What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation?
Abstract
:1. Introduction
2. One Hundred Years of Boron Research
2.1. Boron and the Cell Wall: The Only Demonstrated Primary Role
2.2. The Fine-Tuning of Boron Homeostasis. Does It Support Other Primary Roles of This Micronutrient?
2.3. Boron and Cell Membranes
2.4. Boron and Developmental Events
2.5. Boron, Cell Signaling Mechanisms, and Gene Expression Regulation
3. Boron Complexing Molecules
3.1. Rhamnogalacturonan II
3.2. Cell Wall and Extracellular Matrix Glycoproteins
3.3. Ligands in Cell Membranes: Glycolipids and Glycoproteins
3.4. Soluble Potential Ligands
4. A unifying Model for B Function(s) in Plants and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Power, P.P.; Woods, W.G. The Chemistry of Boron and Its Speciation in Plants. Plant Soil 1997, 193, 1–13. [Google Scholar] [CrossRef]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of Nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 191–248. [Google Scholar] [CrossRef]
- Shorrocks, V.M. The Occurrence and Correction of Boron Deficiency. Plant Soil 1997, 193, 121–148. [Google Scholar] [CrossRef]
- Carrano, C.J.; Schellenberg, S.; Amin, S.A.; Green, D.H.; Küpper, F.C. Boron and Marine Life: A New Look at an Enigmatic Bioelement. Mar. Biotechnol. 2009, 11, 431–440. [Google Scholar] [CrossRef]
- Ricardo, A.; Carrigan, M.A.; Olcott, A.N.; Benner, S.A. Borate Minerals Stabilize Ribose. Science 2004, 303, 196. [Google Scholar] [CrossRef]
- Scorei, R. Is Boron a Prebiotic Element? A Mini-Review of the Essentiality of Boron for the Appearance of Life on Earth. Orig. Life Evol. Biosph. 2012, 42, 3–17. [Google Scholar] [CrossRef]
- Saladino, R.; Barontini, M.; Cossetti, C.; Di Mauro, E.; Crestini, C. The Effects of Borate Minerals on the Synthesis of Nucleic Acid Bases, Amino Acids and Biogenic Carboxylic Acids from Formamide. Orig. Life Evol. Biosph. 2011, 41, 317–330. [Google Scholar] [CrossRef]
- Criado-Reyes, J.; Bizzarri, B.M.; García-Ruiz, J.M.; Saladino, R.; Di Mauro, E. The Role of Borosilicate Glass in Miller–Urey Experiment. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in Plants: Deficiency and Toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef]
- Goldberg, S. Reactions of Boron with Soils. Plant Soil 1997, 193, 35–48. [Google Scholar] [CrossRef]
- Bolaños, L.; Lukaszewski, K.; Bonilla, I.; Blevins, D. Why Boron? Plant Physiol. Biochem. 2004, 42, 907–912. [Google Scholar] [CrossRef]
- Agulhon, H. The Presence and Utility of Boron in Plants. Ann. Inst. Pasteur 1910, 34, 321–329. [Google Scholar]
- Warington, K. The Effect of Boric Acid and Borax on the Broad Bean and Certain Other Plants. Ann. Bot. 1923, 37, 629–672. [Google Scholar] [CrossRef]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron Toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in Plant Biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Goldbach, H.E.; Wimmer, M.A. Boron in Plants and Animals: Is There a Role beyond Cell-Wall Structure? J. Plant Nutr. Soil Sci. 2007, 170, 39–48. [Google Scholar] [CrossRef]
- Lewis, D.H. Boron: The Essential Element for Vascular Plants That Never Was. New Phytol. 2019, 221, 1685–1690. [Google Scholar] [CrossRef]
- Bonilla, I.; Garcia-González, M.; Mateo, P. Boron Requirement in Cyanobacteria Its Possible Role in the Early Evolution of Photosynthetic Organisms. Plant Physiol. 1990, 94, 1554–1560. [Google Scholar] [CrossRef]
- Rowe, R.I.; Eckhert, C.D. Boron Is Required for Zebrafish Embryogenesis. J. Exp. Biol. 1999, 202, 1649–1654. [Google Scholar] [CrossRef]
- Bolaños, L.; Redondo-Nieto, M.; Bonilla, I.; Wall, L.G. Boron Requirement in the Discaria Trinervis (Rhamnaceae) and Frankia Symbiotic Relationship. Its Essentiality for Frankia BCU110501 Growth and Nitrogen Fixation. Physiol. Plant. 2002, 115, 563–570. [Google Scholar] [CrossRef]
- Fort, D.J.; Rogers, R.L.; McLaughlin, D.W.; Sellers, C.M.; Schlekat, C.L. Impact of Boron Deficiency on Xenopus Laevis: A Summary of Biological Effects and Potential Biochemical Roles. Biol. Trace Elem. Res. 2002, 90, 117–142. [Google Scholar] [CrossRef]
- Reguera, M.; Abreu, I.; Sentís, C.; Bonilla, I.; Bolaños, L. Altered Plant Organogenesis under Boron Deficiency Is Associated with Changes in High-Mannose N-Glycan Profile That Also Occur in Animals. J. Plant Physiol. 2019, 243, 153058. [Google Scholar] [CrossRef]
- González-Fontes, A.; Fujiwara, T. IJMS. Special Issue: Novel Aspects of Boron Biology in Plants. Boron and Plant Interaction. Available online: https://www.mdpi.com/journal/ijms/special_issues/plant_boron (accessed on 20 August 2022).
- Sommer, A.L.; Lipman, C.B. Evidence on the Indispensable Nature of Zinc and Boron for Higher Green Plants. Physiology 1926, 1, 231–249. [Google Scholar] [CrossRef]
- Johnston, E.S.; Dore, W.H. The Influence of Boron on the Chemical Composition and Growth of the Tomato Plant. Plant Physiol. 1929, 4, 31. [Google Scholar] [CrossRef]
- McHargue, J.S.; Calfee, R.K. Further Evidence That Boron Is Essential for the Growth of Lettuce. Plant Physiol. 1933, 8, 305. [Google Scholar] [CrossRef]
- Neales, T.F. The Boron Requirement of Flax Roots Grown in Sterile Culture. J. Exp. Bot. 1959, 10, 426–436. [Google Scholar] [CrossRef]
- Dear, J.; Aronoff, S. Relative Kinetics of Chlorogenic and Caffeic Acids During the Onset of Boron Deficiency in Sunflower. Plant Physiol. 1965, 40, 458–459. [Google Scholar] [CrossRef]
- Sommer, A.L.; Sorokin, H. Effects of the Absence of Boron and of Some Other Essential Elements on the Cell and Tissue Structure of the Root Tips of Pisum sativum. Plant Physiol. 1928, 3, 237–260. [Google Scholar] [CrossRef]
- Spurr, A.R. Fluorescence in Ultraviolet Light in the Study of Boron Deficiency in Celery. Science 1952, 116, 421–423. [Google Scholar] [CrossRef]
- Whittington, W.J. The Role of Boron in Plant Growth: The Effect on Growth of the Radicle. J. Exp. Bot. 1959, 10, 93–103. [Google Scholar]
- Odhnoff, C. Boron Deficiency, and Growth. Physiol. Plant. 1957, 10, 984–1000. [Google Scholar] [CrossRef]
- Albert, L.S.; Wilson, C.M. Effect of Boron on Elongation of Tomato Root Tips. Plant Physiol. 1961, 36, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.S.; Albert, L.S. Autoradiographic Examination of Meristems of Intact Boron-deficient Squash Roots Treated with Tritiated Thymidine. Physiology 1974, 54, 766–768. [Google Scholar] [CrossRef]
- Cohen, M.S.; Lepper, R. Effect of Boron on Cell Elongation and Division in Squash Roots. Plant Physiol. 1977, 59, 884–887. [Google Scholar] [CrossRef]
- Moore, H.M.; Hirsch, A.M. Effects of Boron Deficiency on Mitosis and Incorporation of Tritiated Thymidine into Nuclei of Sunflower Root Tips. Amer. J. Bot. 1983, 70, 165–172. [Google Scholar] [CrossRef]
- Spurr, A.R. Boron in Morphogenesis of Plant Cell Walls. Science 1957, 126, 78–80. [Google Scholar] [CrossRef]
- Steinberg, R.A. Effect of Boron Deficiency on Nicotine Formation in Tobacco. Plant Physiol. 1955, 30, 84–86. [Google Scholar] [CrossRef]
- Tso, T.C.; McMurtrey, J.E.; Jeffrey, R.N. Mineral Deficiency & Organic Constituents in Tobacco Plants. III. Plant Growth & Alkaloid Contents Related to Gradual Development of Calcium or Boron Deficiency Symptoms. Plant Physiol. 1962, 37, 804–808. [Google Scholar] [CrossRef]
- Hirsch, A.M.; Pengelly, W.L.; Torrey, J.G.; Torreyt, J.G. Endogenous IAA Levels in Boron-Deficient and Control Root Tips of Sunflower. Bot. Gaz. 1982, 143, 15–19. [Google Scholar] [CrossRef]
- Skok, J. Relationship of Boron to Gibberellic Acid-Induced Proliferation in Debudded Tobacco Plants. Plant Physiol. 1968, 43, 384–388. [Google Scholar] [CrossRef]
- Lewis, D.H. Boron, Lignification and the Origin of Vascular Plants. A Unified Hypothesis. New Phytol. 1980, 84, 209–229. [Google Scholar] [CrossRef]
- Pollard, A.S.; Parr, A.J.; Loughman, B.C. Boron in Relation to Membrane Function in Higher Plants. J. Exp. Bot. 1977, 28, 841. [Google Scholar] [CrossRef]
- Cakmak, I.; Römheld, V. Boron Deficiency-Induced Impairments of Cellular Functions in Plants. Plant Soil 1997, 193, 71–83. [Google Scholar] [CrossRef]
- Bonilla, I.; Cadahía, C.; Carpena, O.; Hernando, V. Effects of Boron on Nitrogen Metabolism and Sugar Levels of Sugar Beet. Plant Soil 1980, 57, 3–9. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; González-Fontes, A. Boron Deficiency Causes a Drastic Decrease in Nitrate Content and Nitrate Reductase Activity and Increases the Content of Carbohydrates in Leaves from Tobacco Plants. Planta 1999, 209, 528–536. [Google Scholar] [CrossRef]
- Chapman, K.S.R.; Jackson, J.F. Increased RNA Labelling in Boron-Deficient Root-Tip Segments. Phytochemistry 1974, 13, 1311–1318. [Google Scholar] [CrossRef]
- Wainwright, I.M.; Palmer, R.L.; Dugger, W.M. Pyrimidine Pathway in Boron-Deficient Cotton Fiber. Plant Physiol. 1980, 65, 893–896. [Google Scholar] [CrossRef]
- Lovatt, C.J.; Albert, L.S.; Tremblay, G.C. Synthesis, Salvage, and Catabolism of Uridine Nucleotides in Boron-Deficient Squash Roots. Plant Physiol. 1981, 68, 1389–1394. [Google Scholar] [CrossRef]
- Watanabe, R.; Chorney, W.; Skok, J.; Wender, S.H. Effect of Boron Deficiency on Polyphenol Production in the Sunflower. Phytochemistry 1964, 3, 391–393. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Bretones, G.; Baghour, M.; Ragala, L.; Belakbir, A.; Romero, L. Relationship between Boron and Phenolic Metabolism in Tobacco Leaves. Phytochemistry 1998, 48, 269–272. [Google Scholar] [CrossRef]
- Gauch, H.G.; Dugger, W.M. The Role of Boron in the Translocation of Sucrose. Plant Physiol. 1953, 28, 457–466. [Google Scholar] [CrossRef]
- Sisler, E.C.; Dugger, W.M.; Gauch, H.G. The Role of Boron in the Translocation of Organic Compounds in Plants. Plant Physiol. 1956, 31, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Halsey, D.; Ching, F.T.; Dugger, W.M.; Humphreys, T.E. Influence of Boron on Enzymatic Reactions Associated with Biosynthesis of Sucrose. Plant Physiol. 1960, 35, 523. [Google Scholar] [CrossRef]
- Yih, R.Y.; Clark, H.E. Carbohydrate and Protein Content of Boron-Deficient Tomato Root Tips in Relation to Anatomy and Growth. Plant Physiol. 1965, 40, 312. [Google Scholar] [CrossRef]
- Skok, J. The Substitution of Complexing Substances for Boron in Plant Growth. Plant Physiol. 1957, 32, 308–312. [Google Scholar] [CrossRef]
- Mazurek, X.I.; Perlin, A.S. Borate Complexing by Five-Membered-Ring Vic-Diols Vapor Pressure Equilibrium and N.M.R. Spectral Observations. Can. J. Chem. 1963, 41, 2403. [Google Scholar] [CrossRef]
- Loomis, W.D.; Durst, R.W. Chemistry and Biology of Boron. Biofactors 1992, 3, 229–239. [Google Scholar]
- Matoh, T.; Ishigaki, K.I.; Mizutani, M.; Matsunaga, W.; Takabe, K. Boron Nutrition of Cultured Tobacco BY-2 Cells: I. Requirement for and Intracellular Localization of Boron and Selection of Cells That Tolerate Low Levels of Boron. Plant Cell Physiol. 1992, 33, 1135–1141. [Google Scholar] [CrossRef]
- Hu, H.; Brown, P.H. Localization of Boron in Cell Walls of Squash and Tobacco and Its Association with Pectin (Evidence for a Structural Role of Boron in the Cell Wall). Plant Physiol 1994, 105, 681–689. [Google Scholar]
- Findeklee, P.; Goldbach, H.E. Rapid Effects of Boron Deficiency on Cell Wall Elasticity Modulus in Cucurbita pepo Roots. Bot. Acta 1996, 109, 463–465. [Google Scholar] [CrossRef]
- Kobayashi, M.; Matoh, T.; Azuma, J.I. Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiol. 1996, 110, 1017–1020. [Google Scholar] [CrossRef]
- Matoh, T.; Kawaguchi, S.; Kobayashi, M. Ubiquity of a Borate-Rhamnogalacturonan II Complex in the Cell Walls of Higher Plants. Plant Cell Physiol. 1996, 37, 636–640. [Google Scholar]
- O’Neill, M.A.; Eberhard, S.; Albersheim, P.; Darvill, A.G. Requirement of Borate Cross-Linking of Cell Wall Rhamnogalacturonan II for Arabidopsis Growth. Science 2001, 294, 846–849. [Google Scholar] [CrossRef]
- O’Neill, M.A.; Ishii, T.; Albersheim, P.; Darvill, A.G. Rhamnogalacturonan II: Structure and Function of a Borate Cross-Linked Cell Wall Pectic Polysaccharide. Annu. Rev. Plant Biol. 2004, 55, 109–139. [Google Scholar] [CrossRef]
- Atmodjo, M.A.; Hao, Z.; Mohnen, D. Evolving Views of Pectin Biosynthesis. Annu. Rev. Plant Biol. 2013, 64, 747–779. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, A.; O’neill, M.A.; Ehwald, R. The Pore Size of Non-Graminaceous Plant Cell Walls Is Rapidly Decreased by Borate Ester Cross-Linking of the Pectic Polysaccharide Rhamnogalacturonan II. Plant Physiol. 1999, 121, 829–838. [Google Scholar]
- Ryden, P.; Sugimoto-Shirasu, K.; Smith, A.C.; Findlay, K.; Reiter, W.D.; McCann, M.C. Tensile Properties of Arabidopsis Cell Walls Depend on Both a Xyloglucan Cross-Linked Microfibrillar Network and Rhamnogalacturonan II-Borate Complexes. Plant Physiol. 2003, 132, 1033–1040. [Google Scholar] [CrossRef]
- Pabst, M.; Fischl, R.M.; Brecker, L.; Morelle, W.; Fauland, A.; Köfeler, H.; Altmann, F.; Léonard, R. Rhamnogalacturonan II Structure Shows Variation in the Side Chains Monosaccharide Composition and Methylation Status within and across Different Plant Species. Plant J. 2013, 76, 61–72. [Google Scholar] [CrossRef]
- Hu, H.; Brown, P.H.; Labavitch, J.M. Species Variability in Boron Requirement Is Correlated with Cell Wall Pectin. J. Exp. Bot. 1996, 47, 227–232. [Google Scholar] [CrossRef]
- Matsunaga, T.; Ishii, T.; Matsumoto, S.; Higuchi, M.; Darvill, A.; Albersheim, P.; O’Neill, M.A. Occurrence of the Primary Cell Wall Polysaccharide Rhamnogalacturonan II in Pteridophytes, Lycophytes, and Bryophytes. Implications for the Evolution of Vascular Plants. Plant Physiol. 2004, 134, 339–351. [Google Scholar] [CrossRef]
- Kobayashi, M.; Miyamoto, M.; Matoh, T.; Kitajima, S.; Hanano, S.; Sumerta, I.N.; Narise, T.; Suzuki, H.; Sakurai, N.; Shibata, D. Mechanism Underlying Rapid Responses to Boron Deprivation in Arabidopsis Roots. Soil Sci. Plant Nutr. 2018, 64, 106–115. [Google Scholar] [CrossRef]
- González-Fontes, A.; Rexach, J.; Navarro-Gochicoa, M.T.; Herrera-Rodríguez, M.B.; Beato, V.M.; Maldonado, J.M.; Camacho-Cristóbal, J.J. Is Boron Involved Solely in Structural Roles in Vascular Plants? Plant Signal. Behav. 2008, 3, 24–26. [Google Scholar] [CrossRef]
- Dannel, F.; Pfeffer, H.; Romheld, V. Compartmentation of Boron in Roots and Leaves of Sunflower as Affected by Boron Supply. J. Plant Physiol. 1998, 153, 615–622. [Google Scholar] [CrossRef]
- Wimmer, M.A.; Lochnit, G.; Bassil, E.; Muhling, K.H.; Goldbach, H.E. Membrane-Associated, Boron-Interacting Proteins Isolated by Boronate Affinity Chromatography. Plant Cell Physiol. 2009, 50, 1292–1304. [Google Scholar] [CrossRef]
- Voxeur, A.; Fry, S.C. Glycosylinositol Phosphorylceramides from Rosa Cell Cultures Are Boron-Bridged in the Plasma Membrane and Form Complexes with Rhamnogalacturonan II. Plant J. 2014, 79, 139–149. [Google Scholar] [CrossRef]
- Goldbach, H.E.; Wimmer, M.A.; Findeklee, P. Discussion Paper: Boron—How Can the Critical Level Be Defined? J. Plant Nutr. Soil Sci. 2000, 163, 115–121. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/%28SICI%291522-2624%28200002%29163%3A1%3C115%3A%3AAID-JPLN115%3E3.0.CO%3B2-%23 (accessed on 11 November 2021). [CrossRef]
- Miwa, K.; Fujiwara, T. Boron Transport in Plants: Co-Ordinated Regulation of Transporters. Ann. Bot. 2010, 105, 1103–1108. [Google Scholar] [CrossRef]
- Hu, H.; Brown, P.H. Absorption of Boron by Plant Roots. Plant Soil 1997, 193, 49–58. [Google Scholar] [CrossRef]
- Dordas, C.; Chrispeels, M.J.; Brown, P.H. Permeability and Channel-Mediated Transport of Boric Acid across Membrane Vesicles Isolated from Squash Roots. Plant Physiol. 2000, 124, 1349–1362. [Google Scholar] [CrossRef]
- Tanaka, M.; Wallace, I.S.; Takano, J.; Roberts, D.M.; Fujiwara, T. NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in Arabidopsis. Plant Cell 2008, 20, 2860. [Google Scholar] [CrossRef]
- Huang, L.; Bell, R.W.; Dell, B. Evidence of Phloem Boron Transport in Response to Interrupted Boron Supply in White Lupin (Lupinus albus L. Cv. Kiev Mutant) at the Reproductive Stage. J. Exp. Bot. 2008, 59, 575–583. [Google Scholar] [CrossRef]
- Routray, P.; Li, T.; Yamasaki, A.; Yoshinari, A.; Takano, J.; Choi, W.G.; Sams, C.E.; Roberts, D.M. Nodulin Intrinsic Protein 7;1 Is a Tapetal Boric Acid Channel Involved in Pollen Cell Wall Formation. Plant Physiol. 2018, 178, 1269–1283. [Google Scholar] [CrossRef]
- Onuh, A.F.; Miwa, K. Regulation, Diversity and Evolution of Boron Transporters in Plants. Plant Cell Physiol. 2021, 62, 590–599. [Google Scholar] [CrossRef]
- Takano, J.; Wada, M.; Ludewig, U.; Schaaf, G.; Von Wirén, N.; Fujiwara, T. The Arabidopsis Major Intrinsic Protein NIP5;1 Is Essential for Efficient Boron Uptake and Plant Development under Boron Limitation. Plant Cell 2006, 18, 1498–1509. [Google Scholar] [CrossRef]
- Takano, J.; Noguchi, K.; Yasumori, M.; Kobayashi, M.; Gajdos, Z.; Miwa, K.; Hayashi, H.; Yoneyama, T.; Fujiwara, T. Arabidopsis Boron Transporter for Xylem Loading. Nature 2002, 420, 337–340. [Google Scholar] [CrossRef]
- Miwa, K.; Wakuta, S.; Takada, S.; Ide, K.; Takano, J.; Naito, S.; Omori, H.; Matsunaga, T.; Fujiwara, T. Roles of BOR2, a Boron Exporter, in Cross Linking of Rhamnogalacturonan II and Root Elongation under Boron Limitation in Arabidopsis. Plant Physiol. 2013, 163, 1699–1709. [Google Scholar] [CrossRef] [Green Version]
- Miwa, K.; Takano, J.; Omori, H.; Seki, M.; Shinozaki, K.; Fujiwara, T. Plants Tolerant of High Boron Levels. Science 2007, 318, 1417. [Google Scholar] [CrossRef]
- Di Giorgio, J.A.P.; Bienert, G.P.; Ayub, N.D.; Yaneff, A.; Barberini, M.L.; Mecchia, M.A.; Amodeo, G.; Soto, G.C.; Muschietti, J.P. Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in Arabidopsis thaliana. Plant Cell 2016, 28, 1053–1077. [Google Scholar] [CrossRef]
- Bienert, M.D.; Muries, B.; Crappe, D.; Chaumont, F.; Bienert, G.P. Overexpression of X Intrinsic Protein 1;1 in Nicotiana tabacum and Arabidopsis Reduces Boron Allocation to Shoot Sink Tissues. Plant Direct 2019, 3, e00143. [Google Scholar] [CrossRef]
- Durbak, A.R.; Phillips, K.A.; Pike, S.; O’Neill, M.A.; Mares, J.; Gallavotti, A.; Malcomber, S.T.; Gassmann, W.; McSteen, P. Transport of Boron by the Tassel-Less1 Aquaporin Is Critical for Vegetative and Reproductive Development in Maize. Plant Cell 2014, 26, 2978–2995. [Google Scholar] [CrossRef]
- Hanaoka, H.; Uraguchi, S.; Takano, J.; Tanaka, M.; Fujiwara, T. OsNIP3;1, a Rice Boric Acid Channel, Regulates Boron Distribution and Is Essential for Growth under Boron-Deficient Conditions. Plant J. 2014, 78, 890–902. [Google Scholar] [CrossRef]
- Pommerrenig, B.; Diehn, T.A.; Bienert, G.P. Metalloido-Porins: Essentiality of Nodulin 26-like Intrinsic Proteins in Metalloid Transport. Plant Sci. 2015, 238, 212–227. [Google Scholar] [CrossRef]
- Wakuta, S.; Mineta, K.; Amano, T.; Toyoda, A.; Fujiwara, T.; Naito, S.; Takano, J. Evolutionary Divergence of Plant Borate Exporters and Critical Amino Acid Residues for the Polar Localization and Boron-Dependent Vacuolar Sorting of AtBOR1. Plant Cell Physiol. 2015, 56, 852–862. [Google Scholar] [CrossRef]
- Granado-Rodríguez, S.; Bolaños, L.; Reguera, M. MtNIP5;1, a Novel Medicago truncatula Boron Diffusion Facilitator Induced under Deficiency. BMC Plant Biol. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Filiz, E.; Saracoglu, I.A.; Karadeniz, S. Exploration of Two Major Boron Transport Genes BOR1 and NIP5;1 in the Genomes of Different Plants. Biotechnol. Biotechnol. Equip. 2020, 34, 455–468. [Google Scholar] [CrossRef]
- Wang, S.; Liu, L.; Zou, D.; Huang, Y.; Zhao, Z.; Ding, G.; Cai, H.; Wang, C.; Shi, L.; Xu, F. Vascular Tissue-Specific Expression of BnaC4.BOR1;1c, an Efflux Boron Transporter Gene, Is Regulated in Response to Boron Availability for Efficient Boron Acquisition in Brassica napus. Plant Soil 2021, 465, 171–184. [Google Scholar] [CrossRef]
- Robertson, G.A.; Loughman, B.C. Reversible Effects of Boron on the Absorption and Incorporation of Phosphate in Vicia faba L. New Phytol. 1974, 73, 291–298. [Google Scholar] [CrossRef]
- Goldbach, H. Influence of Boron Nutrition on Net Uptake and Efflux of (32)P and (14)C-Glucose in Helianthus annuus Roots and Cell Cultures of Daucus carota. J. Plant Physiol. 1985, 118, 431–438. [Google Scholar] [CrossRef]
- Ferrol, N.; Belver, A.; Roldán, M.; Rodriguez-Rosales, M.P.; Donaire, J.P. Effects of Boron on Proton Transport and Membrane Properties of Sunflower (Helianthus annuus L.) Cell Microsomes. Plant Physiol. 1993, 103, 763. [Google Scholar] [CrossRef]
- Lawrence, K.; Bhalla, P.; Misra, P.C. Changes in NAD(P)H-Dependent Redox Activities in Plasmalemma-Enriched Vesicles Isolated from Boron- and Zinc-Deficient Chick Pea Roots. J. Plant Physiol. 1995, 146, 652–657. [Google Scholar] [CrossRef]
- Desiraju, S.; Sah, R.; Rathore, V.S. Influence of Boron Deficiency on Growth, Protein and Lipid Contents in Tomato and Okra Seedlings. Acta Physiol. Plant. 1993, 15, 25–30. [Google Scholar]
- Cakmak, I.; Kurz, H.; Marschner, H. Short-Term Effects of Boron, Germanium and High Light Intensity on Membrane Permeability in Boron Deficient Leaves of Sunflower. Physiol. Plant. 1995, 95, 11–18. [Google Scholar] [CrossRef]
- Tanada, T. Localization of Boron in Membranes. J. Plant Nutr. 1983, 6, 743–749. [Google Scholar] [CrossRef]
- Bassil, E.; Hu, H.; Brown, P.H. Use of Phenylboronic Acids to Investigate Boron Function in Plants. Possible Role of Boron in Transvacuolar Cytoplasmic Strands and Cell-to-Wall Adhesion. Plant Physiol. 2004, 136, 3383–3395. [Google Scholar] [CrossRef]
- Matthes, M.; Torres-Ruiz, R.A. Boronic Acid Treatment Phenocopies Monopteros by Affecting PIN1 Membrane Stability and Polar Auxin Transport in Arabidopsis ahaliana Embryos. Development 2016, 143, 4053–4062. [Google Scholar] [CrossRef]
- Bolaños, L.; Cebrián, A.; Redondo-Nieto, M.; Rivilla, R.; Bonilla, I. Lectin-like Glycoprotein PsNLEC-1 Is Not Correctly Glycosylated and Targeted in Boron-Deficient Pea Nodules. Mol. Plant-Microbe Interact. 2001, 14, 663–670. [Google Scholar] [CrossRef]
- Redondo-Nieto, M.; Pulido, L.; Reguera, M.; Bonilla, I.; Bolaños, L. Developmentally Regulated Membrane Glycoproteins Sharing Antigenicity with Rhamnogalacturonan II Are Not Detected in Nodulated Boron Deficient Pisum sativum. Plant Cell Environ. 2007, 30, 1436–1443. [Google Scholar] [CrossRef]
- Redondo-Nieto, M.; Reguera, M.; Bonilla, I.; Bolaños, L. Boron Dependent Membrane Glycoproteins in Symbiosome Development and Nodule Organogenesis: A Model for a Common Role of Boron in Organogenesis. Plant Signal. Behav. 2008, 3, 298–300. [Google Scholar] [CrossRef]
- Robertson, J.G.; Lyttleton, P. Division of Peribacteroid Membranes in Root Nodules of White Clover. J. Cell Sci. 1984, 69, 147–157. [Google Scholar] [CrossRef]
- Redondo-Nieto, M.; Wilmot, A.R.; El-Hamdaoui, A.; Bonilla, I.; Bolaños, L. Relationship between Boron and Calcium in the N2-Fixing Legume-Rhizobia Symbiosis. Plant Cell Environ. 2003, 26, 1905–1915. [Google Scholar] [CrossRef]
- Perotto, S.; Vandenbosch, K.A.; Butcher, G.W.; Brewin, N.J. Molecular Composition and Development of the Plant Glycocalyx Associated with the Peribacteroid Membrane of Pea Root Nodules. Development 1991, 112, 763–773. [Google Scholar]
- Perotto, S.; Donovan, N.; Drobak, B.K.; Brewin, N.J. Differential Expression of a Glycosyl Inositol Phospholipid Antigen on the Peribacteroid Membrane during Pea Nodule Development. Mol. Plant-Microbe Interact. 1995, 8, 560–568. [Google Scholar] [CrossRef]
- Bolaños, L.; Redondo-Nieto, M.; Rivilla, R.; Brewin, N.J.; Bonilla, I. Cell Surface Interactions of Rhizobium Bacteroids and Other Bacterial Strains with Symbiosomal and Peribacteroid Membrane Components from Pea Nodules. Mol. Plant-Microbe Interact. 2004, 17, 216–223. [Google Scholar] [CrossRef]
- Reguera, M.; Abreu, I.; Brewin, N.J.; Bonilla, I.; Bolaños, L. Borate Promotes the Formation of a Complex between Legume AGP-Extensin and Rhamnogalacturonan II and Enhances Production of Rhizobium Capsular Polysaccharide during Infection Thread Development in Pisum sativum Symbiotic Root Nodules. Plant Cell Environ. 2010, 33, 2112–2120. [Google Scholar] [CrossRef]
- Lovatt, C.J. Evolution of Xylem Resulted in a Requirment for Boron in the Apical Meristems of Vascular Plants. New Phytol. 1985, 99, 509–522. [Google Scholar] [CrossRef]
- Reguera, M.; Espí, A.; Bolaños, L.; Bonilla, I.; Redondo-Nieto, M. Endoreduplication before Cell Differentiation Fails in Boron-Deficient Legume Nodules. Is Boron Involved in Signalling during Cell Cycle Regulation? New Phytol. 2009, 183, 8–12. [Google Scholar] [CrossRef]
- Redondo-Nieto, M.; Maunoury, N.; Mergaert, P.; Kondorosi, E.; Bonilla, I.; Bolaños, L. Boron and Calcium Induce Major Changes in Gene Expression during Legume Nodule Organogenesis. Does Boron Have a Role in Signalling? New Phytol. 2012, 195, 14–19. [Google Scholar] [CrossRef]
- Abreu, I.; Poza, L.; Bonilla, I.; Bolaños, L. Boron Deficiency Results in Early Repression of a Cytokinin Receptor Gene and Abnormal Cell Differentiation in the Apical Root Meristem of Arabidopsis thaliana. Plant Physiol. Biochem. 2014, 77, 117–121. [Google Scholar] [CrossRef]
- Poza-Viejo, L.; Abreu, I.; González-García, M.P.; Allauca, P.; Bonilla, I.; Bolaños, L.; Reguera, M. Boron Deficiency Inhibits Root Growth by Controlling Meristem Activity under Cytokinin Regulation. Plant Sci. 2018, 270, 176–189. [Google Scholar] [CrossRef]
- Matthes, M.S.; Robil, J.M.; McSteen, P. From Element to Development: The Power of the Essential Micronutrient Boron to Shape Morphological Processes in Plants. J. Exp. Bot. 2020, 71, 1681–1693. [Google Scholar] [CrossRef]
- Alexandros Petropoulos, S.; Jiang, C.; Araújo, W.L.; Leal Pereira, G.; Antonio Siqueira, J.; Batista-Silva, W.; Barcellos Cardoso, F.; Nunes-Nesi, A. Boron: More Than an Essential Element for Land Plants? Front. Plant Sci. 2021, 11, 610307. [Google Scholar] [CrossRef]
- Dell, B.; Huang, L. Physiological Response of Plants to Low Boron. Plant Soil 1997, 193, 103–120. [Google Scholar] [CrossRef]
- Li, K.; Kamiya, T.; Fujiwara, T. Differential Roles of PIN1 and PIN2 in Root Meristem Maintenance Under Low-B Conditions in Arabidopsis thaliana. Plant Cell Physiol. 2015, 56, 1205–1214. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Martín-Rejano, E.M.; Herrera-Rodríguez, M.B.; Navarro-Gochicoa, M.T.; Rexach, J.; González-Fontes, A. Boron Deficiency Inhibits Root Cell Elongation via an Ethylene/Auxin/ROS-Dependent Pathway in Arabidopsis Seedlings. J. Exp. Bot. 2015, 66, 3831–3840. [Google Scholar] [CrossRef]
- Vanstraelen, M.; Baloban, M.; Da Ines, O.; Cultrone, A.; Lammens, T.; Boudolf, V.R.; Brown, S.C.; De Veylder, L.; Mergaert, P.; Kondorosi, E. APC/CCCS52A Complexes Control Meristem Maintenance in the Arabidopsis Root. Proc. Natl. Acad. Sci. USA 2009, 106, 11806. [Google Scholar] [CrossRef]
- Foucher, F.; Kondorosi, E. Cell Cycle Regulation in the Course of Nodule Organogenesis in Medicago. Plant Mol. Biol. 2000, 43, 773–786. [Google Scholar] [CrossRef]
- Kondorosi, E.; Redondo-Nieto, M.; Kondorosi, A. Ubiquitin-Mediated Proteolysis. To Be in the Right Place at the Right Moment during Nodule Development. Plant Physiol. 2005, 137, 1197–1204. [Google Scholar] [CrossRef]
- Vinardell, J.M.; Fedorova, E.; Cebolla, A.; Kevei, Z.; Horvath, G.; Kelemen, Z.; Tarayre, S.; Roudier, F.; Mergaert, P.; Kondorosi, A.; et al. Endoreduplication Mediated by the Anaphase-Promoting Complex Activator CCS52A Is Required for Symbiotic Cell Differentiation in Medicago truncatula Nodules. Plant Cell 2003, 15, 2093–2105. [Google Scholar] [CrossRef] [Green Version]
- Diehn, T.A.; Bienert, M.D.; Pommerrenig, B.; Liu, Z.; Spitzer, C.; Bernhardt, N.; Fuge, J.; Bieber, A.; Richet, N.; Chaumont, F.; et al. Boron Demanding Tissues of Brassica napus Express Specific Sets of Functional Nodulin26-like Intrinsic Proteins and BOR1 Transporters. Plant J. 2019, 100, 68–82. [Google Scholar] [CrossRef]
- Sakamoto, T.; Tsujimoto-Inui, Y.; Sotta, N.; Hirakawa, T.; Matsunaga, T.M.; Fukao, Y.; Matsunaga, S.; Fujiwara, T. Proteasomal Degradation of BRAHMA Promotes Boron Tolerance in Arabidopsis. Nat. Commun. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, C.; Zhou, B.; Li, C.; Wang, H.; Zheng, B.; Ding, H.; Zhu, Z.; Peragine, A.; Cui, Y.; et al. Regulation of Vegetative Phase Change by SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA. Plant Physiol. 2016, 172, 2416–2428. [Google Scholar] [CrossRef]
- Kobayashi, M.; Mutoh, T.; Matoh, T. Boron Nutrition of Cultured Tobacco BY-2 Cells. IV. Genes Induced under Low Boron Supply. J. Exp. Bot. 2004, 55, 1441–1443. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Rexach, J.; Herrera-Rodríguez, M.B.; Navarro-Gochicoa, M.T.; González-Fontes, A. Boron Deficiency and Transcript Level Changes. Plant Sci. 2011, 181, 85–89. [Google Scholar] [CrossRef]
- Koshiba, T.; Kobayashi, M.; Matsuoka, K.; Fujiwara, T.; Matoh, T. Boron Nutrition of Cultured Tobacco BY-2 Cells. VII. Rapid Induction of Metabolic Dysfunction in Cells Deprived of Boron as Revealed by Microarray Analysis. Soil Sci. Plant Nutr. 2013, 59, 189–194. [Google Scholar] [CrossRef]
- Lu, Y.B.; Qi, Y.P.; Yang, L.T.; Lee, J.; Guo, P.; Ye, X.; Jia, M.Y.; Li, M.L.; Chen, L.S. Long-Term Boron-Deficiency-Responsive Genes Revealed by CDNA-AFLP Differ between Citrus Sinensis Roots and Leaves. Front. Plant Sci. 2015, 6, 585. [Google Scholar] [CrossRef]
- Zhou, G.F.; Liu, Y.Z.; Sheng, O.; Wei, Q.J.; Yang, C.Q.; Peng, S.A. Transcription Profiles of Boron-Deficiency-Responsive Genes in Citrus Rootstock Root by Suppression Subtractive Hybridization and CDNA Microarray. Front. Plant Sci. 2015, 5, 1–15. [Google Scholar] [CrossRef]
- Koshiba, T.; Kobayashi, M.; Matoh, T. Boron Nutrition of Tobacco BY-2 Cells. V. Oxidative Damage Is the Major Cause of Cell Death Induced by Boron Deprivation. Plant Cell Physiol. 2009, 50, 26–36. [Google Scholar] [CrossRef]
- Koshiba, T.; Kobayashi, M.; Ishihara, A.; Matoh, T. Boron Nutrition of Cultured Tobacco BY-2 Cells. VI. Calcium Is Involved in Early Responses to Boron Deprivation. Plant Cell Physiol. 2010, 51, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Oiwa, Y.; Kitayama, K.; Kobayashi, M.; Matoh, T. Boron Deprivation Immediately Causes Cell Death in Growing Roots of Arabidopsis thaliana (L.) Heynh. Soil Sci. Plant Nutr. 2013, 59, 621–627. [Google Scholar] [CrossRef]
- González-Fontes, A.; Herrera-Rodríguez, M.B.; Martín-Rejano, E.M.; Navarro-Gochicoa, M.T.; Rexach, J.; Camacho-Cristóbal, J.J. Root Responses to Boron Deficiency Mediated by Ethylene. Front. Plant Sci. 2016, 6, 1103. [Google Scholar] [CrossRef]
- Bellincampi, D.; Cervone, F.; Lionetti, V. Plant Cell Wall Dynamics and Wall-Related Susceptibility in Plant-Pathogen Interactions. Front. Plant Sci. 2014, 5, 228. [Google Scholar] [CrossRef]
- Redondo-Nieto, M.; Rivilla, R.; El-Hamdaoui, A.; Bonilla, I.; Bolaños, L. Boron Deficiency Affects Early Infection Events in the Pea-Rhizobium Symbiotic Interaction. Aust. J. Plant Physiol. 2001, 28, 819–823. [Google Scholar] [CrossRef]
- Reguera, M.; Bonilla, I.; Bolaños, L. Boron Deficiency Results in Induction of Pathogenesis-Related Proteins from the PR-10 Family during the Legume-Rhizobia Interaction. J. Plant Physiol. 2010, 167, 625–632. [Google Scholar] [CrossRef]
- Reguera, M.; Wimmer, M.; Bustos, P.; Goldbach, H.E.; Bolaños, L.; Bonilla, I. Ligands of Boron in Pisum sativum Nodules Are Involved in Regulation of Oxygen Concentration and Rhizobial Infection. Plant Cell Environ. 2010, 33, 1039–1048. [Google Scholar] [CrossRef]
- Meacham, S.; Elwell, K.; Ziegler, S.; Carper, S. Boric Acid Inhibits Cell Growth in Breast and Prostate Cancer Cell Lines. In Advances in Plant and Animal Boron Nutrition; Xu, F., Goldbach, H., Brown, P., Bell, R., Fujiwara, T., Hunt, C., Goldberg, S., Shi, L., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 299–306. [Google Scholar]
- Yusuf, Z.S.; Uysal, T.K.; Simsek, E.; Nocentini, A.; Osman, S.M.; Supuran, C.T.; Özensoy Güler, Ö. The Inhibitory Effect of Boric Acid on Hypoxia-Regulated Tumour-Associated Carbonic Anhydrase IX. J. Enzyme Inhib. Med. Chem. 2022, 37, 1340–1345. [Google Scholar] [CrossRef]
- Shimotohno, A.; Sotta, N.; Sato, T.; De Ruvo, M.; Marée, A.F.M.; Grieneisen, V.A.; Fujiwara, T. Mathematical Modeling and Experimental Validation of the Spatial Distribution of Boron in the Root of Arabidopsis thaliana Identify High Boron Accumulation in the Tip and Predict a Distinct Root Tip Uptake Function. Plant Cell Physiol. 2015, 56, 620–630. [Google Scholar] [CrossRef]
- Tanaka, M.; Sotta, N.; Yamazumi, Y.; Yamashita, Y.; Miwa, K.; Murota, K.; Chiba, Y.; Hirai, M.Y.; Akiyama, T.; Onouchi, H.; et al. The Minimum Open Reading Frame, AUG-Stop, Induces Boron-Dependent Ribosome Stalling and MRNA Degradation. Plant Cell 2016, 28, 2830–2849. [Google Scholar] [CrossRef]
- Fukuda, M.; Wakuta, S.; Kamiyo, J.; Fujiwara, T.; Takano, J. Establishment of Genetically Encoded Biosensors for Cytosolic Boric Acid in Plant Cells. Plant J. 2018, 95, 763–774. [Google Scholar] [CrossRef]
- Humphrey, T.V.; Bonetta, D.T.; Goring, D.R. Sentinels at the Wall: Cell Wall Receptors and Sensors. New Phytol. 2007, 176, 7–21. [Google Scholar] [CrossRef]
- González-Fontes, A.; Navarro-Gochicoa, M.T.; Camacho-Cristóbal, J.J.; Herrera-Rodríguez, M.B.; Quiles-Pando, C.; Rexach, J. Is Ca2+ Involved in the Signal Transduction Pathway of Boron Deficiency? New Hypotheses for Sensing Boron Deprivation. Plant Sci. 2014, 217–218, 135–139. [Google Scholar] [CrossRef]
- Dumont, M.; Lehner, A.; Bardor, M.; Burel, C.; Vauzeilles, B.; Lerouxel, O.; Anderson, C.T.; Mollet, J.C.; Lerouge, P. Inhibition of Fucosylation of Cell Wall Components by 2-Fluoro 2-Deoxy-l-Fucose Induces Defects in Root Cell Elongation. Plant J. 2015, 84, 1137–1151. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Pan, Z.; Xie, S.; Peng, S.A. Boron Deficiency Alters Root Growth and Development and Interacts with Auxin Metabolism by Influencing the Expression of Auxin Synthesis and Transport Genes. Biotechnol. Biotechnol. Equip. 2016, 30, 661–668. [Google Scholar] [CrossRef]
- Tabata, R.; Kamiya, T.; Shigenobu, S.; Yamaguchi, K.; Yamada, M.; Hasebe, M.; Fujiwara, T.; Sawa, S. Identification of an EMS-Induced Causal Mutation in a Gene Required for Boron-Mediated Root Development by Low-Coverage Genome Re-Sequencing in Arabidopsis. Plant Signal. Behav. 2013, 8, 18–24. [Google Scholar] [CrossRef]
- Pommerrenig, B.; Faber, M.; Hajirezaei, M.; von Wirén, N.; Bienert, G.P. Cytokinins as Boron Deficiency Signals to Sustain Shoot Development in Boron-Efficient Oilseed Rape. Physiol. Plant. 2022, 174, e13776. [Google Scholar] [CrossRef]
- Zhang, C.; He, M.; Wang, S.; Chu, L.; Wang, C.; Yang, N.; Ding, G.; Cai, H.; Shi, L.; Xu, F. Boron Deficiency-Induced Root Growth Inhibition Is Mediated by Brassinosteroid Signalling Regulation in Arabidopsis. Plant J. 2021, 107, 564–578. [Google Scholar] [CrossRef]
- Chen, X.; Humphreys, J.L.; Ru, Y.; He, Y.; Wu, F.; Mai, J.; Li, M.; Li, Y.; Shabala, S.; Yu, M.; et al. Jasmonate Signaling and Remodeling of Cell Wall Metabolism Induced by Boron Deficiency in Pea Shoots. Environ. Exp. Bot. 2022, 201, 104947. [Google Scholar] [CrossRef]
- Eggert, K.; von Wirén, N. Response of the Plant Hormone Network to Boron Deficiency. New Phytol. 2017, 216, 868–881. [Google Scholar] [CrossRef]
- Yu, Q.; Wingender, R.; Schulz, M.; Baluška, F.; Goldbach, H.E. Short-Term Boron Deprivation Induces Increased Levels of Cytoskeletal Proteins in Arabidopsis Roots. Plant Biol. 2001, 3, 335–340. [Google Scholar] [CrossRef]
- Yu, Q.; Hlavacka, A.; Matoh, T.; Volkmann, D.; Menzel, D.; Goldbach, H.E.; Baluška, F. Short-Term Boron Deprivation Inhibits Endocytosis of Cell Wall Pectins in Meristematic Cells of Maize and Wheat Root Apices. Plant Physiol. 2002, 130, 415–421. [Google Scholar] [CrossRef]
- Yuen, C.C.Y.; Christopher, D.A. The Group IV-A Cyclic Nucleotide-Gated Channels, CNGC19 and CNGC20, Localize to the Vacuole Membrane in Arabidopsis thaliana. AoB Plants 2013, 5, plt012. [Google Scholar] [CrossRef]
- Quiles-Pando, C.; Rexach, J.; Navarro-Gochicoa, M.T.; Camacho-Cristóbal, J.J.; Herrera-Rodríguez, M.B.; González-Fontes, A. Boron Deficiency Increases the Levels of Cytosolic Ca(2+) and Expression of Ca(2+)-Related Genes in Arabidopsis thaliana Roots. Plant Physiol. Biochem. 2013, 65, 55–60. [Google Scholar] [CrossRef]
- Chen, X.; Schauder, S.; Potier, N.; Van Dorsselaer, A.; Pelczer, I.; Bassler, B.L.; Hughson, F.M. Structural Identification of a Bacterial Quorum-Sensing Signal Containing Boron. Nature 2002, 415, 545–549. [Google Scholar] [CrossRef]
- Kasajima, I.; Ide, Y.; Yokota Hirai, M.; Fujiwara, T. WRKY6 Is Involved in the Response to Boron Deficiency in Arabidopsis thaliana. Physiol. Plant. 2010, 139, 80–92. [Google Scholar] [CrossRef]
- Lagacé, M.; Matton, D.P. Characterization of a WRKY Transcription Factor Expressed in Late Torpedo-Stage Embryos of Solanum chacoense. Planta 2004, 219, 185–189. [Google Scholar] [CrossRef]
- Franco, A.; da Silva, J.A.L. Boron in Prebiological Evolution. Angew Chem. Int. Ed. Engl. 2021, 60, 10458–10468. [Google Scholar] [CrossRef]
- Chormova, D.; Fry, S.C. Boron Bridging of Rhamnogalacturonan-II Is Promoted in Vitro by Cationic Chaperones, Including Polyhistidine and Wall Glycoproteins. New Phytol. 2016, 209, 241–251. [Google Scholar] [CrossRef]
- Bonilla, I.; Mergold-Villaseñor, C.; Campos, M.E.; Sánchez, N.; Pérez, H.; López, L.; Castrejón, L.; Sánchez, F.; Cassab, G.I. The Aberrant Cell Walls of Boron-Deficient Bean Root Nodules Have No Covalently Bound Hydroxyproline-/Proline-Rich Proteins. Plant Physiol. 1997, 115, 1329–1340. [Google Scholar] [CrossRef]
- Hu, H.; Penn, S.C.; Lebrilla, C.B.; Brown, P.H. Lsolation and Characterization of Soluble Boron Complexes in Higher Plants’ The Mechanism of Phloem Mobility of Boron. Plant Physiol. 1997, 11, 649–655. [Google Scholar]
- Stangoulis, J.; Tate, M.; Graham, R.; Bucknall, M.; Palmer, L.; Boughton, B.; Reid, R. The Mechanism of Boron Mobility in Wheat and Canola Phloem. Plant Physiol. 2010, 153, 876–881. [Google Scholar] [CrossRef] [Green Version]
- Ralston, N.V.C.; Hunt, C.D. Diadenosine Phosphates and S-Adenosylmethionine: Novel Boron Binding Biomolecules Detected by Capillary Electrophoresis. Biochim. Biophys. Acta 2001, 1527, 20–30. [Google Scholar] [CrossRef]
- Funakawa, H.; Miwa, K. Synthesis of Borate Cross-Linked Rhamnogalacturonan II. Front. Plant Sci. 2015, 6, 223. [Google Scholar] [CrossRef]
- Ishii, T.; Matsunaga, T. Isolation and Characterization of a Boron-Rhamnogalacturonan-II Complex from Cell Walls of Sugar Beet Pulp. Carbohydr. Res. 1996, 284, 1–9. [Google Scholar] [CrossRef]
- Kaneko, S.; Ishii, T.; Matsunaga, T. A Boron-Rhamnogalacturonan-II Complex from Bamboo Shoot Cell Walls. Phytochemistry 1997, 44, 243–248. [Google Scholar] [CrossRef]
- O’Neill, M.A.; Warrenfeltz, D.; Kates, K.; Pellerin, P.; Doco, T.; Darvill, A.G.; Albersheim, P. Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-Linked by a Borate Ester. In Vitro Conditions for the Formation and Hydrolysis of the Dimer. J. Biol. Chem. 1996, 271, 22923–22930. [Google Scholar] [CrossRef]
- Ishii, T.; Matsunaga, T.; Pellerin, P.; O’Neill, M.A.; Darvill, A.; Albersheim, P. The Plant Cell Wall Polysaccharide Rhamnogalacturonan II Self-Assembles into a Covalently Cross-Linked Dimer. J. Biol. Chem. 1999, 274, 13098–13104. [Google Scholar] [CrossRef]
- Ishii, T.; Ono, H. NMR Spectroscopic Analysis of the Borate Diol Esters of Methyl Apiofuranosides. Carbohydr. Res. 1999, 321, 257–260. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ohno, K.; Matoh, T. Boron Nutrition of Cultured Tobacco BY-2 Cells. 2. Characterization of the Boron-Polysaccharide Complex. Plant Cell Physiol. 1997, 38, 676–683. [Google Scholar]
- Matoh, T.; Takasaki, M.; Kobayashi, M.; Takabe, K. Boron Nutrition of Cultured Tobacco BY-2 Cells. III. Characterization of the Boron-Rhamnogalacturonan II Complex in Cells Acclimated to Low Levels of Boron. Plant Cell Physiol. 2000, 41, 363–366. [Google Scholar] [CrossRef]
- Chormova, D.; Messenger, D.J.; Fry, S.C. Boron Bridging of Rhamnogalacturonan-II, Monitored by Gel Electrophoresis, Occurs during Polysaccharide Synthesis and Secretion but Not Post-Secretion. Plant J. 2014, 77, 534–546. [Google Scholar] [CrossRef]
- Chormova, D.; Messenger, D.J.; Fry, S.C. Rhamnogalacturonan-II Cross-Linking of Plant Pectins via Boron Bridges Occurs during Polysaccharide Synthesis and/or Secretion. Plant Signal. Behav. 2014, 9, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Begum, R.A.; Fry, S.C. Boron Bridging of Rhamnogalacturonan-II in Rosa and Arabidopsis Cell Cultures Occurs Mainly in the Endo-Membrane System and Continues at a Reduced Rate after Secretion. Ann. Bot. 2022, 130, 703–715. [Google Scholar] [CrossRef]
- Seifert, G.J.; Roberts, K. The Biology of Arabinogalactan Proteins. Annu. Rev. Plant Biol. 2007, 58, 137–161. [Google Scholar] [CrossRef]
- Ellis, M.; Egelund, J.; Schultz, C.J.; Bacic, A. Arabinogalactan-Proteins: Key Regulators at the Cell Surface? Plant Physiol. 2010, 153, 403–419. [Google Scholar] [CrossRef]
- Stacey, N.J.; Roberts, K.; Knox, J.P. Patterns of Expression of the JIM4 Arabinogalactan-Protein Epitope in Cell Cultures and during Somatic Embryogenesis in Daucus carota L. Planta 1990, 180, 285–292. [Google Scholar] [CrossRef]
- Chapman, A.; Blervacq, A.S.; Vasseur, J.; Hilbert, J.L. Arabinogalactan-Proteins in Cichorium Somatic Embryogenesis: Effect of Beta-Glucosyl Yariv Reagent and Epitope Localisation during Embryo Development. Planta 2000, 211, 305–314. [Google Scholar] [CrossRef]
- Van Hengel, A.J.; Van Kammen, A.; De Vries, S.C. A Relationship between Seed Development, Arabinogalactan-Proteins (AGPs) and the AGP Mediated Promotion of Somatic Embryogenesis. Physiol. Plant. 2002, 114, 637–644. [Google Scholar] [CrossRef]
- Casero, P.J.; Casimiro, I.; Knox, J.P. Occurrence of Cell Surface Arabinogalactan-Protein and Extensin Epitopes in Relation to Pericycle and Vascular Tissue Development in the Root Apex of Four Species. Planta 1998, 204, 252–259. [Google Scholar] [CrossRef]
- Van Hengel, A.J.; Roberts, K. AtAGP30, an Arabinogalactan-Protein in the Cell Walls of the Primary Root, Plays a Role in Root Regeneration and Seed Germination. Plant J. 2003, 36, 256–270. [Google Scholar] [CrossRef]
- Motose, H.; Sugiyama, M.; Fukuda, H. A Proteoglycan Mediates Inductive Interaction during Plant Vascular Development. Nature 2004, 429, 873–878. [Google Scholar] [CrossRef]
- Asad, A.; Bell, R.W.; Dell, B.; Huang, L. Development of a Boron Buffered Solution Culture System for Controlled Studies of Plant Boron Nutrition. Plant Soil 1997, 188, 21–32. [Google Scholar] [CrossRef]
- Brewin, N.J. Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis. Crit. Rev. Plant Sci. 2004, 23, 293–316. [Google Scholar] [CrossRef]
- Wisniewski, J.P.; Rathbun, E.A.; Knox, J.P.; Brewin, N.J. Involvement of Diamine Oxidase and Peroxidase in Insolubilization of the Extracellular Matrix: Implications for Pea Nodule Initiation by Rhizobium Leguminosarum. Mol. Plant-Microbe Interact. 2000, 13, 413–420. [Google Scholar] [CrossRef]
- Bolaños, L.; Brewin, N.J.; Bonilla, I. Effects of Boron on Rhizobium-Legume Cell-Surface Interactions and Nodule Development. Plant Physiol. 1996, 110, 1249–1256. [Google Scholar] [CrossRef]
- Dickinson, D.B. Influence of Borate and Pentaerythritol Concentrations on Germination and Tube Growth of Lilium Longiflorum Pollen. J. Am. Soc. Hortic. Sci. 1978, 103, 413–416. [Google Scholar] [CrossRef]
- Robbertse, P.J.; Lock, J.J.; Stoffberg, E.; Coetzer, L.A. Effect of Boron on Directionality of Pollen Tube Growth in Petunia and Agapanthus. South Afr. J. Bot. 1990, 56, 487–492. [Google Scholar] [CrossRef]
- Cheung, A.Y.; Wang, H.; Wu, H. ming A Floral Transmitting Tissue-Specific Glycoprotein Attracts Pollen Tubes and Stimulates Their Growth. Cell 1995, 82, 383–393. [Google Scholar] [CrossRef]
- Gucciardo, S.; Rathbun, E.A.; Shanks, M.; Jenkyns, S.; Mak, L.; Durrant, M.C.; Brewin, N.J. Epitope Tagging of Legume Root Nodule Extensin Modifies Protein Structure and Crosslinking in Cell Walls of Transformed Tobacco Leaves. Mol. Plant-Microbe Interact. 2005, 18, 24–32. [Google Scholar] [CrossRef]
- Ma, Y.; Hendershot, L.M. ER Chaperone Functions during Normal and Stress Conditions. J. Chem. Neuroanat. 2004, 28, 51–65. [Google Scholar] [CrossRef]
- Abreu, I. New Targets in Plant Boron Deficiency Response: N-Glycosylation and Regulation of Root Development. Ph.D. Thesis, Universidad Autonoma de Madrid, Madrid, Spain, 2016. [Google Scholar]
- Abreu, I.; Orús, I.; Bolaños, L.; Bonilla, I. The Interaction of Boron with Glycolipids Is Required to Increase Tolerance to Stresses in Anabaena PCC 7120. Phytochemistry 2014, 106, 55–60. [Google Scholar] [CrossRef]
- Simons, K.; Ikonen, E. Functional Rafts in Cell Membranes. Nature 1997, 387, 569–572. [Google Scholar] [CrossRef]
- Hunter, J.M.; Nemzer, B.V.; Rangavajla, N.; Biţă, A.; Rogoveanu, O.C.; Neamţu, J.; Scorei, I.R.; Bejenaru, L.E.; Rău, G.; Bejenaru, C.; et al. The Fructoborates: Part of a Family of Naturally Occurring Sugar–Borate Complexes—Biochemistry, Physiology, and Impact on Human Health: A Review. Biol. Trace Elem. Res. 2019, 188, 11–25. [Google Scholar] [CrossRef]
- Nielsen, F.H. Update on Human Health Effects of Boron. J. Trace Elem. Med. Biol. 2014, 28, 383–387. [Google Scholar] [CrossRef]
- Kim, D.H.; Faull, K.F.; Norris, A.J.; Eckhert, C.D. Borate–Nucleotide Complex Formation Depends on Charge and Phosphorylation State. J. Mass Spectrom. 2004, 39, 743–751. [Google Scholar] [CrossRef]
- Nielsen, F.H. Boron Deprivation Decreases Liver S-Adenosylmethionine and Spermidine and Increases Plasma Homocysteine and Cysteine in Rats. J. Trace Elem. Med. Biol. 2009, 23, 204–213. [Google Scholar] [CrossRef]
- Lu, Y.B.; Yang, L.T.; Qi, Y.P.; Li, Y.; Li, Z.; Chen, Y.B.; Huang, Z.R.; Chen, L.S. Identification of Boron-Deficiency-Responsive MicroRNAs in Citrus sinensis Roots by Illumina Sequencing. BMC Plant Biol. 2014, 14, 1–16. [Google Scholar] [CrossRef]
- Yang, C.; Liu, T.; Bai, F.; Wang, N.; Pan, Z.; Yan, X.; Peng, S.A. MiRNAome Analysis Associated with Anatomic and Transcriptomic Investigations Reveal the Polar Exhibition of Corky Split Vein in Boron Deficient Citrus sinensis. Mol. Genet. Genom. 2015, 290, 1639–1657. [Google Scholar] [CrossRef]
- Huang, J.H.; Lin, X.J.; Zhang, L.Y.; Wang, X.D.; Fan, G.C.; Chen, L.S. MicroRNA Sequencing Revealed Citrus Adaptation to Long-Term Boron Toxicity through Modulation of Root Development by MiR319 and MiR171. Int. J. Mol. Sci. 2019, 20, 1422. [Google Scholar] [CrossRef]
- Cossetti, C.; Crestini, C.; Saladino, R.; di Mauro, E. Borate Minerals and RNA Stability. Polymers 2010, 2, 211–228. [Google Scholar] [CrossRef]
- Reid, R.J.; Hayes, J.E.; Post, A.; Stangoulis, J.C.R.; Graham, R.D. A Critical Analysis of the Causes of Boron Toxicity in Plants. Plant. Cell Environ. 2004, 27, 1405–1414. [Google Scholar] [CrossRef]
- Reid, R. Update on Boron Toxicity and Tolerance in Plants. In Advances in Plant and Animal Boron Nutrition; Xu, F., Goldbach, H., Brown, P., Bell, R., Fujiwara, T., Hunt, C., Goldberg, S., Shi, L., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 83–90. ISBN 1402053819. [Google Scholar]
- Kim, D.H.; Hee, S.Q.; Norris, A.J.; Faull, K.F.; Eckhert, C.D. Boric Acid Inhibits Adenosine Diphosphate-Ribosyl Cyclase Non-Competitively. J. Chromatogr. A 2006, 1115, 246–252. [Google Scholar] [CrossRef]
- Barranco, W.T.; Kim, D.H.; Stella, S.L.; Eckhert, C.D. Boric Acid Inhibits Stored Ca2+ Release in DU-145 Prostate Cancer Cells. Cell Biol. Toxicol. 2009, 25, 309–320. [Google Scholar] [CrossRef]
- Kohorn, B.D.; Kohorn, S.L. The Cell Wall-Associated Kinases, WAKs, as Pectin Receptors. Front. Plant Sci. 2012, 3, 88. [Google Scholar] [CrossRef]
- Kohorn, B.D.; Johansen, S.; Shishido, A.; Todorova, T.; Martinez, R.; Defeo, E.; Obregon, P. Pectin Activation of MAP Kinase and Gene Expression Is WAK2 Dependent. Plant J. 2009, 60, 974–982. [Google Scholar] [CrossRef]
- Nakhamchik, A.; Zhao, Z.; Provart, N.J.; Shiu, S.H.; Keatley, S.K.; Cameron, R.K.; Goring, D.R. A Comprehensive Expression Analysis of the Arabidopsis Proline-Rich Extensin-like Receptor Kinase Gene Family Using Bioinformatic and Experimental Approaches. Plant Cell Physiol. 2004, 45, 1875–1881. [Google Scholar] [CrossRef]
- Serpe, M.D.; Nothnagel, E.A. Fractionation and Structural Characterization of Arabinogalactan-Proteins from the Cell Wall of Rose Cells. Plant Physiol. 1995, 109, 1007–1016. [Google Scholar] [CrossRef]
- Borner, G.H.H.; Lilley, K.S.; Stevens, T.J.; Dupree, P. Identification of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Proteomic and Genomic Analysis. Plant Physiol. 2003, 132, 568–577. [Google Scholar] [CrossRef]
- Wang, G.; Römheld, V.; Li, C.; Bangerth, F. Involvement of Auxin and CKs in Boron Deficiency Induced Changes in Apical Dominance of Pea Plants (Pisum sativum L.). J. Plant Physiol. 2006, 163, 591–600. [Google Scholar] [CrossRef]
- Eckhert, C.D.; Rowe, R.I. Embryonic Dysplasia and Adult Retinal Dystrophy in Boron-Deficient Zebrafish. J. Trace Elem. Exp. Med. 1999, 12, 213–219. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Ouweneel, A.B.; Thomas, M.J.; Sorci-Thomas, M.G. The Ins and Outs of Lipid Rafts: Functions in Intracellular Cholesterol Homeostasis, Microparticles, and Cell Membranes. J. Lipid Res. 2020, 61, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Skryabin, G.O.; Komelkov, A.V.; Savelyeva, E.E.; Tchevkina, E.M. Lipid Rafts in Exosome Biogenesis. Biochemistry 2020, 85, 177–191. [Google Scholar] [CrossRef]
- Kouchi, H.; Kumazawa, K. Anatomical Responses of Root Tips to Boron Deficiency. Soil Sci. Plant Nutr. 1976, 22, 53–71. [Google Scholar] [CrossRef]
- Kukuruzinska, M.A.; Lennon, K. Protein N-Glycosylation: Molecular Genetics and Functional Significance. Crit. Rev. Oral Biol. Med. 1998, 9, 415–448. [Google Scholar] [CrossRef]
- Helenius, A.; Aebi, M. Intracellular Functions of N-Linked Glycans. Science 2001, 291, 2364–2369. [Google Scholar] [CrossRef]
- Liebminger, E.; Hüttner, S.; Vavra, U.; Fischl, R.; Schoberer, J.; Grass, J.; Blaukopf, C.; Seifert, G.J.; Altmann, F.; Mach, L.; et al. Class I α-Mannosidases Are Required for N-Glycan Processing and Root Development in Arabidopsis thaliana. Plant Cell 2009, 21, 3850. [Google Scholar] [CrossRef]
- Sherrier, D.J.; Borisov, A.Y.; Tikhonovich, I.A.; Brewin, N.J. Immunocytological Evidence for Abnormal Symbiosome Development in Nodules of the Pea Mutant Line Sprint2Fix−(Sym31). Protoplasma 1997, 199, 57–68. [Google Scholar] [CrossRef]
- Dahiya, P.; Sherrier, D.J.; Kardailsky, I.V.; Borisov, A.Y.; Brewin, N.J. Symbiotic Gene Sym31 Controls the Presence of a Lectinlike Glycoprotein in the Symbiosome Compartment of Nitrogen-Fixing Pea Nodules. Mol. Plant-Microbe Interact. 1998, 11, 915–923. [Google Scholar] [CrossRef]
- Laughlin, S.T.; Baskin, J.M.; Amacher, S.L.; Bertozzi, C.R. In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish. Science 2008, 320, 664–667. [Google Scholar] [CrossRef]
- Nagashima, Y.; von Schaewen, A.; Koiwa, H. Function of N-Glycosylation in Plants. Plant Sci. 2018, 274, 70–79. [Google Scholar] [CrossRef]
- Rayon, C.; Cabanes-Macheteau, M.; Loutelier-Bourhis, C.; Salliot-Maire, I.; Lemoine, J.; Reiter, W.D.; Lerouge, P.; Faye, L. Characterization of N-Glycans from Arabidopsis. Application to a Fucose-Deficient Mutant. Plant Physiol. 1999, 119, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Kunst, L.; Hawes, C.; Moore, I. A GFP-Based Assay Reveals a Role for RHD3 in Transport between the Endoplasmic Reticulum and Golgi Apparatus. Plant J. 2004, 37, 398–414. [Google Scholar] [CrossRef]
- Teh, O.K.; Moore, I. An ARF-GEF Acting at the Golgi and in Selective Endocytosis in Polarized Plant Cells. Nature 2007, 448, 493–496. [Google Scholar] [CrossRef]
Ligand | Location | Function | Source |
---|---|---|---|
Rhamnogalaturonan II (RGII) | Cell wall matrix (Golgi vesicles, Golgi) | Cell wall structure stability | [64,65] |
Histidine/proline-hydroxyproline-rich glycoproteins (HPRGs) | Cell wall matrix | Regulation of cell extension | [168,169] |
Arabinogalactan proteins (AGPs) | Cell wall matrix | Cell wall dynamics, cell signaling | [115,145] |
Membrane glycoproteins and glycolipids | Endoplasmic reticulum, Golgi, Mitochondria, Cell membrane | Membrane dynamics, cell signaling, transport, metabolism | [75,76] |
Sugars, Polyols | Phloem sap | Boron mobility | [170,171] |
Ribonucleotides | Cytosol | Signal transduction | [172] |
Phosphoinositide (PIP), inositol phosphates (IPs) | Cell membranes, cytosol | Signal transduction | Putative [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolaños, L.; Abreu, I.; Bonilla, I.; Camacho-Cristóbal, J.J.; Reguera, M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? Plants 2023, 12, 777. https://doi.org/10.3390/plants12040777
Bolaños L, Abreu I, Bonilla I, Camacho-Cristóbal JJ, Reguera M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? Plants. 2023; 12(4):777. https://doi.org/10.3390/plants12040777
Chicago/Turabian StyleBolaños, Luis, Isidro Abreu, Ildefonso Bonilla, Juan J. Camacho-Cristóbal, and María Reguera. 2023. "What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation?" Plants 12, no. 4: 777. https://doi.org/10.3390/plants12040777
APA StyleBolaños, L., Abreu, I., Bonilla, I., Camacho-Cristóbal, J. J., & Reguera, M. (2023). What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? Plants, 12(4), 777. https://doi.org/10.3390/plants12040777