Potential Effects of Metal Oxides on Agricultural Production of Rice: A Mini Review
Abstract
:1. Introduction
2. Effect of MONPs on the Growth of Rice
2.1. Iron Oxide Nanoparticles
2.2. Copper Oxide Nanoparticles
2.3. Zinc Oxide Nanoparticles
2.4. Other Metal Oxide Nanoparticles
3. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Husen, A. Plant Response to Engineered Metal Oxide Nanoparticles. Nanoscale Res. Lett. 2017, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Xiao, X.; Li, L.; Gu, P.; Dai, X.; Tang, H.; Hu, Q.; Xue, H.; Pang, H. Hierarchically nanostructured transition metal oxides for supercapacitors. Sci. China Mater. 2017, 61, 185–209. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, I.S.; Li, Z.; Xia, X.; Lee, W.I.; Dai, S.; Bahnemann, D.W.; Pan, J.H. Nanoporous TiO2 Spheres with Tailored Textural Properties: Controllable Synthesis, Formation Mechanism, and Photochemical Applications. Prog. Mater. Sci. 2020, 109, 100620. [Google Scholar] [CrossRef]
- Zhen, M.; Zhou, B.; Ren, Y. Crystalline mesoporous transition metal oxides: Hard-templating synthesis and application in environmental catalysis. Front. Environ. Sci. 2013, 7, 341–355. [Google Scholar] [CrossRef]
- Zhou, Q.; Zeng, W. Shape control of Co3O4 micro-structures for high-performance gas sensor. Phys. E Low Dimens. Syst. Nanostruct. 2018, 95, 121–124. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Kong, Q.; Zhang, Y.; Zhao, P.; Ge, S.; Cui, K.; Yu, J. Mimic peroxidase-transfer enhancement of photoelectrochemical aptasensing via CuO nanoflowers functionalized lab-on-paper device with a controllable fluid separator. Biosens. Bioelectron. 2019, 133, 32–38. [Google Scholar] [CrossRef]
- Besha, A.T.; Liu, Y.; Bekele, D.N.; Dong, Z.; Naidu, R.; Gebremariam, G.N. Sustainability and environmental ethics for the application of engineered nanoparticles. Environ. Sci. Policy 2020, 103, 85–98. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wu, J.; Chen, M.; Liu, X.; Xiong, Y.; Wang, Y.; Feng, T.; Kang, S.; Wang, X. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere 2019, 237, 124403. [Google Scholar] [CrossRef]
- Peng, C.; Duan, D.; Xu, C.; Chen, Y.; Sun, L.; Zhang, H.; Yuan, X.; Zheng, L.; Yang, Y.; Yang, J.; et al. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ. Pollut. 2015, 197, 99–107. [Google Scholar] [CrossRef]
- Sebastian, A.; Nangia, A.; Prasad, M.N.V. Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice. J. Hazard. Mater. 2019, 371, 261–272. [Google Scholar] [CrossRef]
- Liu, J.; Dhungana, B.; Cobb, G.P. Copper oxide nanoparticles and arsenic interact to alter seedling growth of rice (Oryza sativa japonica). Chemosphere 2018, 206, 330–337. [Google Scholar] [CrossRef]
- Zhang, W.; Long, J.; Li, J.; Zhang, M.; Xiao, G.; Ye, X.; Chang, W.; Zeng, H. Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 2019, 26, 23119–23128. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, Y.; Ma, C.; Feng, Y.; Hao, Y.; Rui, Y.; Wu, W.; Gui, X.; Le, V.N.; Han, Y.; et al. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: Nps alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol. Biochem. 2017, 110, 82–93. [Google Scholar] [CrossRef]
- Elshayb, O.M.; Farroh, K.Y.; Amin, H.E.; Atta, A.M. Green Synthesis of Zinc Oxide Nanoparticles: Fortification for Rice Grain Yield and Nutrients Uptake Enhancement. Molecules 2021, 26, 584. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Zhang, Y.; Xin, H. The effect of cuo nps on reactive oxygen species and cell cycle gene expression in roots of rice. Environ. Toxicol. Chem. 2015, 34, 554–561. [Google Scholar] [CrossRef]
- Chen, J.; Dou, R.; Yang, Z.; You, T.; Gao, X.; Wang, L. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiol. Biochem. 2018, 130, 604–612. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Li, M.; Guo, Z.; Ullah, S.; Rui, Y.; Lynch, I. Alleviation of nitrogen stress in rice (Oryza sativa) by ceria nanoparticles. Environ. Sci. Nano 2020, 7, 2930–2940. [Google Scholar] [CrossRef]
- Sharma, P.K.; Raghubanshi, A.S.; Shah, K. Examining the uptake and bioaccumulation of molybdenum nanoparticles and their effect on antioxidant activities in growing rice seedlings. Environ. Sci. Pollut. Res. 2021, 28, 13439–13453. [Google Scholar] [CrossRef] [PubMed]
- Alidoust, D.; Isoda, A. Phytotoxicity assessment of γ-Fe2O3 nanoparticles on root elongation and growth of rice plant. Environ. Earth Sci. 2014, 71, 5173–5182. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Adeel, M.; Guo, Z.; Chetwynd, A.J.; Ma, C.; Bai, T.; Hao, Y.; Rui, Y. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollut. 2021, 269, 116134. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Sharma, D.; Singh, N.K. Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agent for boosting seed germination in rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 2021, 28, 40275–40287. [Google Scholar] [CrossRef]
- Gui, X.; Deng, Y.; Rui, Y.; Gao, B.; Luo, W.; Chen, S.; Nhan, L.V.; Li, X.; Liu, S.; Han, Y.; et al. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ. Sci. Pollut. Res. 2015, 22, 17716–17723. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Nangia, A.; Prasad, M.N. Carbon-Bound Iron Oxide Nanoparticles Prevent Calcium-Induced Iron Deficiency in Oryza sativa L. J. Agric. Food Chem. 2017, 65, 557–564. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef]
- Baumgartner, J.; Dey, A.; Bomans, P.H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N.A.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314. [Google Scholar] [CrossRef]
- Sainao, W.; Shi, Z.; Pang, H.; Feng, H. Alleviative effects of magnetic Fe3O4 nanoparticles on the physiological toxicity of 3-nitrophenol to rice (Oryza sativa L.) seedlings. Open Life Sci. 2022, 17, 626–640. [Google Scholar] [CrossRef]
- Bao, Y.; Ma, C.; Hu, L.; Xing, B. Effect of individual and combined exposure of Fe2O3 nanoparticles and oxytetracycline on their bioaccumulation by rice (Oryza sativa L.). J. Soils Sediments 2019, 19, 2459–2471. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, A.; Ma, J.; Pan, C.; Hu, L. Citric acid and glycine reduce the uptake and accumulation of Fe2O3 nanoparticles and oxytetracycline in rice seedlings upon individual and combined exposure. Sci. Total Environ. 2019, 695, 133859. [Google Scholar] [CrossRef]
- Rizwan, M.; Noureen, S.; Ali, S.; Anwar, S.; Rehman, M.Z.U.; Qayyum, M.F.; Hussain, A. Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. J. Soils Sediments 2019, 19, 3749–3759. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhou, H.; Zeng, P.; Wang, S.L.; Yang, W.J.; Huang, F.; Huo, Y.; Yu, S.N.; Gu, J.F.; Liao, B.H. Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root. Chemosphere 2021, 276, 130212. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Manzoor, N.; Shahid, M.; Abdullah, M.; Ali, L.; Wang, G.; Hashem, A.; Al-Arjani, A.F.; Alqarawi, A.A.; et al. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol. Environ. Saf. 2021, 209, 111829. [Google Scholar] [CrossRef]
- Chu, C.; Lu, C.; Yuan, J.; Xing, C. Fate of Fe3O4@NH2 in soil and their fixation effect to reduce lead translocation in two rice cultivars. Food Sci. Nutr. 2020, 8, 3673–3681. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Q.; Lin, L.; Li, F.-J.; Han, Y.; Song, Z.-G. Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles. Ecotoxicol. Environ. Saf. 2018, 159, 261–271. [Google Scholar] [CrossRef]
- Khan, S.; Akhtar, N.; Rehman, S.U.; Shujah, S.; Rha, E.S.; Jamil, M. Biosynthesized Iron Oxide Nanoparticles (Fe3O4 NPs) mitigate arsenic toxicity in rice seedlings. Toxics 2020, 9, 2. [Google Scholar] [CrossRef]
- Bidi, H.; Fallah, H.; Niknejad, Y.; Tari, D.B. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiol. Biochem. 2021, 163, 348–357. [Google Scholar] [CrossRef]
- Le Wee, J.; Law, M.C.; San Chan, Y.; Choy, S.Y.; Tiong, A.N.T. The Potential of Fe-Based Magnetic Nanomaterials for the Agriculture Sector. ChemistrySelect 2022, 7, 17. [Google Scholar] [CrossRef]
- Prerna, D.I.; Govindaraju, K.; Tamilselvan, S.; Kannan, M.; Vasantharaja, R.; Chaturvedi, S.; Shkolnik, D. Influence of nanoscale micro-nutrient alpha-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiol. Biochem. 2021, 162, 564–580. [Google Scholar] [CrossRef]
- Ruttkay-Nedecky, B.; Krystofova, O.; Nejdl, L.; Adam, V. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnol. 2017, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Landa, P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiol. Biochem. 2021, 161, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Shang, E.; Xu, E.; Zhang, H.; Huang, C. Temporal-spatial trends in potentially toxic trace element pollution in farmland soil in the major grain-producing regions of china. Sci. Rep. 2019, 9, 19463. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, M.V.J.; Sharma, P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 2016, 54, 110–119. [Google Scholar] [CrossRef]
- Ahsan, N.; Lee, D.G.; Lee, S.H.; Kang, K.Y.; Lee, J.J.; Kim, P.J.; Yoon, H.S.; Kim, J.S.; Lee, B.H. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 2007, 67, 1182–1193. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, Y.; Jiao, T.; Zhang, Y.; Chen, J.; Gao, Y. Effects of Copper Oxide Nanoparticles on the Growth of Rice (Oryza sativa L.) Seedlings and the Relevant Physiological Responses. Int. J. Environ. Res. Public Health 2020, 17, 1260. [Google Scholar] [CrossRef]
- Shaw, A.K.; Hossain, Z. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 2013, 93, 906–915. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Ren, Y.; Zhang, L.; Xue, Y.; Zhang, L.; He, J. Phytotoxicity Assessment of Copper Oxide Nanoparticles on the Germination, Early Seedling Growth, and Physiological Responses in Oryza sativa L. Bull. Environ. Contam. Toxicol. 2020, 104, 770–777. [Google Scholar] [CrossRef]
- Hassan, I.A.; El Dakak, R.; Haiba, N.S. Biochemical and physiological response of rice (Oryza sativa L.) plants to copper oxide nanoparticle stress. Agrochimica 2021, 65, 53–67. [Google Scholar] [CrossRef]
- Da Costa, M.V.J.; Kevat, N.; Sharma, P.K. Copper Oxide Nanoparticle and Copper (II) Ion Exposure in Oryza sativa Reveals Two Different Mechanisms of Toxicity. Water Air Soil Pollut. 2020, 231, 258. [Google Scholar] [CrossRef]
- Cao, W.; Gong, J.; Zeng, G.; Qin, M.; Qin, L.; Zhang, Y.; Fang, S.; Li, J.; Tang, S.; Chen, Z. Impacts of typical engineering nanomaterials on the response of rhizobacteria communities and rice (Oryza sativa L.) growths in waterlogged antimony-contaminated soils. J. Hazard. Mater. 2022, 430, 128385. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, H.; Fang, H.; Xu, C.; Huang, H.; Wang, Y.; Sun, L.; Yuan, X.; Chen, Y.; Shi, J. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Environ. Toxicol. Chem. 2015, 34, 1996–2003. [Google Scholar] [CrossRef]
- Yuan, P.; Peng, C.; Shi, J.; Liu, J.; Cai, D.; Wang, D.; Shen, Y. Ferrous ions inhibit Cu uptake and accumulation via inducing iron plaque and regulating the metabolism of rice plants exposed to CuO nanoparticles. Environ. Sci. Nano 2021, 8, 1456–1468. [Google Scholar] [CrossRef]
- Rai, P.; Singh, V.P.; Peralta-Videa, J.; Tripathi, D.K.; Sharma, S.; Corpas, F.J. Hydrogen sulfide (H2S) underpins the beneficial silicon effects against the copper oxide nanoparticles (CuO NPs) phytotoxicity in Oryza sativa seedlings. J. Hazard. Mater. 2021, 415, 124907. [Google Scholar] [CrossRef]
- Anwaar, S.; Maqbool, Q.; Jabeen, N.; Nazar, M.; Abbas, F.; Nawaz, B.; Hussain, T.; Hussain, S.Z. The Effect of Green Synthesized CuO Nanoparticles on Callogenesis and Regeneration of Oryza sativa L. Front. Plant Sci. 2016, 7, 1330. [Google Scholar] [CrossRef]
- Deng, C.; Wang, Y.; Navarro, G.; Sun, Y.; Cota-Ruiz, K.; Hernandez-Viezcas, J.A.; Niu, G.; Li, C.; White, J.C.; Gardea-Torresdey, J. Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. Sci. Total Environ. 2022, 810, 152260. [Google Scholar] [CrossRef]
- Liu, J.; Simms, M.; Song, S.; King, R.S.; Cobb, G.P. Physiological Effects of Copper oxide Nanoparticles and Arsenic on the Growth and Life Cycle of Rice (Oryza sativa japonica ‘Koshihikari’). Environ. Sci. Technol. 2018, 52, 13728–13737. [Google Scholar] [CrossRef]
- Liu, J.; Wolfe, K.; Potter, P.M.; Cobb, G.P. Distribution and Speciation of Copper and Arsenic in Rice Plants (Oryza sativa japonica ‘Koshihikari’) Treated with Copper Oxide Nanoparticles and Arsenic during a Life Cycle. Environ. Sci. Technol. 2019, 53, 4988–4996. [Google Scholar] [CrossRef]
- Wang, X.; Dou, F.; Li, X.; Sun, W.; Ma, X. Impact of Three Copper Amendments on Arsenic Accumulation and Speciation in Rice (Oryza sativa L.) in a Life Cycle Study. ACS Sustain. Chem. Eng. 2022, 10, 4504–4511. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, J.; Rui, M.; Yang, L.; Shen, J.; Chu, H.; Song, S.; Chen, Y. OsFTIP7 determines metallic oxide nanoparticles response and tolerance by regulating auxin biosynthesis in rice. J. Hazard. Mater. 2021, 403, 123946. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, J.; Dou, R.; Gao, X.; Mao, C.; Wang, L. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). Int. J. Environ. Res. Public Health 2015, 12, 15100–15109. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Azhar, W.; Wu, J.; Ulhassan, Z.; Salam, A.; Zaidi, S.H.R.; Yang, S.; Song, G.; Gan, Y. Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Ecotoxicol. Environ. Saf. 2021, 226, 112844. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, B.; Qiu, D.; Xie, Z.; Dai, S.; Li, C.; Xu, S.; Zheng, Y.; Li, S.; Jiang, M. Melatonin enhances metallic oxide nanoparticle stress tolerance in rice via inducing tetrapyrrole biosynthesis and amino acid metabolism. Environ. Sci. Nano 2021, 8, 2310–2323. [Google Scholar] [CrossRef]
- Afzal, S.; Aftab, T.; Singh, N.K. Impact of Zinc Oxide and Iron Oxide Nanoparticles on Uptake, Translocation, and Physiological Effects in Oryza sativa L. J. Plant Growth Regul. 2021, 41, 1445–1461. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Fu, Y.; Hu, Q.; Nawaz, A.; Guan, Y.; Li, Z.; Huang, Y.; Hu, J. Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress. Environ. Sci. Pollut. Res. 2016, 23, 19989–20002. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Noureen, S.; Anwar, S.; Ali, B.; Naveed, M.; Abd Allah, E.F.; Alqarawi, A.A.; Ahmad, P. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ. Sci. Pollut. Res. 2019, 26, 11288–11299. [Google Scholar] [CrossRef]
- Faizan, M.; Bhat, J.A.; Hessini, K.; Yu, F.; Ahmad, P. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicol. Environ. Saf. 2021, 220, 112401. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Li, W.; Ashraf, U.; Ma, L.; Tang, X.; Pan, S.; Tian, H.; Mo, Z. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J. Nanobiotechnol. 2021, 19, 75. [Google Scholar] [CrossRef]
- Wang, X.; Sun, W.; Zhang, S.; Sharifan, H.; Ma, X. Elucidating the Effects of Cerium Oxide Nanoparticles and Zinc Oxide Nanoparticles on Arsenic Uptake and Speciation in Rice (Oryza sativa) in a Hydroponic System. Environ. Sci. Technol. 2018, 52, 10040–10047. [Google Scholar] [CrossRef]
- Prakash, V.; Rai, P.; Sharma, N.C.; Singh, V.P.; Tripathi, D.K.; Sharma, S.; Sahi, S. Application of zinc oxide nanoparticles as fertilizer boosts growth in rice plant and alleviates chromium stress by regulating genes involved in oxidative stress. Chemosphere 2022, 303, 134554. [Google Scholar] [CrossRef]
- Wu, F.; Fang, Q.; Yan, S.; Pan, L.; Tang, X.; Ye, W. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): Germination, early growth, and arsenic uptake. Environ. Sci. Pollut. Res. 2020, 27, 26974–26981. [Google Scholar] [CrossRef]
- Faizan, M.; Sehar, S.; Rajput, V.D.; Faraz, A.; Afzal, S.; Minkina, T.; Sushkova, S.; Adil, M.F.; Yu, F.; Alatar, A.A.; et al. Modulation of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic Acid in Rice (Oryza sativa) Plant under Arsenic Stress. Plants 2021, 10, 2254. [Google Scholar] [CrossRef]
- Akhtar, N.; Khan, S.; Rehman, S.U.; Rehman, Z.U.; Khatoon, A.; Rha, E.S.; Jamil, M. Synergistic Effects of Zinc Oxide Nanoparticles and Bacteria Reduce Heavy Metals Toxicity in Rice (Oryza sativa L.) Plant. Toxics 2021, 9, 113. [Google Scholar] [CrossRef]
- Akhtar, N.; Khan, S.; Jamil, M.; Rehman, S.U.; Rehman, Z.U.; Rha, E.S. Combine Effect of ZnO NPs and Bacteria on Protein and Gene’s Expression Profile of Rice (Oryza sativa L.) Plant. Toxics 2022, 10, 305. [Google Scholar] [CrossRef]
- Bala, R.; Kalia, A.; Dhaliwal, S.S. Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. J. Soil Sci. Plant Nutr. 2019, 19, 379–389. [Google Scholar] [CrossRef]
- Itroutwar, P.D.; Govindaraju, K.; Tamilselvan, S.; Kannan, M.; Raja, K.; Subramanian, K.S. Seaweed-Based Biogenic ZnO Nanoparticles for Improving Agro-morphological Characteristics of Rice (Oryza sativa L.). J. Plant Growth Regul. 2020, 39, 717–728. [Google Scholar] [CrossRef]
- Sharma, D.; Afzal, S.; Singh, N.K. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. J. Biotechnol. 2021, 336, 64–75. [Google Scholar] [CrossRef]
- Adhikary, S.; Biswas, B.; Chakraborty, D.; Timsina, J.; Pal, S.; Tarafdar, J.C.; Banerjee, S.; Hossain, A.; Roy, S. Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (Oryza sativa L.). Sci. Rep. 2022, 12, 7103. [Google Scholar] [CrossRef]
- Elshayb, O.M.; Nada, A.M.; Sadek, A.H.; Ismail, S.H.; Shami, A.; Alharbi, B.M.; Alhammad, B.A.; Seleiman, M.F. The Integrative Effects of Biochar and ZnO Nanoparticles for Enhancing Rice Productivity and Water Use Efficiency under Irrigation Deficit Conditions. Plants 2022, 11, 1416. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Monikh, F.A.; Lynch, I.; Valsami-Jones, E.; Zhang, Z. Growing Rice (Oryza sativa) Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO2 Nanoparticles. Environ. Sci. Technol. 2021, 55, 8654–8664. [Google Scholar] [CrossRef]
- Bao, Y.; Ma, J.; Pan, C.; Guo, A.; Li, Y.; Xing, B. Citric acid enhances Ce uptake and accumulation in rice seedlings exposed to CeO2 nanoparticles and iron plaque attenuates the enhancement. Chemosphere 2020, 240, 124897. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Morales, M.I.; McCreary, R.; Castillo-Michel, H.; Barrios, A.C.; Hong, J.; Tafoya, A.; Lee, W.Y.; Varela-Ramirez, A.; Peralta-Videa, J.R.; et al. Cerium Oxide Nanoparticles Modify the Antioxidative Stress Enzyme Activities and Macromolecule Composition in Rice Seedlings. Environ. Sci. Technol. 2014, 47, 14110–14118. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Hong, J.; Morales, M.I.; Zhao, L.; Barrios, A.C.; Zhang, J.Y.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of Cerium Oxide Nanoparticles on Rice: A Study Involving the Antioxidant Defense System and In Vivo Fluorescence Imaging. Environ. Sci. Technol. 2013, 47, 5635–5642. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Morales, M.I.; Barrios, A.C.; McCreary, R.; Hong, J.; Lee, W.Y.; Nunez, J.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of Cerium Oxide Nanoparticles on the Quality of Rice (Oryza sativa L.) Grains. J. Agric. Food Chem. 2013, 61, 11278–11285. [Google Scholar] [CrossRef]
- Rico, C.M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Differential Effects of Cerium Oxide Nanoparticles on Rice, Wheat, and Barley Roots: A Fourier Transform Infrared (FT-IR) Microspectroscopy Study. Appl. Spectrosc. 2015, 69, 287–295. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, H.; Zhang, F.; Su, Y.; Guan, W.; Xie, Y.; Giraldo, J.P.; Shen, W. Molecular basis of cerium oxide nanoparticle enhancement of rice salt tolerance and yield. Environ. Sci. Nano 2021, 8, 3294–3311. [Google Scholar] [CrossRef]
- Peng, C.; Tong, H.; Shen, C.; Sun, L.; Yuan, P.; He, M.; Shi, J. Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Sci. Total Environ. 2020, 713, 136662. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, N.; Wang, W.; Sun, J.; Zhu, L. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front. Environ. Sci. Eng. 2020, 14, 103. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, L.; Le, X.C. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ. Pollut. 2017, 230, 302–310. [Google Scholar] [CrossRef]
- Waani, S.P.T.; Irum, S.; Gul, I.; Yaqoob, K.; Khalid, M.U.; Ali, M.A.; Manzoor, U.; Noor, T.; Ali, S.; Rizwan, M.; et al. TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotoxicol. Environ. Saf. 2021, 213, 111977. [Google Scholar] [CrossRef]
- Arshad, M.; Nisar, S.; Gul, I.; Nawaz, U.; Irum, S.; Ahmad, S.; Sadat, H.; Mian, I.A.; Ali, S.; Rizwan, M.; et al. Multi-element uptake and growth responses of Rice (Oryza sativa L.) to TiO2 nanoparticles applied in different textured soils. Ecotoxicol. Environ. Saf. 2021, 215, 112149. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Rehman, M.Z.U.; Malik, S.; Adrees, M.; Qayyum, M.F.; Alamri, S.A.; Alyemeni, M.N.; Ahmad, P. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol. Plant. 2019, 41, 35. [Google Scholar] [CrossRef]
- Wu, X.; Hu, J.; Wu, F.; Zhang, X.; Wang, B.; Yang, Y.; Shen, G.; Liu, J.; Tao, S.; Wang, X. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. J. Hazard. Mater. 2021, 405, 124047. [Google Scholar] [CrossRef]
- Zhang, W.; Long, J.; Geng, J.; Li, J.; Wei, Z. Impact of Titanium Dioxide Nanoparticles on Cd Phytotoxicity and Bioaccumulation in Rice (Oryza sativa L.). Int. J. Environ. Res. Public Health 2020, 17, 2979. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, C.; Fang, H.; Sun, L.; Zhang, H.; Feng, J.; Duan, D.; Liu, T.; Shi, J. Mitigation of Cu(II) phytotoxicity to rice (Oryza sativa) in the presence of TiO2 and CeO2 nanoparticles combined with humic acid. Environ. Toxicol. Chem. 2015, 34, 1588–1596. [Google Scholar] [CrossRef]
- Ma, C.; Liu, H.; Chen, G.; Zhao, Q.; Eitzer, B.; Wang, Z.; Cai, W.; Newman, L.A.; White, J.C.; Dhankher, O.P.; et al. Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L.). Environ. Sci. Nano 2017, 4, 1827–1839. [Google Scholar] [CrossRef]
- Xu, M.L.; Zhu, Y.G.; Gu, K.H.; Zhu, J.G.; Yin, Y.; Ji, R.; Du, W.C.; Guo, H.Y. Transcriptome Reveals the Rice Response to Elevated Free Air CO2 Concentration and TiO2 Nanoparticles. Environ. Sci. Technol. 2019, 53, 11714–11724. [Google Scholar] [CrossRef]
- Du, W.; Gardea-Torresdey, J.L.; Xie, Y.; Yin, Y.; Zhu, J.; Zhang, X.; Ji, R.; Gu, K.; Peralta-Videa, J.R.; Guo, H. Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Sci. Total Environ. 2017, 578, 408–416. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; He, Y.; Wang, L.; Li, W.; Yang, L.; Xing, G. Phytotoxicity of Y2O3 nanoparticles and Y3+ ions on rice seedlings under hydroponic culture. Chemosphere 2021, 263, 127943. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Manzoor, N.; Shahid, M.; Hussaini, K.M.; Rizwan, M.; Ali, S.; Maqsood, A.; Li, B. Green magnesium oxide nanoparticles-based modulation of cellular oxidative repair mechanisms to reduce arsenic uptake and translocation in rice (Oryza sativa L.) plants. Environ. Pollut. 2021, 288, 117785. [Google Scholar] [CrossRef]
Types of Metal Oxide Nanoparticles | Particle Size | Concentration | Exposure Time | Effects | References |
---|---|---|---|---|---|
Copper oxide nanoparticles | <50 nm | 62.5, 125, and 250 mg/L | 7 days | It causes oxidative damage to rice, reduces the synthesis of chlorophyll and carotenoids, and inhibits the growth of rice seedlings. | [46] |
<50 nm | 0.5 mM, 1.0 mM, and 1.5 mM | 14 days | It inhibited rice germination and root vigor, reduced carotenoid content, and increased rice proline, malondialdehyde, and hydrogen peroxide. | [47] | |
<50 nm | 5 mg/L | 3 days | It disrupted rice cell metabolism, DNA damage, and inhibition of OsCDC2 and OsCYCD expression in rice roots. | [13] | |
40 nm | 10, 50, 100, 500, 1000, and 2000 mg/L | 7 days | Increased Cu, prolineand soluble sugar content in rice rhizomes to inhibit seed germinationand early seedling growth. | [48] | |
<50 nm | 2.5, 10, 50, 100, and 1000 mg/L | 30 days | It promotes Cu uptake, induces oxidative stress, and inhibits germination rate, photosynthesis, and root and stem elongation in rice. | [44] | |
<50 nm | 1, 5, 10, 20, 30, 40, 50, and 100 mg/L | 120 days | Inhibiting photosynthesis, decreasing ascorbic acid content, increasing H2O2, malondialdehyde content and antioxidant enzyme activities, CuO NPs above 50 mg/L produced oxidative damage to rice plants. | [49] | |
<50 nm | 2.5, 10, 50, 100, and 1000 mg/L | 30 days | CuO NPs accumulate in chloroplasts, leading to delamination and deformation of the cystoid membrane. | [50] | |
Zinc oxide nanoparticles | <50 nm | 25, 50, and 100 mg/L | 7 days | It causes oxidative damage to rice and reduces rice seedling biomass and chlorophyll content to inhibit the growth of rice seedlings. | [14] |
<5 nm | 2000 mg/L | 7 days | Inhibition of rice root elongation. | [61] | |
30 nm | 100, 250, 500, and 750 mg/L | 7 days | Reduced chlorophyll content of rice seedlings, induced stomatal closure and ultrastructural damage through oxidative stress, and induced ethylene biosynthesis in rice seedlings. | [62] | |
37 ± 2 nm | 10, 50, 100, and 500 mg/L | Hourly treatment for 10 h, 4 weeks | It inhibits the elongation of rice rootstocks and reduces dry and fresh weight and photosynthetic efficiency. | [64] | |
Cerium Oxide Nanoparticles | 8 ± 1 nm | 62.5, 125, 250, and 500 mg/L | 10 days | It inhibits antioxidant enzyme activity and causes membrane damage. | [82] |
8 ± 1 nm | 62.5, 125, 250, and 500 mg/L | 10 days | High concentrations caused enhanced electrolyte leakage and lipid peroxidation in seedlings. | [83] | |
8 ±1 nm | 500 mg/kg | 135 days | Reduces the content of iron, proline and starch in rice grains, and reduces all antioxidant values in grains except for flavonoids. | [84] | |
<25 nm | 500 mg/kg | 28 days | Decrease protein and soluble sugar content in the root system, inhibit the uptake and accumulation of macro trace elements in rice seedlings, etc. | [80] | |
23.5 ± 6.7 nm | 100 and 500 mg/L | 3 weeks | The presence of cerium oxide nanoparticles triggers oxidative stress and inhibits average growth in rice when Nitrogen supply is normal. | [15] | |
Titanium dioxide nanoparticles | 293 ± 17 nm | 100, 250, and 500 mg/L | 14 days | Reducing the biomass of rice, enhancing the antioxidant system’s defense and interfering with rice’s metabolism. | [89] |
26.5 nm | 500 and 750 mg/kg | After 15 days of incubation to nutrition stage | 750 mg/kg exhibited toxic effects of reduced biomass, increased H2O2 production, lipid peroxidationand electrolyte leakage. | [90] | |
Molybdenum oxide nanoparticles | 21.34 nm | 100, 500, and 1000 ppm | 10 days | Reduced rice photosynthetic pigment levels and caused oxidative stress in rice. | [16] |
Yttrium oxide nanoparticles | 20–30 nm | 1, 5, 10, 20, and 50 mg/L | 7 days | High concentrations inhibit rice germination and root growth and cause oxidative damage to rice cells. | [99] |
Types of Metal Oxide Nanoparticles | Particle Size | Concentration | Exposure Time | Effects | References |
---|---|---|---|---|---|
Iron oxide nanoparticles | 6 nm | 500, 1000, and 2000 mg/L | 14 weeks | Promote the growth of the rice root system. | [22] |
28 nm | 20 and 40 mg/L | 24 h | Increase α-amylase activity, promote starch decomposition, and improve rice seed germination rate and seedling vigor. | [24] | |
<10 nm | 20 mg/L | 21 days | Under calcium stress, the nanoparticles enhanced bioproductivity, photosynthetic electron transport, antioxidant enzyme activity, and iron accumulation. | [26] | |
20–30 nm | 50, 250, and 500 mg/L | 2 weeks | Alleviating oxidative stress in rice improves plant growth under iron deficiency conditions and regulates iron-deficiency-induced phytohormones. | [23] | |
14.1 nm | 2000 mg/L | 5 days | Promote the growth, reactive oxygen species production, antioxidant enzyme activity, and chlorophyll content of rice seedlings. Alleviate the physiological toxicity of 3-nitrophenol to rice seedlings. | [29] | |
10–50 nm | 0.0025 mg/kg | 40 days | Increasing chlorophyll and potassium content helps to alleviate oxidative stress under cadmium (Cd) and sodium stress. | [17] | |
50–100 nm | 10, 20, and 30 mg/L | 3 weeks | Increasing rice biomass and iron concentration in rice reduces the enrichment of Cd in rice. | [32] | |
18–94 nm | 25, 50, and 100 mg/kg | 30 days | They improve rice plant biomass, antioxidant enzyme content, and photosynthetic efficiency, reduces reactive oxygen species, and alleviates Cd and drought stress. | [34] | |
NA * | 40 and 320 mg/L | 6 days | Increase in dry weight of rice and transport and accumulation of Cd in rice tissues. | [33] | |
5–10 nm | 125 mg/kg | 15 days | Reduce the concentration of lead in rice roots and shoots. | [35] | |
21.3 nm | 200 mg/L | 5 days | Better performance in preventing the transport of arsenic (As) to the above-ground parts of rice seedlings. | [36] | |
60–80 nm | 5, 10, and 15 ppm | 5 days | They inhibit the uptake of As in rice and promote plant growth. | [37] | |
20–30 nm | 25 and 50 mg/L | 21 days | They improve iron uptake and resistance to oxidative stress in rice and reduce As accumulation in rice. | [38] | |
Copper Oxide Nanoparticles | 40 ± 5 nm | 1–20 mg/L | 10–12 weeks | They have a good effect in inducing rice healing tissue formation. | [55] |
10–100 nm | 75, 150, 300, and 600 mg/kg | 4 months | Increased iron content and expression of growth-hormone-related genes in cultivated rice seeds. | [56] | |
NA * | 0.1, 1, 10, 50, and 100 mg/L | 18 days | Mitigating the adverse effects of As stress on rice shoot length and root branch number, and reducing As uptake by rice. | [18] | |
23–37 nm | 0.1–100 mg/L | 131 days | The accelerated tassel stage helps shorten rice’s life cycle, thus reducing the accumulation of As in the seeds. | [57] | |
9–22 nm | 100 mg/kg | 104 days | Mitigate the phytotoxicity of As, improve rice yield, and alter the accumulation of As in rice tissues. | [59] | |
Zinc oxide nanoparticles | 30–40 nm | 50, 100, and 500 mg,/kg | 4 months | The higher the concentration, the more significant the promotion effect on the early growth of rice, which can increase the biomass, tiller number, and plant height of rice. | [19] |
20–30 nm | 50, 75, and 100 mg/L | Spray on the 14th, 21st, 28th, and 35th day after transplanting | Increasing the biomass and photosynthesis of rice plants significantly reduced the concentration of Cd in seedlings and roots and increased the concentration of Zn in seedlings and roots. | [66] | |
11–21 nm | 50 mg/L | 5 days | Increasing rice biomass, photosynthesis, protein, antioxidant enzyme activity, mineral nutrient content and reducing Cd levels all had significant effects. | [67] | |
30 ± 10 nm | 25, 50, and 100 mg/L | 20 h | Promoting the growth of rice seedlings under Cd stress. | [68] | |
15–137 nm | 100 mg/L | 6 days | Promoting the growth of rice seedlings under As stress and inhibiting As uptake by rice. | [69] | |
<100 nm | 25 μM | 7 days | Reduce the toxicity of chromium (Cr) to rice and promote the growth of rice seedlings. | [70] | |
20–30 nm | 10, 20, 50, 100, and 200 mg/L | 12 days | They promoted rice germination, increased rice biomass and Zn content, and inhibited the accumulation of As in rice. | [71] | |
30 nm | 1000 mg/L | 7 days | Mitigation of oxidative stress induced by As stress in rice. | [72] | |
30–70 nm | 5, 10, 15, 20, and 25 mg/L | 7 days | Increase the tolerance index of rice and reduce the toxic effects of Pb and Cu on rice. | [73] | |
30–50 nm | 5 and 10 mg/L | 21 days | Reduced stress-induced gene expression and increased nitrogen protein content and protein expression in rice. | [74] | |
50–70 nm | 0, 0.5, 1, and 5 g/L | 60 days (every 15 days) | Increase the zinc content in rice and reduce the symptoms of zinc deficiency in rice. | [75] | |
14.95 nm | 5, 10, 25, 50, 100, and 200 mg/L | 12 h | Significantly improved the rice germination rate, increased stem and root length and seedling vigor, etc. | [76] | |
31.4 nm | 20, 40, and 60 mg/L | 4 days | Improved rice yield and enriched rice seed nutrition. | [21] | |
40–100 nm | 20 mg/L | 24 h | Promote rice germination and increase antioxidant enzyme activity, seedling length, and fresh weight, etc. | [77] | |
<10 nm | 10 μmol | 7 days | Increase chlorophyll, phenol and protein content, leaf area index, growth rate, and rice yield. | [78] | |
48.70 nm | 50 mg/L | Irrigation every 3, 6, 9, and 12 days | Physiological traits such as chlorophyll content, relative water content, plant height, leaf area index, and yield-related components were significantly increased. | [79] | |
Cerium Oxide Nanoparticles | 231 ± 16 nm | ≥125 mg/L | 4 days | Promoting protein synthesis in rice roots and changing carbohydrate composition in the xylem of rice roots. | [85] |
5.6 ± 0.2 nm | 98 μg/L and 0.98 mg/L | 8 days and 2 months | Regulation of nitrate reductase gene expression to promote NO synthesis and ultimately enhance salt tolerance in rice. | [86] | |
23.5 ± 6.7 nm | 100 and 500 mg/L | 3 weeks | Mitigation of oxidative damage in rice due to nitrogen stress. | [15] | |
Titanium dioxide nanoparticle | 5–10 nm | 0.1, 1, 10, and 100 mg/L | 21 days | Increase energy storage in photosynthesis, reduce energy loss in rice metabolism, realize the promotion of rice growth, and increase rice yield. | [88] |
32.7 nm | 500 mg/kg | 10 weeks | Increasing chlorophyll content and stem and root length in rice. | [91] | |
18–166 nm | 100 and 1000 mg/L | 10 days | Improved photosynthetic efficiency and chlorophyll content and reduced Cd uptake and distribution in rice roots and leaves. | [20] | |
60 ± 11 nm | 5, 10, 20, and 30 mg/L | 4 weeks (once every week) | Increasing chlorophyll content and rice biomass and reducing Cd uptake in rice. | [92] | |
NA * | 10, 100, and 1000 mg/L | 7 days | Reduced As uptake and oxidative stress in rice. | [93] | |
20–40 nm | 50, 100, and 500 mg/kg | 3 months | They significantly increased plant height and total chlorophyll content at the tillering stage, reduced malondialdehyde content at the gestation stage, and reduced hydrogen peroxide content at the tasseling stage. | [94] | |
<20 nm | 100 and 1000 mg/L | 3 days | Reduce the adsorption of Cu to seedlings and alleviate the toxic effect of Cu on seedlings. | [95] | |
10–25 nm | 500, 1000, and 2000 mg/L | 10 days | Inhibited the adsorption of tetracycline to rice and alleviated the toxic effect of tetracycline on rice. | [96] | |
< 100 nm | 200 mg/kg | 132 days | Under the condition of elevated CO2 concentration, they increased rice plant height, stem biomass, and spike biomass and promoted rice growth. | [97] | |
20–100 nm | 50 and 200 mg/kg | 6 months | Under the condition of elevated CO2 concentration, they can promote the growth of rice and increase the content of calcium, magnesium, manganese, phosphorus, zinc, and titanium. | [98] | |
Molybdenum oxide nanoparticles | 20–30 nm | 1, 5, and 10 mg/L | 4 h and 15 days | Promote the growth and development of rice seedling roots. | [99] |
Yttrium oxide nanoparticles | 38–57 nm | 200 mg/kg | 30 days | Significantly inhibit the uptake of As in rice, promote the growth of rice under As stress, and reduce oxidative damage in rice. | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Zhang, Q.; Lin, X.; Shang, Y.; Cui, X.; Guo, L.; Huang, Y.; Wu, M.; Song, K. Potential Effects of Metal Oxides on Agricultural Production of Rice: A Mini Review. Plants 2023, 12, 778. https://doi.org/10.3390/plants12040778
Xu M, Zhang Q, Lin X, Shang Y, Cui X, Guo L, Huang Y, Wu M, Song K. Potential Effects of Metal Oxides on Agricultural Production of Rice: A Mini Review. Plants. 2023; 12(4):778. https://doi.org/10.3390/plants12040778
Chicago/Turabian StyleXu, Miao, Qi Zhang, Xiuyun Lin, Yuqing Shang, Xiyan Cui, Liquan Guo, Yuanrui Huang, Ming Wu, and Kai Song. 2023. "Potential Effects of Metal Oxides on Agricultural Production of Rice: A Mini Review" Plants 12, no. 4: 778. https://doi.org/10.3390/plants12040778
APA StyleXu, M., Zhang, Q., Lin, X., Shang, Y., Cui, X., Guo, L., Huang, Y., Wu, M., & Song, K. (2023). Potential Effects of Metal Oxides on Agricultural Production of Rice: A Mini Review. Plants, 12(4), 778. https://doi.org/10.3390/plants12040778