Characterization of Cosmos sulphureus Cav. (Asteraceae): Phytochemical Screening, Antioxidant Activity and Chromatography Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Standards
2.3. Plant Material
2.4. Drying Process
2.5. Preparation of Extracts
2.6. Qualitative Analysis of Phytochemical Screening
2.6.1. Determination of the Presence of Alkaloids Using the Wagner Test
2.6.2. Determination of Phenolic Compounds Using the Lead Acetate Test
2.6.3. Determination of the Presence of Tannins Using the Ferric Chloride Test
2.6.4. Determination of the Presence of Flavonoids by Ammonium Hydroxide Test
2.6.5. Determination of the Presence of Glycosides Using the Bornträger Test
2.6.6. Salkowski Test to Determine the Presence of Sterols
2.6.7. Determination of the Presence of Terpenoids
2.6.8. Barfoed Test to Determine the Presence of Carbohydrates
2.6.9. Fehling’s Test to Determine the Presence of Carbohydrates
2.6.10. Biuret Test for the Determination of the Presence of Proteins
2.6.11. Ninhydrin Test for the Determination of the Presence of Amino Acids
2.6.12. Determination of the Presence of Saponins
2.6.13. Determination of the Presence of Coumarins
2.6.14. Determination of the Presence of Quinones
2.6.15. Determination of the Presence of Anthraquinones
2.6.16. Determination of the Presence of Sterols
2.7. Sample Preparation for Phenolic Content, Antioxidant Activity, and High-Performance Thin-Layer Chromatography (HPTLC) Analysis
2.8. Determination of Total Phenolic, Flavonoid, and Tannin Contents
2.8.1. Total Phenolic Content
2.8.2. Total Flavonoid Content
2.8.3. Determination of Condensed Tannin Content
2.9. Identification and Quantification of Phenolic Compounds by High-Performance Thin-Layer Chromatography (HPTLC)
2.10. Antioxidant Activity Assays
2.10.1. DPPH• Antioxidant Assay
2.10.2. Ferric Reducing Power (FRP) Assay
2.10.3. Lipid Peroxidation Inhibition Assay
2.10.4. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Screening
3.2. Total Phenolic, Flavonoids, and Tannins Contents
3.3. Identification and Quantification of Phenolic Compounds by HPTLC
3.4. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez, A.; Castro-Castro, A.; Vargas-Amado, G.; Vargas-Ponce, O.; Zamora-Tavares, P.; González-Gallegos, J.; Carrillo-Reyes, P.; Anguiano-Constante, M.; Carrasco-Ortiz, M.; García-Martínez, M.; et al. Richness, Geographic Distribution Patterns, and Areas of Endemism of Selected Angiosperm Groups in Mexico. J. Syst. Evol. 2018, 56, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Rivera, P.; Villaseñor, J.L.; Terrazas, T.; Panero, J.L. The Importance of the Mexican Taxa of Asteraceae in the Family Phylogeny. J. Syst. Evol. 2021, 59, 935–952. [Google Scholar] [CrossRef]
- Henao-Paoliny, I. La Química de La Familia de Las Compuestas vs Su Importancia Como Plantas Alimenticias y Medicinales, Universidad de los Andes; Facultad de Ciencias: Mérida, Venezuela, 2006. [Google Scholar]
- Villasenor, J.L. The Genera of Asteraceae Endemic to Mexico and Adjacent Regions. Aliso A J. Syst. Florist. Bot. 1990, 12, 685–692. [Google Scholar] [CrossRef]
- Villaseñor, J.L. Los Géneros de Plantas Vasculares de La Flora de México. Bot. Sci. 2004, 135, 105–135. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, J.L. Diversidad y Distribucion de La Familia Asteraceae En Mexico. Bot. Sci. 2018, 96, 332–358. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Amado, G.; Castro-Castro, A.; Harker, M.; Vargas-Amado, M.E.; Villaseñor, J.L.; Ortiz, E.; Rodríguez, A. Western Mexico Is a Priority Area for the Conservation of Cosmos (Coreopsideae, Asteraceae), Based on Richness and Track Analysis. Biodivers. Conserv. 2020, 29, 545–569. [Google Scholar] [CrossRef]
- Vargas-Amado, G.; Castro-Castro, A.; Harker, M.; Villaseñor, J.L.; Ortiz, E.; Rodríguez, A. Geographic Distribution and Richness of the Genus Cosmos (Asteraceae: Coreopsideae). Rev. Mex. Biodivers. 2013, 84, 536–555. [Google Scholar] [CrossRef] [Green Version]
- de Rzedowski, G.C.; Rzedowski, J. Flora Fanerogámica Del Valle de México, 2a ed.; Instituto de Ecología, A.C.: Xalapa, Veracruz, Mexico; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Pátzcuaro, Mexico, 2005; ISBN 9786077607366. [Google Scholar]
- Rzedowski, J.; de Rzedowski, G.C. Flora Del Bajío y de Regiones Adyacentes: Familia Compositae Tribu Heliantheae I (Géneros Acmella-Jefea); Fascículo 157; Instituto de Ecología A.C.: Xalapa, Veracruz, Mexico, 2008; ISBN 970-709-099-5. [Google Scholar]
- Mariutti, L.R.B.; Rebelo, K.S.; Bisconsin-Junior, A.; de Morais, J.S.; Magnani, M.; Maldonade, I.R.; Madeira, N.R.; Tiengo, A.; Maróstica, M.R.; Cazarin, C.B.B. The Use of Alternative Food Sources to Improve Health and Guarantee Access and Food Intake. Food Res. Int. 2021, 149, 110709. [Google Scholar] [CrossRef]
- Garcia-Bucio, M.A.; Maynez-Rojas, M.Á.; Casanova-González, E.; Cárcamo-Vega, J.J.; Ruvalcaba-Sil, J.L.; Mitrani, A. Raman and Surface-Enhanced Raman Spectroscopy for the Analysis of Mexican Yellow Dyestuff. J. Raman Spectrosc. 2019, 50, 1546–1554. [Google Scholar] [CrossRef]
- González Elizondo, M.; López Enriquez, I.L.; González Elizondo, M.S.; Tena Flores, J.A. Plantas Medicinales Del Estado de Durango y Zonas Aledañas; Instituto Politécnico Nacional: Mexico City, Mexico, 2004; ISBN 9703600662. [Google Scholar]
- Yogeshwari, C.; Kalaichelvi, K. Comparitive Phytochemical Screening of Acmella Calva (DC.) R. K. Jansen and Crotalaria Ovalifolia Wall.: Potential Medicinal Herbs. J. Med. Plants Stud. JMPS 2017, 277, 277–279. [Google Scholar]
- Joseph, B.S.; Kumbhare, P.H.; Kale, M.C. Preliminary Phytochemical Screening of Selected Medicinal Plants. Int. Res. J. Sci. Eng. 2013, 1, 55–62. [Google Scholar]
- Castro-López, C.; Ventura-Sobrevilla, J.M.; González-Hernández, M.D.; Rojas, R.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Martínez-Ávila, G.C.G. Impact of Extraction Techniques on Antioxidant Capacities and Phytochemical Composition of Polyphenol-Rich Extracts. Food Chem. 2017, 237, 1139–1148. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Stanek, N.; Jasicka-Misiak, I. HPTLC Phenolic Profiles as Useful Tools for the Authentication of Honey. Food Anal. Methods 2018, 11, 2979–2989. [Google Scholar] [CrossRef] [Green Version]
- Barriada-Bernal, L.G.; Almaraz-Abarca, N.; Delgado-Alvarado, E.A.; Gallardo-Velázquez, T.; Ávila-Reyes, J.A.; Torres-Morán, M.I.; González-Elizondo, M.D.S.; Herrera-Arrieta, Y. Flavonoid Composition and Antioxidant Capacity of the Edible Flowers of Agave Durangensis (Agavaceae). CyTA J. Food 2014, 12, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Cell Biolabs Inc. OxiSelectTM Oxygen Radical Antioxidant Capacity (ORAC) Activity Assay. Prod. Man. 2017, 1–10. Available online: https://www.cellbiolabs.com/sites/default/files/STA-345-orac-assay-kit.pdf (accessed on 18 January 2023).
- Jadav, K.M.; Gowda, K.N.N. Preliminary Phytochemical Analysis and in Vitro Antioxidant Activity of Araucaria Columnaris Bark Peel and Cosmos Sulphureus Flowers. Int. J. Curr. Pharm. Res. 2017, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Ali, H.A.; Akhtar, M.F.; Saleem, U.; Saleem, A.; Irshad, I. Chemical Characterisation and Hepatoprotective Potential of Cosmos Sulphureus Cav. and Cosmos Bipinnatus Cav. Nat. Prod. Res. 2019, 33, 897–900. [Google Scholar] [CrossRef]
- Chensom, S.; Okumura, H.; Mishima, T. Primary Screening of Antioxidant Activity, Total Polyphenol Content, Carotenoid Content, and Nutritional Composition of 13 Edible Flowers from Japan. Prev. Nutr. Food Sci. 2019, 24, 171. [Google Scholar] [CrossRef]
- Respatie, D.W.; Yudono, P.; Purwantoro, A.; Andi Trisyono, Y. The Potential of Cosmos Sulphureus Cav. Extracts as a Natural Herbicides. AIP Conf. Proc. 2019, 2202, 020077. [Google Scholar] [CrossRef]
- Kaisoon, O.; Siriamornpun, S.; Weerapreeyakul, N.; Meeso, N. Phenolic Compounds and Antioxidant Activities of Edible Flowers from Thailand. J. Funct. Foods 2011, 3, 88–99. [Google Scholar] [CrossRef]
- Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential Health Enhancing Properties of Edible Flowers from Thailand. Food Res. Int. 2012, 46, 563–571. [Google Scholar] [CrossRef]
- Mimi Megnigueu, E.; Jean Nyemb, N.; Nancy Ngwasiri, N.; Sabine Yadang Fanta, A.; Nveikoueing, F.; Fogue Kouam, S.; Ndjonka, D. In Vitro Anthelmintic Activities of Extracts and Fractions of Cosmos Sulphureus Cav, Against Onchocerca Ochengi. J. Dis. Med. Plants 2020, 6, 22. [Google Scholar] [CrossRef]
- de Morais, J.S.; Sant’Ana, A.S.; Dantas, A.M.; Silva, B.S.; Lima, M.S.; Borges, G.C.; Magnani, M. Antioxidant Activity and Bioaccessibility of Phenolic Compounds in White, Red, Blue, Purple, Yellow and Orange Edible Flowers through a Simulated Intestinal Barrier. Food Res. Int. 2020, 131, 109046. [Google Scholar] [CrossRef] [PubMed]
- Lekar, A.V.; Borisenko, S.N.; Vetrova, E.V.; Sushkova, S.N.; Borisenko, N.I. Extraction of Quercetin from Polygonum hydropiper L. by Subcritical Water. Am. J. Agric. Biol. Sci. 2013, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jaakola, L.; Hohtola, A. Effect of Latitude on Flavonoid Biosynthesis in Plants. Plant Cell Environ. 2010, 33, 1239–1247. [Google Scholar] [CrossRef]
- Bazylko, A.; Boruc, K.; Borzym, J.; Kiss, A.K. Aqueous and Ethanolic Extracts of Galinsoga Parviflora and Galinsoga Ciliata. Investigations of Caffeic Acid Derivatives and Flavonoids by HPTLC and HPLC-DAD-MS Methods. Phytochem. Lett. 2015, 11, 394–398. [Google Scholar] [CrossRef]
- Malaka, R.; Hema, J.A.; Muthukumarasamy, N.P.; Sambandam, A.; Subramanian, S.; Sevanan, M. Green Synthesis of Silver Nanoparticles Using Cosmos Sulphureus and Evaluation of Their Antimicrobial and Antioxidant Properties. Nano Biomed. Eng. 2015, 7, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Phuse, S.S.; Khan, Z.H. Estimation of Free Radical Scavenging Activity of Cosmos Leaves Extract. Int. J. Recent Sci. Res. 2018, 9, 28355–28358. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
Phytochemical Constituents | 70% Ethanol Extracts | 70% Methanol Extracts | ||
---|---|---|---|---|
Leaf | Flower | Leaf | Flower | |
Alkaloids | − | − | − | − |
Phenolic compounds | + | + | + | + |
Tannins | + | + | + | + |
Flavonoids | + | + | + | + |
Glycosides | − | − | − | − |
Terpenoids | + | + | + | + |
Carbohydrates | + | + | + | + |
Proteins | − | − | − | − |
Amino acids | − | − | − | − |
Saponins | − | − | − | − |
Coumarins | + | − | + | − |
Quinones | − | + | − | + |
Anthraquinones | − | − | − | − |
Sterols | − | + | − | + |
Extract | TPC (mg GAE/g DE) | TFC (mg QE/g DE) | CTC (mg CE/g DE) | DPPH•IC50 (mg/mL) | FRPIC50 (mg/mL) | LPI (%) | ORAC (µM TE) |
---|---|---|---|---|---|---|---|
P1-L-M | 119.64 ± 5.61 ab | 95.22 ± 2.71 c | 38.38 ± 1.03 c | 0.196 ± 0.03 a | 0.54 ± 0.07 d | 61.99 ± 4.54 b | 1.48 ± 0.08 e |
P2-L-M | 108.64 ± 2.80 bc | 85.50 ± 4.59 cde | 49.69 ± 1.36 b | 0.460 ± 0.02 bc | 0.60 ± 0.09 de | 60.92 ± 5.87 b | 3.68 ± 1.02 cd |
P3-L-M | 102.68 ± 4.13 cd | 117.17 ± 2.40 b | 68.70 ± 7.19 a | 0.410 ± 0.01 abc | 0.74 ± 0.09 f | 65.98 ± 6.20 ab | 3.69 ± 0.25 cd |
P1-F-M | 124.11 ± 7.77 a | 90.97 ± 2.26 cd | 10.64 ± 3.56 d | 1.118 ± 0.01 d | 0.31 ± 0.34 a | 74.15 ± 5.25 ab | 4.29 ± 0.27 abc |
P2-F-M | 40.74 ± 2.34 h | 162.55 ± 9.32 a | 5.33 ± 1.80 d | 0.417 ± 0.02 abc | 0.37 ± 0.06 ab | 69.18 ± 9.97 ab | 1.22 ± 1.14 e |
P3-F-M | 67.91 ± 0.199 f | 80.24 ± 1.22 cde | 8.24 ± 1.29 d | 0.895 ± 0.05 d | 0.42 ± 0.13 b | 70.33 ± 3.62 ab | 3.89 ± 0.61 bc |
P1-L-E | 44.98 ± 3.21 h | 93.24 ± 2.77 c | 33.76 ± 2.72 c | 0.337 ± 0.02 ab | 0.51 ± 0.06 cd | 65.09 ± 5.35 ab | 3.22 ± 0.49 ab |
P2-L-E | 69.60 ± 1.22 f | 91.65 ± 12.43 cd | 38.73 ± 1.07 c | 0.246 ± 0.01 ab | 0.63 ± 0.02 e | 70.96 ± 9.78 ab | 4.59 ± 0.23 a |
P3-L-E | 94.61 ± 5.14 de | 124.04 ± 1.64 b | 60.99 ± 2.24 a | 0.348 ± 0.01 abc | 0.59 ± 0.05 de | 61.72 ± 9.12 b | 3.91 ± 0.58 bc |
P1-F-E | 82.60 ± 3.97 e | 73.72 ± 3.23 e | 9.44 ± 2.59 d | 1.922 ± 0.29 e | 0.43 ± 0.14 bc | 74.95 ± 2.28 ab | 4.50 ± 0.42 ab |
P2-F-E | 48.42 ± 2.98 gh | 76.75 ± 3.50 de | 7.90 ± 2.14 d | 0.601 ± 0.02 c | 0.30 ± 0.06 a | 83.83 ± 4.66 a | 4.25 ± 0.17 abc |
P3-F-E | 59.52 ± 3.89 fg | 50.16 ± 7.65 f | 5.67 ± 1.65 d | 1.040 ± 0.04 d | 0.37 ± 0.20 ab | 79.71 ± 4.07 ab | 4.88 ± 0.21 a |
# | Rf | Compound | Population 1 | Population 2 | Population 3 | |||
---|---|---|---|---|---|---|---|---|
µg/mL | ||||||||
Leaf | Flower | Leaf | Flower | Leaf | Flower | |||
1 | 0.48 ± 0.04 | Rutin | 16.98 ± 2.79 a | 6.95 ± 2.10 b | 17.24 ± 0.71 a | 14.09 ± 0.90 a | 18.96 ± 2.52 a | 7.89 ± 0.68 b |
2 | 0.60 ± 0.04 | Chlorogenic acid | 23.93 ± 10.71 ab | 27.51 ± 4.87 a | 11.16 ± 0.41 c | 13.25 ± 0.55 bc | 19.28 ± 0.90 abc | 9.10 ± 0.93 c |
3 | 0.71 ± 0.03 | Caffeic acid | ND | 146.30 ± 29.39 a | ND | 68.09 ± 8.83 b | ND | 53.11 ± 6.26 b |
4 | 0.78 ± 0.04 | Quercetin | ND | 309.03 ± 59.57 a | ND | 68.03 ± 8.80 b | ND | 64.97 ± 1.63 b |
# | Rf | Compound | Population 1 | Population 2 | Population 3 | |||
---|---|---|---|---|---|---|---|---|
µg/mL | ||||||||
Leaf | Flower | Leaf | Flower | Leaf | Flower | |||
1 | 0.48 ± 0.04 | Rutin | 22.48 ± 6.16 a | 9.74 ± 6.64 b | 19.23 ± 1.64 ab | 27.93 ± 1.90 a | 23.00 ± 1.22 a | 25.21 ± 4.17 a |
2 | 0.60 ± 0.04 | Chlorogenic acid | 16.29 ± 4.38 ab | 22.34 ± 4.03 ab | 11.75 ± 0.27 b | 19.69 ± 2.38 ab | 16.45 ± 0.94 ab | 18.43 ± 4.60 ab |
3 | 0.71 ± 0.03 | Caffeic acid | ND | 175.93 ± 28.42 a | ND | 126.30 ± 17.76 b | ND | 124.63 ± 10.04 b |
4 | 0.78 ± 0.04 | Quercetin | ND | 330.70 ± 52.98 a | ND | 121.23 ± 1.69 b | ND | 149.93 ± 1.19 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Medrano, R.J.; Ceja-Torres, L.F.; Vázquez-Sánchez, M.; Martínez-Ávila, G.C.G.; Medina-Medrano, J.R. Characterization of Cosmos sulphureus Cav. (Asteraceae): Phytochemical Screening, Antioxidant Activity and Chromatography Analysis. Plants 2023, 12, 896. https://doi.org/10.3390/plants12040896
Ortega-Medrano RJ, Ceja-Torres LF, Vázquez-Sánchez M, Martínez-Ávila GCG, Medina-Medrano JR. Characterization of Cosmos sulphureus Cav. (Asteraceae): Phytochemical Screening, Antioxidant Activity and Chromatography Analysis. Plants. 2023; 12(4):896. https://doi.org/10.3390/plants12040896
Chicago/Turabian StyleOrtega-Medrano, Rubí Julieta, Luis Fernando Ceja-Torres, Monserrat Vázquez-Sánchez, Guillermo Cristian Guadalupe Martínez-Ávila, and José Roberto Medina-Medrano. 2023. "Characterization of Cosmos sulphureus Cav. (Asteraceae): Phytochemical Screening, Antioxidant Activity and Chromatography Analysis" Plants 12, no. 4: 896. https://doi.org/10.3390/plants12040896
APA StyleOrtega-Medrano, R. J., Ceja-Torres, L. F., Vázquez-Sánchez, M., Martínez-Ávila, G. C. G., & Medina-Medrano, J. R. (2023). Characterization of Cosmos sulphureus Cav. (Asteraceae): Phytochemical Screening, Antioxidant Activity and Chromatography Analysis. Plants, 12(4), 896. https://doi.org/10.3390/plants12040896