rep. 2020, 10, 4917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yemeli, G.B.N.; Janda, M.; Machala, Z. Non-thermal Plasma as a Priming Tool to Improve the Yield of Pea in Outdoor Conditions. Plasma Chem. Plasma Process. 2022, 42, 1143–1168. [Google Scholar] [CrossRef]
- Perez-Piza, M.C.; Clausen, L.; Cejas, E.; Ferreyra, M.; Chamorro-Garces, J.C.; Fina, B.; Zilli, C.; Vallecorsa, P.; Prevosto, L.; Balestrasse, K. Non-thermal plasma application improves germination, establishment and productivity of Gatton panic grass (Megathyrsus maximus) without compromising forage quality. Crop Pasture Sci. 2022, 73, 1188–1199. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pierto, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant. Path. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Homa, K.; Barney, W.P.; Davis, W.P.; Guerrero, D.; Berger, M.J.; Lopez, J.L.; Wyenandt, C.A.; Simon, J.E. Cold Plasma Treatment Strategies for the Control of Fusarium oxysporum f. sp. basilici in Sweet Basil. HortScience 2021, 56, 42–51. [Google Scholar] [CrossRef]
- Panngom, K.; Lee, S.H.; Park, D.H.; Sim, G.B.; Kim, Y.H.; Uhm, H.S.; Park, G.; Choi, E.H. Non-thermal plasma treatment diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host. PLoS ONE 2014, 9, e99300. [Google Scholar] [CrossRef]
- Go, S.M.; Park, M.R.; Kim, H.S.; Choi, W.S.; Jeong, R.D. Antifungal effect of non-thermal atmospheric plasma and its application for control of postharvest Fusarium oxysporum decay of paprika. Food Cont. 2019, 98, 245–252. [Google Scholar] [CrossRef]
- Zahoranová, A.; Henselová, M.; Hudecová, D.; Kaliňáková, B.; Kováčik, D.; Medvecká, V.; Černák, M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem. Plasma Process. 2016, 36, 397–414. [Google Scholar] [CrossRef]
- Zahoranová, A.; Hoppanová, L.; Šimončicová, J.; Tučeková, Z.; Medvecká, V.; Hudecová, D.; Kaliňáková, B.; Kováčik, D.; Černák, M. Effect of cold atmospheric pressure plasma on maize seeds: Enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem. Plasma Process. 2018, 38, 969–988. [Google Scholar] [CrossRef]
- Hoppanová, L.; Medvecká, V.; Dylíková, J.; Hudecová, D.; Kaliňáková, B.; Kryštofová, S.; Zahoranová, A. Low-temperature plasma applications in chemical fungicide treatment reduction. Acta Chimica Slovaca 2020, 13, 26–33. [Google Scholar] [CrossRef]
- Bousba, H.E.; Saoudi, M.; Sahli, S.; Namous, W.S.E.; Benterrouche, L. Effect of Different Plasma Working Gas Mixtures on the Decontamination of Fungus Polluted Water. In Proceeding of the 6th International Symposium on Dielectric Materials and Applications (ISyDMA), Calais, France, 15–17 December 2021. [Google Scholar]
- Wang, Y.Q.; Li, B.; Shang, H.H.; Ma, R.N.; Zhu, Y.P.; Yang, X.D.; Ju, S.Y.; Zhao, W.B.; Sun, H.; Zhuang, J.; et al. Effective inhibition of fungal growth, deoxynivalenol biosynthesis and pathogenicity in cereal pathogen Fusarium spp. by cold atmospheric plasma. Chem. Eng. J. 2022, 437, 135307. [Google Scholar]
- Chang, E.H.; Bae, Y.S.; Shin, I.S.; Choi, H.J.; Lee, J.H.; Choi, J.W. Microbial Decontamination of Onion by Corona Discharge Air Plasma during Cold Storage. J. Food Qual. 2018, 2018, 3481806. [Google Scholar] [CrossRef]
- Sandanuwan, T.; Attygalle, D.; Amarasinghe, S.; Weragoda, S.C.; Ranaweera, B.; Rathnayake, K.; Alankara, W. Shelf Life Extension of Cavendish Banana Fruit Using Cold Plasma Treatment. In Proceedings of the 6th International Multidisciplinary Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 28–30 July 2020. [Google Scholar]
- ten Bosch, L.; Pfohl, K.; Avramidis, G.; Wieneke, S.; Viol, W.; Karlovsky, P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins 2017, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasian, E.G.; Bayat, M.; Nosrati, A.C.; Hashemi, S.J.; Ghoranneviss, M. Study of the effect of plasma jet on Fusarium isolates with ability to produce DON toxins. Wor. Fam. Medic. 2017, 15, 204–207. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; He, Z.P.; Ma, C.; Li, W.T.; Wang, J.Y.; Lin, F.C.; Liu, X.Q.; Li, L. Evaluation of cold plasma for decontamination of molds and mycotoxins in rice grain. Food Chem. 2022, 402, 134159. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, X.L.; Zhang, J.Y.; Ding, Y.T.; Lyu, F. Effects of tempering with plasma activated water on the degradation of deoxynivalenol and quality properties of wheat. Food Res. Int. 2022, 162, 112070. [Google Scholar] [CrossRef]
- Iqdiam, B.M.; Feizollahi, E.; Arif, M.F.; Jeganathan, B.; Vasanthan, T.; Thilakarathna, M.S.; Roopesh, M.S. Reduction of T-2 and HT-2 mycotoxins by atmospheric cold plasma and its impact on quality changes and germination of wheat grains. J. Food. Sci. 2021, 86, 1354–1371. [Google Scholar] [CrossRef]
- Rüntzel, C.L.; da Silva, J.R.; da Silva, B.A.; Moecke, E.S.; Scussel, V.M. Effect of cold plasma on black beans (Phaseolus vulgaris L.), fungi inactivation and micro-structures stability. Emr. J. Food. Agric. 2019, 31, 864–873. [Google Scholar] [CrossRef]
- Guo, J.; Qin, D.; Li, W.; Wu, F.; Li, L.; Liu, X. Inactivation of Penicillium italicum on kumquat via plasma-activated water and its effects on quality attributes. Int. J. Food Microbiol. 2021, 343, 109090. [Google Scholar] [CrossRef]
- Ahmad, A.; Sripong, K.; Uthairatanakij, A.; Photchanachai, S.; Pankasemsuk, T.; Jitareerat, P. Decontamination of seed borne disease in pepper (Capsicum annuum L.) seed and the enhancement of seed quality by the emulated plasma technology. Scient. Hortic. 2022, 291, 110568. [Google Scholar] [CrossRef]
- Park, H.; Puligundla, P.; Mok, C. Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. LWT 2020, 131, 109508. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Lu, X.P.; Feng, A.; Pan, Y.; Ostrikov, K. Highly effective fungal inactivation in He+O2 atmospheric-pressure nonequilibrium plasmas. Phys. Plasmas. 2010, 17, 123502. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Liu, D.; Song, Y.; Zhou, R.; Jinhai, N. Inactivation of the Tomato Pathogen Cladosporium fulvum by an Atmospheric-Pressure Cold Plasma Jet. Plasma Process. Polym. 2014, 11, 1028–1036. [Google Scholar] [CrossRef]
- Shaw, A.; Seri, P.; Borghi, C.A.; Shama, G.; Iza, F. A reference protocol for comparing the biocidal properties of gas plasma generating devices. J. Phys. D Appl. Phys. 2015, 48, 484001. [Google Scholar] [CrossRef] [Green Version]
- Khun, J.; Scholtz, V.; Hozák, P.; Fitl, P.; Julák, J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018, 27, 065002. [Google Scholar] [CrossRef]
- Adhikari, B.; Pangomm, K.; Veerana, M.; Mitra, S.; Park, G. Plant Disease Control by Non Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020, 11, 77. [Google Scholar] [CrossRef]
- Zhang, M.; Ye, Z.; Xing, C.; Chen, H.; Zhnag, J.; Yan, M. Degradation of Deoxynivalenol in wheat by double dielectric barrier discharge cold plasma: Identification and pathway of degradation products. J. Sci. Food Agric. 2022, accepted. [Google Scholar] [CrossRef]
- Ott, L.C.; Appleton, H.J.; Shi, H.; Keener, K.; Mellata, M. High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin. Food Microbiol. 2021, 95, 103669. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Vukić, M.; Pezo, L.; Orčić, D.; Puač, N.; Škoro, N.; Milidrag, A.; Šoronja Simović, D. Effect of Atmospheric Cold Plasma Treatments on Reduction of Alternaria Toxins Content in Wheat Flour. Toxins 2019, 11, 704. [Google Scholar] [CrossRef] [Green Version]
- Varilla, C.; Marcone, M.; Annor, G.A. Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 2020, 9, 1435. [Google Scholar] [CrossRef]
- Hamad, G.M.; Mehany, T.; Simal-Gandara, J.; Abou-Alella, S.; Esua, O.J.; Abdel-Wahhab, M.A.; Hafez, E.E. A review of recent innovative strategies for controlling mycotoxins in foods. Food Cont. 2023, 144, 109350. [Google Scholar] [CrossRef]
- Gavahian, M.; Cullen, P.J. Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Rev. Internat. 2019, 36, 193–214. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, J.-H.; Sun, D.-W. Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends Food Sci. Technol. 2021, 109, 647–661. [Google Scholar] [CrossRef]
- Lee, G.J.; Sim, G.B.; Choi, E.H.; Kwon, Y.-W.; Kim, J.Y.; Jang, S.; Kim, S.H. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy. J. Appl. Phys. 2015, 117, 023303. [Google Scholar] [CrossRef]
- Šimončicová, J.; Kryštofová, S.; Medvecká, V.; Ďurišová, K.; Kaliňáková, B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 5117–5129. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U. Consequences of non-thermal cold plasma treatment on meat and dairy lipids—A review. Future Foods 2021, 4, 10095. [Google Scholar] [CrossRef]
- Almeida, F.D.L.; Cavalcante, R.S.; Cullen, P.J.; Frias, J.; Bourke, P.; Fernandes, F.A.N.; Rodrigues, S. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innov. Food Sci. Emerg. Technol. 2015, 32, 127–135. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
Fusarium spp. | Pathogen(s) Under Study | Test Crop/Plant/Tree/Subject | Plasma Treatment Type | Plasma Treatment Conditions | Salient Results | References |
---|---|---|---|---|---|---|
Fusarium oxysporum | Fusarium oxysporum f. sp. basilici | Sweet basil | Cold plasma | G: He V: 13 kV P: 15 W Fr: 28.8 kHz Time: 5, 10, or 15 min | Cold plasma jet showed no significant effect on mycelium. Direct cold plasma jet on seedlings and cold plasma dielectric barrier discharge on seeds exhibited varying efficacies. | [38] |
Fusarium oxysporum f.sp. lycopersici | Tomato | Non-thermal plasma treatment | G: air or argon V: 0.75 kV P: 7.5 W C: 80 mA | Fungal spore germination was reduced over time after exposure to plasma treatment for 10 min. Necrotic death was observed in the majority of treated spores. Increased transcription of pathogenesis-related genes. | [39] | |
Fusarium oxysporum | Paprika in spices | Non-thermal atmospheric plasma (NTAP) | G: air P: 1000 W Fr: 28 kHz Time: 0, 10, 30, 45, and 90 s | NTAP showed complete inhibition of F. oxysprum spores and mycelial growth. Loss of plasma membrane and up-regulation of membrane-related gene (SHO1). In vivo, 50% inhibition of fungal pathogens after 90 s treatment. | [40] | |
Fusarium oxysporum | Pine seeds | Non-thermal plasma | G: air V: 20 kV P: 400 W Fr: 14 kHz Time: 1, 3, 5, 10, 15, 20, 30, and 60 s | 3 s of plasma treatment was optimal for inhibiting F. oxysporum growth. | [22] | |
Fusarium culmorum | Fusarium nivale, F. culmorum, Trichothecium roseum, Aspergillus flavus and Aspergillus clavatus | Wheat | Cold Atmospheric Pressure Plasma | G: air V: 20 kV P: 400 W Fr: 14 kHz Time: 30–300 s | The efficiency of plasma treatment decreased in the following order: Fusarium nivale > F. culmorum > Trichothecium roseum > Aspergillus flavus > A. clavatus. | [41] |
Aspergillus flavus, Alternaria alternata and Fusarium culmorum | Maize | Cold Atmospheric Pressure Plasma | G: air V: 20 kV P: 400 W Fr: 14 kHz Time: 30–300 s | F. culmorum was reduced by 3.79 log (CFU/g) after 60 s treatment, while the reduction in A. flavus and A. alternata was found by 4.21 log (CFU/g) and 3.22 log (CFU/g), respectively, after 300 s plasma treatment. | [42] | |
Fusarium culmorum | Wheat and Barley | Low-temperature plasma (LTP) | G: air V: 20 kV P: 400 W Fr: 14 kHz Time: 15, 30, and 60 s | Plasma treatment of 120–300 s significantly inhibited F. culmorum on the seed surface. A combination of plasma and chemical fungicide proved more effective. | [43] | |
Fusarium graminearum | Fusarium pseudograminaerum | Fungal polluted water | Plasma working gas mixtures | G: He, O2, N2O V: 14 kV Fr: 5 kHz Time: 5–25 min | He + N2O and He + Air treatment for 5 and 25 min, respectively, decontaminated the water; whereas He + O2 had the opposite effect and allowed fungal growth after treatment. | [44] |
F. graminearum HX01, F. graminearum LY26, F. pseudograminearum and F. moniliforme | Wheat | Cold atmospheric plasma | G: air V: 2 kV P: 5 ± 0.15 W Fr: 7 kHz Time: 0, 1, 2, and 3 min | In vitro, cold atmospheric plasma effectively inactivated all strains of the fungi. In vivo, cold atmospheric plasma inactivated fungal spores. | [45] | |
Fusarium spp., Alternaria spp. and Botrytis cinerea | Fusarium spp., Alternaria spp. and Botrytis cinerea | Onion | Corona Discharge Air Plasma (CDAP) | G: Ozone V: 20 kV Fr: 60 Hz Time: 6 h/day | A low concentration of O3 stimulated growth, and a high concentration inhibited growth in Alternaria spp. Botrytis cinerea showed time-dependent results: with lower time, growth was inhibited, and with higher time treatment, growth was promoted. | [46] |
Colletotrichum musae, Fusarium semitectum, and Colletotrichum gloeosporioides | Colletotrichum musae, Fusarium semitectum, and Colletotrichum gloeosporioides | Cavendish banana | Cold plasma | G: air V: 15 kV Time: 0, 0.5, 1, 2, 3 min | The percentage disease index (PDI) in cold plasma was significantly lowered. | [47] |
Fusarium circinatum | Fusarium circinatum | Pine seeds | Non-thermal plasma treatment | G: air V: 10 kV P: 400 W Fr: 14 kHz Time: 30–300 s | Reduction of seed-borne pathogens by 14–100%. Inoculated seeds remained mold-free for 12 days post-plasma treatment of 60 s. | [23] |
Pathogen(s) | Mycotoxin(s) Studied | Plasma Treatment Type | Plasma Treatment Conditions | Salient Results | References |
---|---|---|---|---|---|
Fusarium, Aspergillus and Alternata species | AAL toxin, enniatin A, enniatin B, fumonisin B1, sterigmatocystin, deoxynivalenol, T2-toxin, and Zearalenone | Cold atmospheric pressure plasma | G: air V: 38 kV P: 4 W/cm2 Fr: 17 kHz Time: 0, 5, 10, 20, 30, 60 s | All pure mycotoxins decayed after 60 s post-plasma treatment. Degradation rates varied due to mycotoxin structure and the matrix. | [48] |
Fusarium spp. | Deoxynivalenol | Plasma jet | G: Argon Fr: 25 kHz Time: 60 s | Argon plasma jet destroyed both mycotoxin and Fusarium spp., producing a mycotoxin. | [49] |
F. graminearum HX01, F. graminearum LY26, F. pseudograminearum and F. moniliforme | Deoxynivalenol | Cold atmospheric plasma | G: air V: 2 kV P: 5 ± 0.15 W Fr: 7 kHz Time: 0, 1, 2, and 3 min | Cold atmospheric plasma reduced DON production in wheat grains under in vivo conditions. | [45] |
Aspergillus niger, Rhizopus oryzae, Penicillium verrucosum, Fusarium graminearum | Deoxynivalenol and Dochratoxin A | Cold plasma | G: air V: 25 kV Time: 2, 4, 6, and 8 min | Microbial activities were inhibited by cold plasma. DON and OTA mycotoxins were reduced by 61.25% and 55.64%, respectively. | [50] |
Fusarium graminearum | Deoxynivalenol | Plasma activated water (PAW) | G: H2O2 and O3 V: 20, 30, 40, and 50 kV Time: 2, 4, 6, 8, and 10 min | DON mycotoxin reduced by 58.78% using PAW, and H2O2 and O3 were contributors to PAW. | [51] |
T-2 and HT-2 standard toxins | T-2 and HT-2 | Atmospheric cold plasma | G: air V: 0 to 34 kV P: 300 W Fr: 3500 Hz Time: 0, 2.5, 5, 7.5, and 10 min | Pure T-2 and HT-2 significantly reduced by 63.63% and 51.5%, respectively. After 10 min post-plasma treatment, mycotoxin spiked wheat grains reduced T-2 and HT-2 by 79.8% and 70.4%, respectively. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doshi, P.; Šerá, B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. Plants 2023, 12, 627. https://doi.org/10.3390/plants12030627
Doshi P, Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. Plants. 2023; 12(3):627. https://doi.org/10.3390/plants12030627
Chicago/Turabian StyleDoshi, Pratik, and Božena Šerá. 2023. "Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination" Plants 12, no. 3: 627. https://doi.org/10.3390/plants12030627
APA StyleDoshi, P., & Šerá, B. (2023). Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. Plants, 12(3), 627. https://doi.org/10.3390/plants12030627