Ecological Preferences and Diversity of Essential Oil Composition in Endangered Wild-Growing Populations of Sideritis sipylea Boiss. (Lamiaceae) of the East Aegean Islands (Greece): Evidencing Antioxidant Potential, Antimicrobial and Cytotoxic Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Profile of the Essential Oil of S. sipylea
2.2. Biological Activities of the Essential Oil of S. sipylea
2.3. Ecological Profiling of Sideritis sipylea
2.4. Habitat Comparison for the Two Samples
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Isolation of Essential Oil
3.4. GC-MS Analysis
3.5. Biological Activities of the Studied Essential Oils
3.5.1. Antioxidant Activity
3.5.2. Cytotoxic Activity
3.5.3. Antimicrobial Activity
3.6. Spatial Data
3.7. Climate Data
3.8. Samos and Lesvos Habitat Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils Science, Technology, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-0-429-15566-6. [Google Scholar]
- Burt, S. Essential Oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Iqbal, T.; Ijaz, A.; Bhatti, A. Antioxidant attributes of four Lamiaceae essential oils. Pakistan J. Bot. 2011, 43, 1315–1321. Available online: https://www.pakbs.org/pjbot/PDFs/43/PJB431315.pdf (accessed on 13 December 2022).
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Mukazayire, M.-J.; Tomani, J.C.; Stévigny, C.; Chalchat, J.C.; Conforti, F.; Menichini, F.; Duez, P. Essential oils of four rwandese hepatoprotective herbs: Gas chromatography–Mass spectrometry analysis and antioxidant activities. Food Chem. 2011, 7, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Runyoro, D.; Ngassapa, O.; Vagionas, K.; Aligiannis, N.; Graikou, K.; Chinou, I. Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem. 2010, 119, 311–316. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Mehalaine, S.; Chenchouni, H. Quantifying how climatic factors influence essential oil yield in wild-growing plants. Arab. J. Geosci. 2021, 14, 1257. [Google Scholar] [CrossRef]
- Halliwell, B. Antioxidant Characterization: Methodology and mechanism. Biochem. Pharmacol. 1995, 49, 1341–1348. [Google Scholar] [CrossRef]
- Li, H.-B.; Wong, C.-C.; Cheng, K.-W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT Food Sci. Techn. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Arisoy, K.; Tepe, B.; Cakir, A.; Abali, G.; Mete, E. Studies on the antioxidant activity of essential oil and different solvent extracts of Vitex agnus castus L. fruits from Turkey. Food Chem. Toxicol. 2009, 47, 2479–2483. [Google Scholar] [CrossRef] [PubMed]
- Obrenovich, M.; Li, Y.; Tayahi, M.; Reddy, V.P. Polyphenols and small phenolic acids as cellular metabolic regulators. Curr. Issues Mol. Biol. 2022, 44, 4152–4166. [Google Scholar] [CrossRef] [PubMed]
- Antolovich, M.; Prenzler, P.; Robards, K.; Ryan, D. Sample preparation in the determination of phenolic compounds in fruits. Analyst 2000, 125, 989–1009. [Google Scholar] [CrossRef]
- Fecka, I.; Raj, D.; Krauze-Baranowska, M. Quantitative determination of four water-soluble compounds in herbal drugs from Lamiaceae using different chromatographic techniques. Chromatographia 2007, 66, 87–93. [Google Scholar] [CrossRef]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities-a Review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef]
- Kirimer, N.; Baser, K.H.C.; Demirci, B.; Duman, H. Essential oils of Sideritis species of Turkey belonging to the Section Empedoclia. Chem. Nat. Compd. 2004, 40, 19–23. [Google Scholar] [CrossRef]
- Güvenç, A.; Duman, H. Morphological and anatomical studies of annual taxa of Sideritis L. (Lamiaceae), with notes on chorology in Turkey. Turk. J. Bot. 2010, 34, 83–104. [Google Scholar] [CrossRef]
- Kilic, T.; Carikci, S.; Topcu, G.; Aslan, I.; Goren, A.C. Diterpenoids from Sideritis condensate—Evaluation of chemotaxonomy of Sideritis species and insecticidal activity. Chem. Nat. Compd. 2009, 45, 918–920. [Google Scholar] [CrossRef]
- Topcu, G.; Gören, A. Biological activity of diterpenoids isolated from Anatolian Lamiaceae plants. Rec. Nat. Prod. 2007, 1, 1–16. Available online: https://acgpubs.org/doc/20180730181526RNP07_02.pdf (accessed on 13 December 2022).
- Piozzi, F.; Bruno, M.; Rosselli, S.; Maggio, A. The diterpenoids from the genus Sideritis. Stud. Nat. Prod. Chem. 2006, 33 Pt M, 493–540. [Google Scholar] [CrossRef]
- de Castro, C.O.; Núñez, D.R. A Taxonomic Revision of the Section Sideritis (Genus Sideritis, Labiatae); Cramer: Berlin, Germany, 1994. [Google Scholar]
- Gergis, V.; Argyriadou, N.; Poulos, C. Composition of the essential oils of Sideritis cladestina ssp. cyllenea and Sideritis sipylea. J. Sci. Food Agric. 1989, 47, 501–507. [Google Scholar] [CrossRef]
- Gergis, V.; Spiliotis, V.; Argyriadou, N.; Poulos, C. Relation between the antimicrobial activity and the chemical composition of the essential oil of Sidevitis sipylea Boiss. (Labiatae). Flavour Fragr. J. 1991, 6, 93–95. [Google Scholar] [CrossRef]
- Güvenç, A.; Houghton, P.J.; Duman, H.; Coşkun, M.; Şahin, P. Antioxidant activity studies on selected Sideritis species native to Turkey. Pharm. Biol. 2005, 43, 173–177. [Google Scholar] [CrossRef]
- Nakiboglu, M.; Urek, R.O.; Kayali, H.A.; Tarhan, L. Antioxidant capacities of endemic Sideritis sipylea and Origanum sipyleum from Turkey. Food. Chem. 2007, 104, 630–635. [Google Scholar] [CrossRef]
- Dulger, B.; Gonuz, A.; Aysel, V. Inhibition of clotrimazole-resistant Candida albicans by some endemic Sideritis species from Turkey. Fitoterapia 2006, 77, 4040405. [Google Scholar] [CrossRef] [PubMed]
- Topçu, G.; Gören, A.C.; Kiliç, T.; Yildiz, Y.K.; Tümen, G. Diterpenes from Sideritis sipylea and S. dichotoma. Turk. J. Chem. 2002, 26, 189–194. [Google Scholar]
- Kessler, A.; Villmann, C.; Sahin-Nadeem, H.; Pischetsrieder, M.; Buettner, A. GABA A receptor modulation by the volatile fractions of Sideritis species used as ‘Greek’ or ‘Turkish’ mountain tea. Flavour Fragr. J. 2012, 27, 297–303. [Google Scholar] [CrossRef]
- Sahin, S.; Eulenburg, V.; Kreis, W.; Villmann, C.; Pischetsrieder, M. Three-step test system for the identification of novel GABAA receptor modulating food plants. Plant Foods Hum. Nutr. 2016, 71, 355–360. [Google Scholar] [CrossRef]
- Loğoğlu, E.; Arslan, S.; Öktemer, A.; Şakiyan, I. Biological activities of some natural compounds from Sideritis sipylea Boiss Phytother. Res. 2006, 20, 294–297. [Google Scholar] [CrossRef]
- Axiotis, E.; Petrakis, E.A.; Halabalaki, M.; Mitakou, S. Phytochemical profile and biological activity of endemic Sideritis sipylea Boiss. in North Aegean Greek Islands. Molecules 2020, 25, 2022. [Google Scholar] [CrossRef] [PubMed]
- Tomou, E.-M.; Lytra, K.; Chrysargyris, A.; Christofi, M.-D.; Miltiadous, P.; Corongiu, G.L.; Tziouvelis, M.; Tzortzakis, N.; Skaltsa, H. Polar constituents, biological effects and nutritional value of Sideritis sipylea Boiss. Nat. Prod. Res. 2022, 36, 4200–4204. [Google Scholar] [CrossRef] [PubMed]
- Sarrou, E.; Doukidou, L.; Avramidou, E.V.; Martens, S.; Angeli, A.; Stagiopoulou, R.; Fyllas, N.M.; Tourvas, N.; Abraham, E.; Maloupa, E.; et al. Chemodiversity is closely linked to genetic and environmental diversity: Insights into the Endangered populations of the local endemic plant Sideritis euboea Heldr. of Evia Island (Greece). J. Appl. Res. Med. Arom. Plants 2022, 31, 100426. [Google Scholar] [CrossRef]
- Boira, H.; Blanquer, A. Environmental factors affecting chemical variability of essential oils in Thymus piperella L. Biochem. System. Ecol. 1998, 26, 811–822. [Google Scholar] [CrossRef]
- Stefanaki, A.; Kokkini, S. Sideritis sipylea Boiss., Endangered (EN). In The Red Data Book of Rare and Threatened Plants of Greece, Vol. 2 (E-Z); Phitos, D., Constantinidis, T., Kamari, G., Eds.; Hellenic Botanical Society: Patras, Greece, 2009; pp. 310–312. [Google Scholar]
- Mateo, C.; Sanz, J.; Calderón, J. Essential oil of Sideritis hirsuta. Phytochemistry 1983, 22, 171–173. [Google Scholar] [CrossRef]
- Mateo, C.; Sanz, J.; Calderón, J. The essential oils of some Eastern Spain Sideritis. Phytochemistry 1984, 23, 319–322. [Google Scholar] [CrossRef]
- Adzet, T.; Cañigueral, S.; Ibàñez, C. Essential oil of Sideritis granatensis (Pau) Rivas-Goday (Lamiaceae). Flavour Fragr. J. 1989, 4, 129–132. [Google Scholar] [CrossRef]
- Aligiannis, N.; Kalpoutzakis, E.; Chinou, I.; Mitakou, S. Composition and antimicrobial activity of the essential oils of five taxa of Sideritis from Greece. J. Agric. Food Chem. 2001, 49, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Palá-Paúl, J.; Pérez-Alonso, M.J.; Velasco-Negueruela, A.; Ballestros, M.T.; Sanz, J. Essential oil composition of Sideritis hirsuta L. from Guadalajara Province, Spain. Flavour Fragr. J. 2006, 21, 410–415. [Google Scholar] [CrossRef]
- Fernández-López, J.; Pérez-Alvarez, A.J.; Viuda-Martos, M. Beneficial health effects of bioactive compounds present in spices and aromatic herbs. Stud. Nat. Prod. Chem. 2012, 37, 115–134. [Google Scholar] [CrossRef]
- Buchbauer, G. Biological activities of essential oils. In Handbook of Essential Oils: Science, Technology and Applications, 1st ed.; Baser, K., Buchbauer, G., Eds.; CRC press: Boca Raton, FL, USA, 2009; pp. 235–280. [Google Scholar] [CrossRef]
- Tunalier, Z.; Kosar, M.; Ozturk, N.; Baser, K.H.C.; Duman, H.; Kirimer, N. Antioxidant properties and phenolic composition of Sideritis species. Chem. Nat. Compd. 2004, 40, 206–210. [Google Scholar] [CrossRef]
- Dulger, B.; Gonuz, A.; Bican, T. Antimicrobial studies on three endemic species of Sideritis from Turkey. Acta Biol. Crac. 2005, 47, 153–156. Available online: https://abcbot.pl/pdf/47_2/153-156.pdf (accessed on 30 January 2023).
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Mol. Biol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994, 269, 8022–8028. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.-L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Demirtas, I.; Sahin Yaglioglu, A.; Ayhan; Bulent; Tekin, S.; Telci, I. Antiproliferative effects of the methanolic extracts of Sideritis libanotica Labill. subsp. linearis. Rec. Nat. Prod. 2009, 3, 104–109. Available online: https://www.acgpubs.org/doc/2018080514031313_RNP-0812-65.pdf (accessed on 13 December 2022).
- Aqeel, U.; Aftab, T.; Khan, M.M.A.; Naeem, M. Regulation of essential oil in aromatic plants under changing environment. J. Appl. Res. Med. Arom. Plants 2023, 32, 100441. [Google Scholar] [CrossRef]
- Behnam Asgari, L.; Mansour, G.; Shahab, N. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Safety 2017, 145, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi Mandoulakani, B.; Eyvazpour, E.; Ghadimzadeh, M. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry 2017, 139, 1–7. [Google Scholar] [CrossRef] [PubMed]
- van Den Dool, H.; Kratz, P.D. A Generalization of the retention index system including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; Halsted Press: New York, NY, USA, 1976; ISBN 047015019X. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed; Allured Publ.: Carol Stream, IL, USA, 2007; ISBN 1932633219. [Google Scholar]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free radical scavenging Activity. Phytother. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem. 2005, 53, 7832–7836. [Google Scholar] [CrossRef]
- Radojković, M.; Zekovic, Z.; Maskovic, P.; Vidovic, S.; Mandić, A.; Mišan, A.; Đurović, S. Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J. Supercrit. Fluids 2016, 117, 50–58. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Baviskara, B.A.; Khadabadia, S.S.; Deore, S.L.; Shiradkar, M.R. Synthesis of clubbed Triazolyl Indeno [1,2-C] Isoquinolines as a novel anticancer agent. Der Pharm. Sin. 2012, 3, 24–30. Available online: https://www.imedpub.com/abstract/synthesis-of-clubbed-triazolyl-indeno12-cisoquinolines-as-an-novel-anticancer-agent-13361.html (accessed on 30 January 2023).
- Mašković, P.Z.; Diamanto, L.D.; Vujic, J.M.; Cvetanović, A.D.; Radojković, M.M.; Gadžurić, S.B.; Zengin, G. Onosma aucheriana: A source of biologically active Molecules for novel food Ingredients and pharmaceuticals. J. Funct. Foods 2015, 19, 479–486. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Mašković, P.; Maksimović, J.; Maksimović, V.; Blagojević, J.; Vujošević, M.; Manojlović, N.; Radojković, M.; Cvijović, M.; Solujić, S. Biological activities of phenolic compounds and ethanolic extract of Halacsya sendtneri (Boiss) Dőrfler. Open Life Sciences 2012, 7, 327–333. [Google Scholar] [CrossRef]
- Sweden’s Virtual Herbarium. Available online: http://herbarium.emg.umu.se/ (accessed on 12 December 2022).
- JACQ—Virtual Herbaria. Available online: https://www.jacq.org/imprint_citation_privacy.htm (accessed on 12 December 2022).
- GBIF Backbone Taxonomy. Occurrences of Sideritis sipylea. Available online: https://www.gbif.org/occurrence/search?q=sideritis%20sipylea (accessed on 13 January 2023). [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Gosser, A.L.; Conover, M.R. Does climate or habitat affect the frequency of cooperative brood rearing in Canada Geese? Ethology 2000, 106, 235–246. [Google Scholar] [CrossRef]
Compound | AI | Content (%) | Identification with | |
---|---|---|---|---|
S1 | S2 | |||
α-Thujene * (MH) | 924 | 0.7 ± 0.02 | 0.3 ± 0.01 | AI, MS |
α-Pinene (MH) | 931 | 4.3 ± 0.05 | 37.7 ± 0.93 | AI, MS, Co-GC |
Sabinene (MH) | 972 | 0.5 ± 0.01 | 12.1 ± 0.46 | AI, MS |
β-Pinene (MH) | 976 | 6.3 ± 0.12 | 15.1 ± 0.50 | AI, MS, Co-GC |
β-Myrcene (MH) | 989 | 20.4 ± 0.73 | 0.6 ± 0.01 | AI, MS, Co-GC |
α-Phellandrene (MH) | 1006 | 2.5 ± 0.03 | n.d. * | AI, MS |
α-Terpinene (MH) | 1016 | 6.1 ± 0.22 | 0.3 ± 0.00 | AI, MS |
p-Cymene (MH) | 1025 | 2.2 ± 0.04 | n.d. | AI, MS, Co-GC |
Limonene (MH) | 1031 | 3.0 ± 0.06 | 1.3 ± 0.06 | AI, MS, Co-GC |
β-Phellandrene (MH) | 1031 | 3.5 ± 0.10 | n.d. | AI, MS |
γ-Terpinene (MH) | 1059 | 2.7 ± 0.03 | 0.8 ± 0.02 | AI, MS |
Terpinolene (MH) | 1085 | 0.3 ± 0.00 | 0.1 ± 0.00 | AI, MS |
Linalool (MO) | 1101 | 0.7 ± 0.01 | n.d. | AI, MS, Co-GC |
α-Campholenal * (MO) | 1130 | 0.1 ± 0.00 | 0.2 ± 0.00 | AI, MS |
trans-Verbenol * (MO) | 1149 | n.d. | 0.1 ± 0.00 | AI, MS |
Santolinyl acetate * | 1175 | 0.1 ± 0.00 | n.d. | AI, MS |
Terpinen-4-ol (MO) | 1183 | 1.3 ± 0.04 | 1.5 ± 0.04 | AI, MS, Co-GC |
α-Terpineol (MO) | 1198 | 0.8 ± 0.01 | 0.4 ± 0.00 | AI, MS |
cis-3-Hexenyl isovalerate | 1232 | 0.1 ± 0.00 | 0.1 ± 0.00 | AI, MS |
Pulegone (MO) | 1242 | 0.5 ± 0.01 | 0.8 ± 0.02 | AI, MS, Co-GC |
Carvone (MO) | 1250 | 0.1 ± 0.00 | n.d. | AI, MS, Co-GC |
Bornyl acetate | 1286 | 0.1 ± 0.00 | n.d. | AI, MS, Co-GC |
Thymol (MO) | 1293 | 3.1 ± 0.08 | n.d. | AI, MS, Co-GC |
Carvacrol (MO) | 1300 | 6.2 ± 0.13 | 0.1 ± 0.00 | AI, MS |
α-Ylangene * (SH) | 1375 | 0.3 ± 0.01 | n.d. | AI, MS |
β-Bourbonene (SH) | 1384 | 0.2 ± 0.00 | n.d. | AI, MS |
β-Caryophyllene (SH) | 1420 | 11.8 ± 0.27 | 5.6 ± 0.51 | AI, MS, Co-GC |
cis-β-Farnesene * (SH) | 1441 | n.d. | 0.3 ± 0.01 | AI, MS |
trans-β-Farnesene (SH) | 1452 | 0.3 ± 0.01 | 0.9 ± 0.02 | AI, MS |
α-Caryophyllene (SH) | 1457 | 0.2 ± 0.00 | n.d. | AI, MS, Co-GC |
allo-Aromadendrene (SH) | 1461 | 0.1 ± 0.00 | n.d. | AI, MS |
Cumacrene * (SH) | 1470 | 1.9 ± 0.05 | 0.1 ± 0.00 | AI, MS |
Germacrene D (SH) | 1482 | 2.7 ± 0.07 | 4.2 ± 0.10 | AI, MS |
Viridiflorene * (SH) | 1492 | 0.3 ± 0.01 | n.d. | AI, MS |
Bicyclogermacrene * (SH) | 1497 | 7.1 ± 0.23 | 5.5 ± 0.16 | AI, MS |
β-Bisabolene (SH) | 1508 | 0.1 ± 0.00 | 0.6 ± 0.02 | AI, MS |
δ-Cadinene (SH) | 1519 | 0.4 ± 0.02 | n.d. | AI, MS |
Spathulenol * (SO) | 1580 | 2.0 ± 0.08 | 1.8 ± 0.05 | AI, MS |
Caryophyllene oxide (SO) | 1586 | 1.8 ± 0.06 | 0.4 ± 0.01 | AI, MS, Co-GC |
Ledol (SO) | 1598 | 3.9 ± 0.12 | n.d. | AI, MS |
α-Cadinol * (SO) | 1648 | 0.5 ± 0.02 | n.d. | AI, MS |
α-Bisabolol * (SO) | 1689 | n.d. | 1.2 ± 0.09 | AI, MS |
Sample | IC50 (µg/mL) | |
---|---|---|
DPPH Scavenging Activity ± SD | ABTS Scavenging Activity ± SD | |
S1 | 17.48 ± 0.76 | 13.81 ± 3.54 |
S2 | 11.15 ± 1.13 | 6.28 ± 1.37 |
GA | 3.79 ± 0.69 | 1.43 ± 0.93 |
AA | 6.05 ± 0.34 | 9.34 ± 2.69 |
BHT | 15.61 ± 1.26 | 2.12 ± 0.45 |
Microbial and Fungal Strains | MIC (µg/mL) | |||
---|---|---|---|---|
S1 | S2 | A | N | |
Staphylococcus aureus ATCC 25923 | 12.50 | 6.25 | 0.97 | - |
Klebsiella pneumoniae ATCC 13883 | 100.00 | 50.00 | 0.49 | - |
Escherichia coli ATCC 25922 | 25.00 | 50.00 | 0.97 | - |
Proteus hauseri ATCC 13315 | 50.00 | 25.00 | 0.49 | - |
Proteus mirabilis ATCC 14153 | 50.00 | 25.00 | 0.49 | - |
Bacillus subtilis ATCC 6633 | 50.00 | 50.00 | 0.24 | - |
Candida albicans ATCC 10231 | 3.12 | 6.25 | - | 1.95 |
Aspergillus niger ATCC 16404 | 12.50 | 12.50 | - | 0.97 |
Sample | IC50 (µg/mL) | ||
---|---|---|---|
Hep2c ± SD | RD ± SD | L2OB ± SD | |
S1 | 23.64 ± 2.23 | 34.87 ± 1.20 | 17.51 ± 1.99 |
S2 | 43.92 ± 1.09 | 13.56 ± 0.67 | 19.49 ± 3.73 |
cis-DDP | 0.94 ± 0.55 | 1.4 ± 0.97 | 0.72 ± 0.64 |
Mean Highest | Highest | Mean Lowest | Lowest | |
---|---|---|---|---|
Temperature | 27.920 ± 1.11 °C | 30.7 °C | 3.48 ± 1.53 °C | 1.3 °C |
Precipitation | 136 ± 11.43 mm | 154 mm | 5.00 ± 1.87 mm | 2 mm |
Localities | East Aegean Island | Longtitude | Latitude |
---|---|---|---|
1 | Ikaria | 26.13333333 | 37.58333 |
2 | Ikaria | 26.1500000 | 37.56667 |
3 | Chios | 26.03333333 | 38.50000 |
4 | Ikaria | 26.18333333 | 37.58333 |
5 | Samos | 26.600000 | 37.71667 |
6 | Ikaria | 26.29166667 | 37.61667 |
7 | Samos | 26.6500000 | 37.73333 |
8 | Samos | 26.6000000 | 37.73333 |
9 | Chios | 26.07138889 | 38.38417 |
10 | Chios | 26.0250000 | 38.52333 |
11 | Samos | 26.79583333 | 37.78778 |
12 | Chios | 25.98333333 | 38.550000 |
13 | Lesvos | 26.3500000 | 39.06667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mašković, P.Z.; Stagiopoulou, R.; Miletić, N.; Krigas, N.; Lazari, D. Ecological Preferences and Diversity of Essential Oil Composition in Endangered Wild-Growing Populations of Sideritis sipylea Boiss. (Lamiaceae) of the East Aegean Islands (Greece): Evidencing Antioxidant Potential, Antimicrobial and Cytotoxic Activities. Plants 2023, 12, 836. https://doi.org/10.3390/plants12040836
Mašković PZ, Stagiopoulou R, Miletić N, Krigas N, Lazari D. Ecological Preferences and Diversity of Essential Oil Composition in Endangered Wild-Growing Populations of Sideritis sipylea Boiss. (Lamiaceae) of the East Aegean Islands (Greece): Evidencing Antioxidant Potential, Antimicrobial and Cytotoxic Activities. Plants. 2023; 12(4):836. https://doi.org/10.3390/plants12040836
Chicago/Turabian StyleMašković, Pavle Z., Rafaela Stagiopoulou, Nemanja Miletić, Nikos Krigas, and Diamanto Lazari. 2023. "Ecological Preferences and Diversity of Essential Oil Composition in Endangered Wild-Growing Populations of Sideritis sipylea Boiss. (Lamiaceae) of the East Aegean Islands (Greece): Evidencing Antioxidant Potential, Antimicrobial and Cytotoxic Activities" Plants 12, no. 4: 836. https://doi.org/10.3390/plants12040836
APA StyleMašković, P. Z., Stagiopoulou, R., Miletić, N., Krigas, N., & Lazari, D. (2023). Ecological Preferences and Diversity of Essential Oil Composition in Endangered Wild-Growing Populations of Sideritis sipylea Boiss. (Lamiaceae) of the East Aegean Islands (Greece): Evidencing Antioxidant Potential, Antimicrobial and Cytotoxic Activities. Plants, 12(4), 836. https://doi.org/10.3390/plants12040836