Nutritional Composition and Antioxidant Activity of Gonostegia hirta: An Underexploited, Potentially Edible, Wild Plant
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.1.1. Moisture and Crude Fat
2.1.2. Minerals and Potentially Toxic Elements
2.1.3. Soluble Sugars and Organic Acids
2.1.4. Amino Acid
2.1.5. Fatty Acid
2.1.6. TP (Total Phenols), TF (Total Flavonoids), and TS (Total Saponins)
2.1.7. Alkaloids
2.2. Antioxidation Capacity Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Chemical Composition Measurement
3.2.1. Moisture
3.2.2. Crude Fat
3.2.3. Minerals and Potentially Toxic Elements
3.2.4. Soluble Sugar
3.2.5. Organic Acid
3.2.6. Amino Acid
3.2.7. Fatty Acid
3.2.8. Total Phenolic Content (TPC), Flavonoid Content (TFC), and Saponins (TS)
3.3. Metabolite Composition Identification
3.4. Antioxidant Activity Evaluation
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kew, R. State of the World’s Plants. Available online: https://stateoftheworldsplants.com/ (accessed on 25 July 2022).
- Mokria, M.; Gebretsadik, Y.; Birhane, E.; McMullin, S.; Ngethe, E.; Hadgu, K.; Hagazi, N.; Tewolde-Berhan, S. Nutritional and ecoclimatic importance of indigenous and naturalized wild edible plant species in Ethiopia. Food Chem. Mol. Sci. 2022, 4, 100084. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.; Borelli, T.; Beltrame, D.M.O.; Oliveira, C.N.S.; Coradin, L.; Wasike, V.; Wasilwa, L.; Mwai, J.; Manjella, A.; Samarasinghe, G.; et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 2019, 250, 709–729. [Google Scholar] [CrossRef] [PubMed]
- Minru, J.; Yi, Z. Dictionary of Chinese Ethnic Medicine; China Medical Science and Technology Press: Beijing, China, 2016. [Google Scholar]
- Wong, J.; Matanjun, P.; Ooi, Y.; Chia, K. Characterization of phenolic compounds, carotenoids, vitamins and antioxidant activities of selected Malaysian wild edible plants. Int. J. Food Sci. Nutr. 2013, 64, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Ge, N.; Zhu, Q.; Li, Q.; Song, J. Research on flavonoids extracted from Gonostegia hirta and their antioxidation performance. J. Chem. Eng. Chin. Univ. 2014, 28, 911–917. [Google Scholar]
- Hong, L.; Zhuo, J.; Lei, Q.; Zhou, J.; Ahmed, S.; Wang, C.; Long, Y.; Li, F.; Long, C. Ethnobotany of wild plants used for starting fermented beverages in Shui communities of southwest China. J. Ethnobiol. Ethnomed. 2015, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Aburto, N.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ (Clin. Res. Ed.) 2013, 346, f1378. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Sorenson, J.; Pollard, E.; Kirby, J.; Audhya, T. Evidence-based recommendations for an optimal prenatal supplement for women in the U.S., part two: Minerals. Nutrients 2021, 13, 1849. [Google Scholar] [CrossRef]
- Gharibzahedi, S.; Jafari, S. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and Nano encapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Achi, N.; Onyeabo, C.; Ekeleme-Egedigwe, C.; Onyeanula, J. Phytochemical, proximate analysis, vitamin and mineral composition of aqueous extract of Ficus capensis leaves in South Eastern Nigeria. J. Appl. Pharm. Sci. 2017, 7, 117–122. [Google Scholar]
- Castro-Alba, V.; Lazarte, C.E.; Bergenståhl, B.; Granfeldt, Y. Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability. Food Sci. Nutr. 2019, 7, 2854–2865. [Google Scholar] [CrossRef] [Green Version]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Ammarellou, A.; Mozaffarian, V. The first report of iron-rich population of adapted medicinal spinach (Blitum virgatum L.) compared with cultivated spinach (Spinacia oleracea L.). Sci. Rep. 2021, 11, 22169. [Google Scholar] [CrossRef] [PubMed]
- Maret, W.; Sandstead, H. Zinc requirements and the risks and benefits of zinc supplementation. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Han, X.; Ge, J.; Wang, L. Multivariate statistical analysis of potentially toxic elements in soils under different land uses: Spatial relationship, ecological risk assessment, and source identification. Environ. Geochem. Health 2022, 44, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Le, L.; Gong, X.; An, Q.; Xiang, D.; Zou, L.; Peng, L.; Wu, X.; Tan, M.; Nie, Z.; Wu, Q.; et al. Quinoa sprouts as potential vegetable source: Nutrient composition and functional contents of different quinoa sprout varieties. Food Chem. 2021, 357, 129752. [Google Scholar] [CrossRef]
- DiNicolantonio, J.; O’Keefe, J.; Wilson, W. Sugar addiction: Is it real? A narrative review. Br. J. Sport. Med. 2018, 52, 910. [Google Scholar] [CrossRef]
- Abdalla, M.; Li, F.; Wenzel-Storjohann, A.; Sulieman, S.; Tasdemir, D.; Mühling, K. Comparative metabolite profile, biological activity and overall quality of three lettuce (Lactuca sativa L., Asteraceae) cultivars in response to sulfur nutrition. Pharmaceutics 2021, 13, 713. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, F.; Fu, X.; Zhu, D. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds. Food Chem. 2016, 196, 776–782. [Google Scholar] [CrossRef]
- Iyda, J.; Fernandes, Â.; Ferreira, F.; Alves, M.; Pires, T.; Barros, L.; Amaral, J.; Ferreira, I. Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Res. Int. 2019, 121, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Zhu, J.; Wang, L.; Li, Z. Development of a SPME-GC-MS method for the determination of volatile compounds in Shanxi aged vinegar and its analytical characterization by aroma wheel. J. Food Sci. Technol. 2016, 53, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Burbidge, C.; Sweetman, C.; Schutz, E.; Soole, K.; Jenkins, C.; Hancock, R.; Bruning, J.; Ford, C. An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera. J. Biol. Chem. 2019, 294, 15932–15946. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Ye, Q.; Liu, M.; Shi, Z.; Liang, Y. Reductive release of Fe mineral-associated organic matter accelerated by oxalic acid. Sci. Total Environ. 2021, 763, 142937. [Google Scholar] [CrossRef] [PubMed]
- Nguyễn, H.V.H.; Savage, G.P. Oxalate content of New Zealand grown and imported fruits. J. Food Compos. Analysis. 2013, 31, 180–184. [Google Scholar] [CrossRef]
- Koh, E.; Charoenprasert, S.; Mitchell, A.E. Effect of organic and conventional cropping systems on ascorbic acid, vitamin c, flavonoids, nitrate, and oxalate in 27 varieties of spinach (Spinacia oleracea L.). J. Agric. Food Chem. 2012, 60, 3144–3150. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lin, L.; Li, Q.; Xue, Y.; Zheng, F.; Wang, G.; Zheng, C.; Du, L.; Hu, M.; Huang, Y.; et al. Scd1 controls de novo beige fat biogenesis through succinate-dependent regulation of mitochondrial complex II. Proc. Natl. Acad. Sci. USA 2020, 117, 2462–2472. [Google Scholar] [CrossRef]
- Kwon, Y.; Lee, S.; Kim, A.; Kim, B.; Park, W.; Hur, J.; Jang, H.; Yang, H.; Cho, H.; Kim, H. Plant callus-derived shikimic acid regenerates human skin through converting human dermal fibroblasts into multipotent skin-derived precursor cells. Stem Cell Res. Ther. 2021, 12, 346. [Google Scholar] [CrossRef]
- Zgrajka, W.; Turska, M.; Rajtar, G.; Majdan, M.; Parada-Turska, J. Kynurenic acid content in anti-rheumatic herbs. Ann. Agric. Environ. Med. 2013, 20, 800–802. [Google Scholar] [PubMed]
- Tian, H.; Zhang, H.; Xiong, J.; Lu, J.; Liu, Y. Evaluation of amino acid composition and nutritional value of Lespedeza formosain different phenological periods. J. Chin. J. Grassl. 2022, 44, 98–105. [Google Scholar]
- Hase, A.; Jung, S.E.; aan het Rot, M. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol. Biochem. Behav. 2015, 133, 1–6. [Google Scholar] [CrossRef]
- McNeal, C.; Meininger, C.J.; Reddy, D.; Wilborn, C.; Wu, G. Safety and effectiveness of arginine in adults. J. Nutr. 2016, 146, 2587S–2593S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yi, J.; Liu, J.; Luo, Q.; Liu, L. Enzymatic production of trans-4-hydroxy-l-proline by proline 4-hydroxylase. Microb. Biotechnol. 2021, 14, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Iijima, R.; Takahashi, H.; Namme, R.; Ikegami, S.; Yamazaki, M. Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett. 2004, 561, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Türközü, D.; Şanlier, N. L-theanine, unique amino acid of tea, and its metabolism, health effects, and safety. Crit. Rev. Food Sci. Nutr. 2017, 57, 1681–1687. [Google Scholar] [CrossRef]
- Feng, S.; Xu, X.; Tao, S.; Chen, T.; Zhou, L.; Huang, Y.; Yang, H.; Yuan, M.; Ding, C. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chem. X 2022, 14, 100341. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Simopoulos, A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Ohmori, H.; Fujii, K.; Kadochi, Y.; Mori, S.; Nishiguchi, Y.; Fujiwara, R.; Kishi, S.; Sasaki, T.; Kuniyasu, H. Elaidic acid, a trans-fatty acid, enhances the metastasis of colorectal cancer cells. Pathobiology 2017, 84, 144–151. [Google Scholar] [CrossRef]
- Shabbir, M.; Khan, M.; Saeed, M.; Pasha, I.; Khalil, A.; Siraj, N. Punicic acid: A striking health substance to combat metabolic syndromes in humans. Lipids Health Dis. 2017, 16, 99. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Choi, B.Y.; Kim, J.; Kho, A.R.; Sohn, M.; Song, H.; Choi, H.; Suh, S. Late treatment with choline alfoscerate (L-alpha glycerylphosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizure-induced neuronal death and cognitive impairment. Brain Res. 2016, 1654, 66–76. [Google Scholar] [CrossRef]
- Floris, B.; Galloni, P.; Conte, V.; Sabuzi, F. Tailored functionalization of natural phenols to improve biological activity. Biomolecules 2021, 11, 1325. [Google Scholar] [CrossRef]
- Hazafa, A.; Iqbal, M.O.; Javaid, U.; Tareen, M.B.K.; Amna, D.; Ramzan, A.; Piracha, S.; Naeem, M. Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: A review. Clin. Transl. Oncol. 2022, 24, 432–445. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Han, L.; Yu, X.; Li, W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021, 335, 127655. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, J.; Lin, Y.; Qiu, X.; Zhuang, Y. Optimization of ultrasound-assisted total flavonoid extraction from Brassica juncea and lipid antioxidant activity of the extract. J. Food Res. Dev. 2021, 42, 93–100. [Google Scholar]
- Lehane, A.; Saliba, K. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res. Notes 2008, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017, 13, 323–330. [Google Scholar] [CrossRef]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A review on flavonoid apigenin: Dietary intake, adme, antimicrobial effects, and interactions with human gut microbiota. BioMed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef]
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; et al. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef]
- Felice, M.R.; Maugeri, A.; De Sarro, G.; Navarra, M.; Barreca, D. Molecular pathways involved in the anti-cancer activity of flavonols: A focus on myricetin and kaempferol. Int. J. Mol. Sci. 2022, 23, 4411. [Google Scholar] [CrossRef]
- Lei, J.; Xiao, Y.; Wang, W.; Xi, Z.; Liu, M.; Ran, J.; Huang, J. Study on flavonoid chemical constituents contained in Memorialis hirta. J. China J. Chin. Mater. Med. 2012, 37, 478–482. [Google Scholar]
- Juang, Y.; Liang, P. Biological and pharmacological effects of synthetic saponins. Molecules 2020, 25, 4974. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ma, Z.; Tang, X.; Liang, Q.; Tan, H.; Xiao, C.; Zhao, Y.; Gao, Y. Preliminary study on hepatotoxicity induced by dioscin and its possible mechanism. J. China J. Chin. Mater. Med. 2015, 40, 2748–2752. [Google Scholar]
- Xu, S.; Qi, F.; Xi, L.; Sun, W.; Wu, L.; Chu, D. Optimization of the extraction process of congmungu total saponin and its antioxidant effects by response surface method. J. Jiangsu Agric. Sci. 2020, 48, 204–209. [Google Scholar]
- Li, M.; Zhao, M.; Wei, P.; Zhang, C.; Lu, W. Biosynthesis of soyasapogenol b by engineered saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2021, 193, 3202–3213. [Google Scholar] [CrossRef] [PubMed]
- Adamski, Z.; Blythe, L.; Milella, L.; Bufo, S.A. Biological activities of alkaloids: From toxicology to pharmacology. Toxins 2020, 12, 210. [Google Scholar] [CrossRef] [Green Version]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef]
- Zhou, J.; Chan, L.; Zhou, S. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem. 2012, 19, 3523–3531. [Google Scholar] [CrossRef]
- Mishkinsky, J.S.; Goldschmied, A.; Joseph, B.; Ahronson, Z.; Sulman, F.G. Hypoglycaemic effect of Trigonella foenum graecum and Lupinus termis (leguminosae) seeds and their major alkaloids in alloxan-diabetic and normal rats. Arch. Int. Pharmacodyn. Et De Thérapie 1974, 210, 27–37. [Google Scholar]
- Szkudelska, K.; Szkudelski, T. The anti-diabetic potential of betaine. Mechanisms of action in rodent models of type 2 diabetes. Biomed. Pharmacother. 2022, 150, 112946. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A. Caffeine’s mechanisms of action and its cosmetic use. Ski. Pharmacol. Physiol. 2013, 26, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Jee, H.; Lee, S.; Bormate, K.; Jung, Y. Effect of caffeine consumption on the risk for neurological and psychiatric disorders: Sex differences in human. Nutrients 2020, 12, 3080. [Google Scholar] [CrossRef]
- Fowler, J.; Zug, K.; Taylor, J.; Storrs, F.; Sherertz, E.; Sasseville, D.; Rietschel, R.; Pratt, M.; Mathias, C.; Marks, J.; et al. Allergy to cocamidopropyl betaine and amidoamine in North America. Derm 2004, 15, 5–6. [Google Scholar] [CrossRef]
- Li, L. A study of the sensitization rate to cocamidopropyl betaine in patients patch tested in a university hospital of Beijing. Contact Dermat. 2008, 58, 24–27. [Google Scholar] [CrossRef]
- Tse, R.; Wong, C.; Chiu, P.; Ng, C. The Potential role of spermine and its acetylated derivative in human malignancies. Int. J. Mol. Sci. 2022, 23, 1258. [Google Scholar] [CrossRef]
- Thilavech, T.; Marnpae, M.; Mäkynen, K.; Adisakwattana, S. Phytochemical composition, antiglycation, antioxidant activity and methylglyoxal-trapping action of brassica vegetables. Plant Foods Hum. Nutr. 2021, 76, 340–346. [Google Scholar] [CrossRef]
- Mi, S.; Ruan, Z.; Weng, Y.; Zhou, Y.; Zhang, C.; Liu, W.; Yin, Y.; Jiang, B. Sutdy on the antioxidant activity of several common vegetables and fruits and the correlation between the content of pdyphenols and VC and the antioxidant activity. J. Sci. Technol. Food Ind. 2013, 34, 133–136. [Google Scholar]
- Munteanu, I.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agric. Food Chem. 2012, 60, 12312–12323. [Google Scholar] [CrossRef]
- Ferreira, P.S.; Victorelli, F.D.; Fonseca-Santos, B.; Chorilli, M. A review of analytical methods for p-coumaric acid in plant-based products, beverages, and biological matrices. Crit. Rev. Anal. Chem. 2019, 49, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, M.; Ma, G.; Fang, Y.; Yang, W.; Ma, N.; Fang, D.; Hu, Q.; Pei, F. The antioxidant and antimicrobial activities of different phenolic acids grafted onto chitosan. Carbohydr. Polym. 2019, 225, 115238. [Google Scholar] [CrossRef]
- Abdel-Razzak, S.; Ismail, E.; Fekry, S.; Hassan, D. Plant growth, yield and bioactive compounds of two culinary herbs as affected by substrate type. Sci. Hortic. 2019, 243, 464–471. [Google Scholar]
- Xu, G. Studies on the effect of lipid on rice quality and lipid metabolism in response to high temperature and weak light stresses. Sichuan Agric. Univ. 2017, 12, 145. [Google Scholar]
- Yang, J.; Zhu, Z.; Gerendás, J. Interactive effects of phosphorus supply and light intensity on glucosinolates in pakchoi (Brassica campestris L. ssp. chinensis var. communis). Plant Soil. 2009, 323, 323–333. [Google Scholar] [CrossRef]
- Yao, G. Conformation and Characteristics of Sugar and Acid in Pear Fruits of Cultivated Species. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2011. [Google Scholar]
- Song, Y.; Fang, J.; Zhu, Z.; Yang, J. Changes in organic acids and anthocyanins contents during shelf storage of fresh—Cut Purple Caitai (Brassica campestris L. ssp. Chinensis L. var. purpurea Bailey). J. Sci. Technol. Food Ind. 2016, 37, 300–305. [Google Scholar]
- Chen, K.; Sun, J.; Li, Z.; Zhang, J.; Li, Z.; Chen, L.; Li, W.; Fang, Y.; Zhang, K. Postharvest dehydration temperature modulates the transcriptomic programme and flavonoid profile of grape berries. Foods. 2021, 10, 687. [Google Scholar] [CrossRef]
- Jia, G.; Wu, L.; Yang, C.; Liu, H. Polyphenol contents of peel and flesh extracts from mango and guava and the comparative analysis of their antioxidant properties. J. Hainan Norm. Univ. (Nat. Sci.) 2018, 31, 38–43. [Google Scholar]
Compounds | Content | |
---|---|---|
Moisture (%) | - | 50.84 ± 0.01 |
Crude fat (%) | - | 2.57 ± 0.03 |
Minerals (mg/100 g DW) | Calcium | 1352.49 ± 52.19 |
Potassium | 3855.22 ± 88.35 | |
Magnesium | 284.35 ± 11.51 | |
Phosphorus | 569.51 ± 15.84 | |
Aluminium | 10.37 ± 0.41 | |
Cuprum | 0.75 ± 0.01 | |
Ferrum | 9.96 ± 0.28 | |
Zinc | 10.47 ± 0.37 | |
Potentially toxic elements (mg/100 g DW) | Cadmium | 0.02 ± 0.00 |
Lead | 0.06 ± 0.01 | |
Chromium | 0.09 ± 0.03 | |
Soluble sugars (mg/g DW) | Sucrose | 26.89 ± 0.87 |
Glucose | 19.49 ± 1.34 | |
Fructose | 40.65 ± 1.64 | |
Organic acids (mg/g DW) | Oxalic acid | 3.4 ± 0.78 |
Tartaric acid | 10.68 ± 1.72 | |
Ascorbic acid | 1.30 ± 0.14 | |
Citric acid | 22.50 ± 3.82 |
Compounds | Content |
---|---|
Aspartic acid (Asp) | 0.288 ± 0.029 |
Serine (Ser) | 0.062 ± 0.007 |
Glutamic acid (Glu) | 0.043 ± 0.016 |
Glycine (Gly) | 0.007 ± 0.002 |
Histidine (His) | 0.091 ± 0.012 |
Arginine (Arg) | 0.057 ± 0.023 |
Threonine (Thr) | 0.033 ± 0.005 |
Alanine (Ala) | 0.077 ± 0.023 |
Proline (Pro) | 0.085 ± 0.006 |
Cysteine (Cys) | 0.014 ± 0.009 |
Tyrosine (Tyr) | 0.197 ± 0.013 |
Valine (Val) | 0.020 ± 0.001 |
Methionine (Met) | 0.015 ± 0.004 |
Lysine (Lys) | 0.014 ± 0.001 |
Isoleucine (Ile) | 0.009 ± 0.001 |
Leucine (Leu) | 0.011 ± 0.002 |
Phenylalanine (Phe) | 0.011 ± 0.000 |
Total | 1.034 |
Compounds | Content | |
---|---|---|
Octanoic acid | C8:0 | 0.7 ± 0.1 |
Decanoic acid | C10:0 | 0.8 ± 0.1 |
Lauric acid | C12:0 | 6.9 ± 0.7 |
Myristic acid | C14:0 | 59.0 ± 2.0 |
Pentadecanoic acid | C15:0 | 5.0 ± 0.2 |
Palmitoleic acid | C16:1 | 4.7 ± 0.6 |
Palmitic acid | C16:0 | 849.0 ± 30.0 |
Heptadecanoic acid | C17:0 | 9.7 ± 0.8 |
Linoleic acid | C18:2n6c | 1898.0 ± 30.0 |
Linolenic acid | C18:3n6 | 1434.0 ± 36.0 |
Stearic acid | C18:0 | 215.0 ± 12.0 |
Stearolic acid | - | 4.0 ± 0.9 |
Nonadecanoic acid | C19:0 | 22.0 ± 6.0 |
Arachidonic acid | C20:0 | 48.0 ± 6.0 |
Eicosanoic acid | C21:0 | 10.0 ± 2.0 |
Behenic acid | C22:0 | 65.0 ± 7.0 |
SFA a (%) | 27.4 | |
PUFA b (%) | 72.6 | |
Total fatty acids | 4629.0 |
Bioactive Compounds | Content |
---|---|
Total phenols | 1.20 ± 0.1 |
Total flavonoids | 76.49 ± 5.58 |
Total saponins | 60.30 ± 0.66 |
Antioxidant Activity | Value |
---|---|
DPPH scavenging activity(mg/g) | 5.92 ± 0.00 |
ABTS+ scavenging activity(mg/g) | 68.82 ± 0.37 |
Ferric reducing power (μmol/L) | 62.23 ± 0.80 |
Anti-superoxide anion viability (U/g) | 11.82 ± 0.18 |
Inhibition of hydroxyl radicals (U/g) | 90.90 ± 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hu, Z.; Chen, X.; Zhu, B.; Liu, T.; Yang, J. Nutritional Composition and Antioxidant Activity of Gonostegia hirta: An Underexploited, Potentially Edible, Wild Plant. Plants 2023, 12, 875. https://doi.org/10.3390/plants12040875
Li Y, Hu Z, Chen X, Zhu B, Liu T, Yang J. Nutritional Composition and Antioxidant Activity of Gonostegia hirta: An Underexploited, Potentially Edible, Wild Plant. Plants. 2023; 12(4):875. https://doi.org/10.3390/plants12040875
Chicago/Turabian StyleLi, Yaochen, Zheng Hu, Xiaoqi Chen, Biao Zhu, Tingfu Liu, and Jing Yang. 2023. "Nutritional Composition and Antioxidant Activity of Gonostegia hirta: An Underexploited, Potentially Edible, Wild Plant" Plants 12, no. 4: 875. https://doi.org/10.3390/plants12040875
APA StyleLi, Y., Hu, Z., Chen, X., Zhu, B., Liu, T., & Yang, J. (2023). Nutritional Composition and Antioxidant Activity of Gonostegia hirta: An Underexploited, Potentially Edible, Wild Plant. Plants, 12(4), 875. https://doi.org/10.3390/plants12040875