Effects of Mycotoxin Fumagillin, Mevastatin, Radicicol, and Wortmannin on Photosynthesis of Chlamydomonas reinhardtii
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Four Mycotoxins on the Oxygen Evolution Rate of PSII
2.2. Effects of Four Mycotoxins on Chl a Fluorescence Imaging
2.3. Effects of Four Mycotoxins on Chl a Fluorescence Rise Kinetics OJIP
2.4. Effects of Four Mycotoxins on the Selected JIP Test Parameters
2.5. Modeling of Four Mycotoxins’ Binding Niche at the QB-Site of the D1 Protein
3. Materials and Methods
3.1. Plant Materials and Chemicals
3.2. Measurement of PSII Oxygen Evolution Rate
3.3. Chl a Fluorescence Imaging
3.4. Chl a Fluorescence Rise Kinetics OJIP and JIP-Test
3.5. Modeling of Four Mycotoxins in the QB Binding Site
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, Y.; Luo, Z.; Gao, L.; Li, R.; Zhang, Y.; Kalaji, H.M.; Qiang, S.; Chen, S. Recent advances in Alternaria phytotoxins: A review of their occurrence, structure, bioactivity and biosynthesis. J. Fungi 2022, 8, 168. [Google Scholar] [CrossRef]
- Dayan, F.E.; Duke, S.O. Protoporphyrinogen oxidase-inhibiting herbicides. Plant Physiol. 2010, 166, 1090–1105. [Google Scholar] [CrossRef] [PubMed]
- Guruceaga, X.; Perez-Cuesta, U.; Abad-Diaz de Cerio, A.; Gonzalez, O.; Alonso, R.M.; Hernando, F.L.; Ramirez-Garcia, A.; Rementeria, A. Fumagillin, a mycotoxin of Aspergillus fumigatus: Biosynthesis, biological activities, detection, and applications. Toxins 2020, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Sin, N.; Meng, L.; Wang, M.; Wen, J.; Bornmann, W.; Crews, C. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. USA 1997, 94, 6099–6103. [Google Scholar] [CrossRef]
- van den Heever, J.P.; Thompson, T.S.; Curtis, J.M.; Ibrahim, A.; Pernal, S.F. Fumagillin: An overview of recent scientific advances and their significance for apiculture. J. Agric. Food Chem. 2014, 63, 2728–2737. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.; Giglione, C.; Pierre, M.; Espagne, C.; Meinnel, T. Functional and developmental impact of cytosolic protein N-terminal methionine excision in Arabidopsis. Plant Physiol. 2005, 137, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. 1976, 29, 1346–1348. [Google Scholar] [CrossRef]
- Soto, G.; Stritzler, M.; Lisi, C.; Alleva, K.; Pagano, M.; Ardila, F.; Mozzicafreddo, M.; Cuccioloni, M.; Angeletti, M.; Ayub, N. Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. J. Exp. Bot. 2011, 62, 5699–5711. [Google Scholar] [CrossRef]
- Delmotte, P.; Delmotte-Plaquee, J. A new antifungal substance of fungal origin. Nature 1953, 171, 344. [Google Scholar] [CrossRef]
- Bang, S.; Shim, S.H. Beta resorcylic acid lactones (RALs) from fungi: Chemistry, biology, and biosynthesis. Arch. Pharm. Res. 2020, 43, 1093–1113. [Google Scholar] [CrossRef]
- Inoue, H.; Li, M.; Schnell, D.J. An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proc. Natl. Acad. Sci. USA 2013, 110, 3173–3178. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.; Mirocha, C. Isolation and purification of a hemorrhagic factor (wortmannin) from Fusarium oxysporum (N17B). Appl. Environ. Microbiol. 1988, 54, 1268–1274. [Google Scholar] [CrossRef]
- Matsuoka, K.; Bassham, D.; Raikhel, N.; Nakamura, K. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 1995, 130, 1307–1318. [Google Scholar] [CrossRef]
- Robinson, D.G.; Jiang, L.; Schumacher, K. The endosomal system of plants: Charting new and familiar territories. Plant Physiol. 2008, 147, 1482–1492. [Google Scholar] [CrossRef] [PubMed]
- Workman, P.; Clarke, P.A.; Raynaud, F.I.; van Montfort, R.L.M. Drugging the PI3 kinome: From chemical tools to drugs in the clinic. Cancer Res. 2010, 70, 2146–2157. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cai, Y.; Miao, Y.; Lam, S.; Jiang, L. Wortmannin induces homotypic fusion of plant prevacuolar compartments. J. Exp. Bot. 2009, 60, 3075–3083. [Google Scholar] [CrossRef]
- Okazaki, K.; Miyagishima, S.; Wada, H. Phosphatidylinositol 4-Phosphate negatively regulates chloroplast division in Arabidopsis. Plant Cell 2015, 27, 663–674. [Google Scholar] [CrossRef]
- Xiong, J.; Subramaniam, S.; Govindjee. Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: Implications for herbicide and bicarbonate binding. Protein Sci. 1996, 5, 2054–2073. [Google Scholar] [CrossRef]
- Fedtke, C.; Duke, S.O. Herbicides. In Plant Toxicology, 4th ed.; Hock, B., Elstner, E.F., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 247–330. [Google Scholar]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Ed.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. [Google Scholar]
- Stirbet, A.; Govindjee. On the relation between the Kautsky effect (Chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Chen, L.S.; Li, P.; Cheng, L. Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta 2008, 228, 745–756. [Google Scholar] [CrossRef]
- Tóth, S.Z.; Oukarroum, A.; Schansker, G. Probing the photosynthetic apparatus noninvasively in the laboratory of Reto Strasser in the countryside of Geneva between 2001 and 2009. Photosynthetica 2020, 58, 560–572. [Google Scholar] [CrossRef]
- Lazar, D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006, 33, 9–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, X.; Dai, X.; Yang, C.; Qiang, S. Identification of tenuazonic acid as a novel type of natural photosystem II inhibitor binding in QB-site of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 2007, 1767, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Strasser, R.J.; Qiang, S. In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant Physiol. Biochem. 2014, 84, 10–21. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, F.; Yin, C.; Strasser, R.J.; Yang, C.; Qiang, S. Application of fast chlorophyll a fluorescence kinetics to probe action target of 3-acetyl-5-isopropyltetramic acid. Environ. Exp. Bot. 2011, 71, 269–279. [Google Scholar] [CrossRef]
- Jiang, H.X.; Chen, L.S.; Zheng, J.G.; Han, S.; Tang, N.; Smith, B.R. Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol. 2008, 28, 1863–1871. [Google Scholar] [CrossRef]
- Pinior, A.; Grunewaldt-Stocker, G.; von Alten, H.; Strasser, R.J. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 2005, 15, 596–605. [Google Scholar] [CrossRef]
- Srivastava, A.; Jüttner, F.; Strasser, R.J. Action of the allelochemical, fischerellin A, on photosystem II. Biochim. Biophys. Acta 1998, 1364, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, W.; Wang, H.; Wang, X.; Qiang, S.; Kalaji, H.M.; Strasser, R.J.; Chen, S. Action mode of the mycotoxin patulin as a novel natural photosystem II inhibitor. J. Agric. Food Chem. 2021, 69, 7313–7323. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Lawlor, D.W. In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves. Plant Cell Environ. 1993, 16, 785–795. [Google Scholar] [CrossRef]
- Lin, Z.H.; Chen, L.S.; Chen, R.B.; Zhang, F.Z.; Jiang, H.X.; Tang, N. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol. 2009, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.H.; Yang, C.Y.; Zhang, X.; Hou, X.P.; Zhang, S.Q.; Dai, X.Z.; Zhang, X.H.; Igarashi, Y.; Luo, F. Algicidal effect of tryptoline against Microcystis aeruginosa: Excess reactive oxygen species production mediated by photosynthesis. Sci. Total Environ. 2022, 806, 150719. [Google Scholar] [CrossRef]
- Trebst, A. The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of photosystem II. Z. Naturforsch. 1987, 42, 742–750. [Google Scholar] [CrossRef]
- Oettmeier, W. Herbicide resistance and super sensitivity in photosystem II. Cell Mol. Life Sci. 1999, 55, 1255–1277. [Google Scholar] [CrossRef]
- Battaglino, B.; Grinzato, A.; Pagliano, C. Binding properties of photosynthetic herbicides with the QB Site of the D1 protein in plant photosystem II: A combined functional and molecular docking study. Plants 2021, 10, 1051. [Google Scholar] [CrossRef]
- Lancaster, C.R.D.; Michel, H. Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J. Mol. Biol. 1999, 286, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Erickson, J.M.; Pfister, K.; Rahire, M.; Togasaki, R.K.; Mets, L.; Rochaix, J.D. Molecular and biophysical analysis of herbicide-resistant mutants of Chlamydomonas reinhardtii structure-function relationship of the photosystem II D1 polypeptide. Plant Cell 1989, 1, 361–371. [Google Scholar]
- Murphy, B.P.; Tranel, P.J. Target-site mutations conferring herbicide resistance. Plants 2019, 8, 382. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Q.; Guo, Y.; Zhang, Q.; Wang, Z.; Strasser, R.J.; Valverde, B.E.; Chen, S.; Qiang, S.; Kalaji, H.M. Structure-based ligand design and discovery of novel tenuazonic acid derivatives with high herbicidal activity. J. Adv. Res. 2022, 40, 29–44. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, J.; Lu, Y.; Wang, H.; Gao, Y.; Shi, J.; Yin, C.; Wang, X.; Chen, S.; Strasser, R.J.; et al. Novel action targets of natural product gliotoxin in photosynthetic apparatus. Front. Plant Sci. 2020, 10, 1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Molecular Formula | Chemical Structure | Donor | Acceptor | Interactions | Bound Distance (Å) |
---|---|---|---|---|---|---|
DCMU | C9H10Cl2N2O | D1-Leu 218 | DCMU C10 | Alkyl Hydrophobic | 3.15 | |
D1-His 252 | DCMU C11 | Alkyl Hydrophobic | 3.22 | |||
D1-Ser 264 Oγ | DCMU NH | Hydrogen Bond | 2.37 | |||
D1-Leu 271 | DCMU C11 | Alkyl Hydrophobic | 3.17 | |||
Fumagillin | C26H34O7 | D1-Phe 211 | Fum C17 | Pi-Hydrophobic | 3.52 | |
D1-Met 214 | Fum C17 | Alkyl Hydrophobic | 3.48 | |||
D1-His 215 | Fum C7 | Alkyl Hydrophobic | 3.63 | |||
D1-Leu 218 | Fum C13 | Alkyl Hydrophobic | 3.67 | |||
D1-Val 219 | Fum C13 | Alkyl Hydrophobic | 3.18 | |||
D1-Tyr 246 | Fum C13 | Alkyl Hydrophobic | 3.23 | |||
D1-Ile 248 | Fum C12 | Alkyl Hydrophobic | 3.20 | |||
D1-Ala 251 | Fum C12 | Alkyl Hydrophobic | 3.49 | |||
D1-Phe 255 | Fum C15 | Pi Hydrophobic | 3.64 | |||
D1-Phe 265 NH | Fum O9 | Hydrogen Bond | 2.53 | |||
D1-Leu 271 | Fum C12 | Alkyl Hydrophobic | 3.36 | |||
Mevastatin | C23H34O5 | D1-Phe 211 | Mev C23 | Pi Hydrophobic | 3.21 | |
D1- Met 214 | Mev C9 | Alkyl Hydrophobic | 3.18 | |||
D1-Phe 265 CO | Mev C15-OH | Hydrogen Bond | 2.67 | |||
D1-Leu 271 | Mev C23 | Alkyl Hydrophobic | 3.55 | |||
D1-Phe 274 | Mev C24 | Pi Hydrophobic | 3.46 | |||
Radicicol | C18H17ClO6 | D1-Phe 255 | Rad C9-CH3 | Pi Hydrophobic | 3.31 | |
D1-Ile 259 | Rad Ph | Pi Hydrophobic | 3.64 | |||
D1-Ala 263 | Rad Ph | Pi Hydrophobic | 3.57 | |||
D1-Phe 265 NH | Rad O13 | Hydrogen Bond | 2.52 | |||
Wortmannin | C23H24O8 | D1-Phe 211 | Wor C12 | Pi Hydrophobic | 3.51 | |
D1-Phe 265 NH | Wor O7 | Hydrogen Bond | 2.39 | |||
D1-Leu 271 | Wor C6-CH3 | Alkyl Hydrophobic | 3.28 | |||
D1-Phe 274 | Wor C12 | Pi Hydrophobic | 3.37 |
Technical Fluorescence Parameter | |
---|---|
Ft | fluorescence at time t after onset of actinic illumination |
FO ≅ F20μs | minimal fluorescence, when all PSII RCs are open |
FK ≡ F300μs | fluorescence intensity at the K step (300 μs) of OJIP |
FJ ≡ F2ms | fluorescence intensity at the J step (2 ms) of OJIP |
FI ≡ F30ms | fluorescence intensity at the I step (30 ms) of OJIP |
FP (=FM) | maximal recorded fluorescence intensity, at the peak P of OJIP |
Fv ≡ Ft − FO | variable fluorescence at time t |
FV ≡ FM − FO | maximal variable fluorescence |
tFM Area | time (in ms) to reach the maximal fluorescence intensity FM total complementary area between the fluorescence induction curve and F = FM |
Vt ≡ (Ft − FO)/(FM − FO) | relative variable fluorescence at time t |
VJ = (FJ − FO)/(FM − FO) VI = (FI − FO)/(FM − FO) M0 ≡ 4(F270μs − FO)/(FM − FO) Sm ≡ Area/(FM − FO) | relative variable fluorescence at the J step relative variable fluorescence at the I step transient normalized on the maximal variable fluorescence FV normalized total complementary area above the O-J-I-P transient (reflecting multiple-turnover QA reduction events) |
N ≡ Sm/Ss = Sm·M0/VJ | turnover number: number of QA reduction events between time 0 and tFM |
Quantum efficiencies or flux ratios | |
φPo = PHI(P0) = TR0/ABS = 1 − FO/FM | maximum quantum yield for primary photochemistry |
ψEo = PSI0 = ET0/TR0 = (1 − VJ) | probability that an electron moves further than QA− |
φEo = PHI(E0) = ET0/ABS = (1 − FO/FM) (1 − VJ) | quantum yield for electron transport (ET) |
γRC = ChlRC/Chltotal = RC/(ABS + RC) | probability that a PSII Chl molecule functions as RC |
Specific energy fluxes | |
ET0/RC = M0·(1/VJ)·(1 − VJ) | electron transport flux per RC (at t = 0) |
Density of RCs | |
Sm/tFM = [RCopen/(RCclose + RCopen)] av RJ = [ψEo(mock) − ψEo(treatment)]/ ψEo(mock) | average fraction of open RCs of PSII in the time span between 0 to tFM number of PSII RCs with QB-site filled by PSII inhibitor |
Performance indexes | |
≡ | performance index (potential) for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Jiang, M.; Wang, H.; Luo, Z.; Guo, Y.; Chen, Y.; Zhao, X.; Qiang, S.; Strasser, R.J.; Kalaji, H.M.; et al. Effects of Mycotoxin Fumagillin, Mevastatin, Radicicol, and Wortmannin on Photosynthesis of Chlamydomonas reinhardtii. Plants 2023, 12, 665. https://doi.org/10.3390/plants12030665
Shi J, Jiang M, Wang H, Luo Z, Guo Y, Chen Y, Zhao X, Qiang S, Strasser RJ, Kalaji HM, et al. Effects of Mycotoxin Fumagillin, Mevastatin, Radicicol, and Wortmannin on Photosynthesis of Chlamydomonas reinhardtii. Plants. 2023; 12(3):665. https://doi.org/10.3390/plants12030665
Chicago/Turabian StyleShi, Jiale, Mengyun Jiang, He Wang, Zhi Luo, Yanjing Guo, Ying Chen, Xiaoxi Zhao, Sheng Qiang, Reto Jörg Strasser, Hazem M. Kalaji, and et al. 2023. "Effects of Mycotoxin Fumagillin, Mevastatin, Radicicol, and Wortmannin on Photosynthesis of Chlamydomonas reinhardtii" Plants 12, no. 3: 665. https://doi.org/10.3390/plants12030665
APA StyleShi, J., Jiang, M., Wang, H., Luo, Z., Guo, Y., Chen, Y., Zhao, X., Qiang, S., Strasser, R. J., Kalaji, H. M., & Chen, S. (2023). Effects of Mycotoxin Fumagillin, Mevastatin, Radicicol, and Wortmannin on Photosynthesis of Chlamydomonas reinhardtii. Plants, 12(3), 665. https://doi.org/10.3390/plants12030665