Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean
Abstract
:1. Introduction
2. Results
2.1. A Rapid and Efficient Protocol for A. rhizogenes-Mediated Hairy Root Transformation System in Soybean
2.2. CRISPR/Cas9-Induced Mutagenesis of GUS Transgene in Soybean Hairy Roots
2.3. Gene-Editing Efficiency of the Two Homeologous Genes of Soybean Phytoene Dehydrogenase (PDS)
2.4. Gene-Editing Efficiency of Different Targets of Soybean Transparent Testa 8a (GmTT8a) and GmTT8b
2.5. Achievement of Efficient CRISPR/Cas9-Induced Targeted Mutations of Other Functional Genes in Soybean
3. Discussion
3.1. The Modified Hairy Root Transformation System Not only Shortens the Duration, but also Guarantees the Ratio of Transgenic Roots in the Obtained Hairy Roots
3.2. Impartance of Pre-Evaluation of the Editing Efficiency of gRNAs in Hairy Root Transformation
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Vector Construction
4.3. Hairy Root Transformation
4.4. Whole Plant Transformation Experiment of Soybean
4.5. Verification of CRISPR/Cas9-Induced Mutations in Transgenic Roots and Plants
4.6. Histochemical GUS Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.J. Botany and cytogenetics of soybean. In The Soybean Genome; Nguyen, H., Bhattacharyya, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 11–40. [Google Scholar]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the world 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Hart, C. The economic evolution of the soybean industry. In The Soybean Genome; Nguyen, H., Bhattacharyya, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–9. [Google Scholar]
- Zhang, M.; Liu, S.; Wang, Z.; Yuan, Y.; Zhang, Z.; Liang, Q.; Yang, X.; Duan, Z.; Liu, Y.; Kong, F.; et al. Progress in soybean functional genomics over the past decade. Plant Biotechnol. J. 2022, 20, 256–282. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Tian, Z.; Lai, J.; Huang, X. Plant pan-genomics and its applications. Mol. Plant. 2023, 16, 168–186. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Saleem, F.; Kanwal, M.; Mustafa, G.; Yousaf, S.; Imran Arshad, H.M.; Hameed, M.K.; Khan, M.S.; Joyia, F.A. Modern trends in plant genome editing: An inclusive review of the CRISPR/Cas9 toolbox. Int. J. Mol. Sci. 2019, 20, 4045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Kim, S.T.; Kim, S.G.; Kim, J.S. Targeted genome editing for crop improvement. Plant Breed. Biotech. 2015, 3, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, H.; Yamamoto, T. Genome editing using zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). In Targeted Genome Editing Using Site-Specific Nucleases: ZFNs, TALENs, and the CRISPR/Cas9 System; Yamamoto, T., Ed.; Springer: Tokyo, Japan, 2015; pp. 3–24. [Google Scholar]
- Wyman, C.; Kanaar, R. DNA double-strand break repair: All’s well that ends well. Annu. Rev. Genet. 2006, 40, 363–383. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F., 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Puchta, H.; Fauser, F. Synthetic nucleases for genome engineering in plants: Prospects for a bright future. Plant J. 2014, 78, 727–741. [Google Scholar] [CrossRef]
- Chen, K.; Gao, C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell. Rep. 2014, 33, 575–583. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Miao, J.; Guo, D.; Zhang, J.; Huang, Q.; Qin, G.; Zhang, X.; Wan, J.; Gu, H.; Qu, L.J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 2013, 23, 1233–1239. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.L.; et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, B.; Ding, W.; Liu, X.; Yang, D.L.; Wei, P.; Cao, F.; Zhu, S.; Zhang, F.; Mao, Y.; et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013, 23, 1229–1232. [Google Scholar] [CrossRef] [Green Version]
- Nekrasov, V.; Staskawicz, B.; Weigel, D.; Jones, J.D.; Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 691–693. [Google Scholar] [CrossRef]
- Jia, H.; Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 2014, 9, e93806. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, Z.B.; Xing, A.; Moon, B.P.; Koellhoffer, J.P.; Huang, L.; Ward, R.T.; Clifton, E.; Falco, S.C.; Cigan, A.M. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 2015, 169, 960–970. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gunapati, S.; Mihelich, N.T.; Stec, A.O.; Michno, J.M.; Stupar, R.M. Genome Editing in Soybean with CRISPR/Cas9. Methods Mol. Biol. 2019, 1917, 217–234. [Google Scholar]
- Paz, M.M.; Martinez, J.C.; Kalvig, A.B.; Fonger, T.M.; Wang, K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell. Rep. 2006, 25, 206–213. [Google Scholar] [CrossRef]
- Song, Z.Y.; Tian, J.L.; Fu, W.Z.; Li, L.; Lu, L.H.; Zhou, L.; Shan, Z.H.; Tang, G.X.; Shou, H.X. Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. J. Zhejiang Univ. Sci. B. 2013, 14, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Schmutz, J.; Cannon, S.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilton, M.D.; Tepfer, D.; Petit, A.; David, C.; Casse-Delbart, F.; Tempé, J. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 1982, 295, 432–434. [Google Scholar] [CrossRef]
- Sinkar, V.P.; White, F.F.; Gordon, M.P. Molecular biology of Ri-plasmid-A review. J. Biosciences 1987, 11, 47–57. [Google Scholar] [CrossRef]
- Alok, A.; Kumar, J.; Upadhyay, S.K. Engineering in hairy roots using CRISPR/Cas9-mediated editing. In Hairy Roots: An Effective Tool of Plant Biotechnology; Srivastava, V., Mehrotra, S., Mishra, S., Eds.; Springer: Singapore, 2018; pp. 329–342. [Google Scholar]
- Jacobs, T.B.; LaFayette, P.R.; Schmitz, R.J.; Parrott, W.A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 2015, 15, e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ron, M.; Kajala, K.; Pauluzzi, G.; Wang, D.; Reynoso, M.A.; Zumstein, K.; Garcha, J.; Winte, S.; Masson, H.; Inagaki, S.; et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 2014, 166, 455–469. [Google Scholar] [CrossRef]
- Li, C.F.; Zhang, H.Y.; Wang, X.R.; Liao, H. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean. Plant Cell. Rep. 2014, 33, 1921–1932. [Google Scholar] [CrossRef]
- Brear, E.M.; Bedon, F.; Gavrin, A.; Kryvoruchko, I.S.; Torres-Jerez, I.; Udvardi, M.K.; Day, D.A.; Smith, P.M.C. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytol. 2020, 228, 667–681. [Google Scholar] [CrossRef]
- Liu, S.M.; Kandoth, P.K.; Warren, S.D.; Yeckel, G.; Heinz, R.; Alden, J.; Yang, C.L.; Jamai, A.; El-Mellouki, T.; Juvale, P.S.; et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 2012, 492, 256–260. [Google Scholar] [CrossRef]
- Kereszt, A.; Li, D.X.; Indrasumunar, A.; Nguyen, C.D.T.; Nontachaiyapoom, S.; Kinkema, M.; Gresshoff, P.M. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat. Protoc. 2007, 2, 948–952. [Google Scholar] [CrossRef]
- Fang, J.; Chai, C.; Qian, Q.; Li, C.; Tang, J.; Sun, L.; Huang, Z.; Guo, X.; Sun, C.; Liu, M.; et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J. 2008, 54, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.D.; Yokosho, K.; Guo, R.Z.; Whelan, J.; Ruan, Y.L.; Ma, J.F.; Shou, H.X. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol. 2019, 180, 2133–2141. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.D.; Liu, S.L.; Wang, J.; Yokosho, K.; Zhou, B.; Yu, Y.C.; Liu, Z.; Frommer, W.B.; Ma, J.F.; Chen, L.Q.; et al. Simultaneous changes in seed size, oil content, and protein content driven by selection of SWEET homologues during soybean domestication. Natl. Sci. Rev. 2020, 7, 1776–1786. [Google Scholar] [CrossRef]
- Ma, J.; Sun, S.; Whelan, J.; Shou, H.X. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. Intl. J. Mol. Sci. 2021, 22, 3877. [Google Scholar] [CrossRef]
- Lei, Y.; Lu, L.; Liu, H.Y.; Li, S.; Xing, F.; Chen, L.L. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol. Plant. 2014, 7, 1494–1496. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Ma, X.; Zhu, Q.; Zeng, D.; Li, G.; Liu, Y.G. CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing. Mol. Plant. 2017, 10, 1246–1249. [Google Scholar] [CrossRef] [Green Version]
- Sheludko, Y.V.; Sindarovska, Y.R.; Gerasymenko, I.M.; Bannikova, M.A.; Kuchuk, N.V. Comparison of several Nicotiana species as hosts for high scale Agrobacterium mediated transient expression. Biotechnol. Bioeng. 2007, 96, 608–614. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, C.; Sun, K.; Deng, Y.; Li, Z. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. Mol. Plant. 2023, in press. [Google Scholar] [CrossRef]
Targets | Sequence | Total | Gene Editing in Generated Hairy Roots | |||
---|---|---|---|---|---|---|
Not Edited | 1 Allele Edited | 2 Alleles Edited | Editing Rate (%) | |||
5′ Target 1 | GATCGCGAAAACTGTGGAATTGG | 21 | 2 | 8 | 11 | 71.43% |
5′ Target 2 | GCAGATATTCGTAATTATGCGGG | 22 | 2 | 6 | 14 | 77.27% |
3′ Target 1 | GATCGCGTCAGCGCCGTCGTCGG | 17 | 2 | 3 | 12 | 79.41% |
3′ Target 2 | GCGTTGGCGGTAACAAGAAAGGG | 21 | 0 | 1 | 20 | 97.62% |
Events | Target Gene | Alleles | Target Sequence After Editing | Leaf Color of Seedlets |
---|---|---|---|---|
pds-1 | GmPDS1 | 1 | WT: GCATTAATGATCGGTTACAATGG | White green |
2 | +1: GCATTAATGATCGGTTATCAATGG | |||
GmPDS2 | 1 | −3: GCATTAATGATCGGT- - - AATGG | ||
2 | −1: GCATTAATGATCGGTTA- AATGG | |||
pds-2 | GmPDS1 | 1 | WT: GCATTAATGATCGGTTACAATGG | White green |
2 | −9: GCATTAATG- - - - - - - - -AATGG | |||
GmPDS2 | 1 | −2: GCATTAATGATCGGT- - CAATGG | ||
2 | −11: GCATTAAT- - - - - - - - - - - ATGG | |||
pds-3 | GmPDS1 | 1 | −13: GCAT- - - - - - - - - - - - - CAATGG | White green |
2 | −9: GCATTAAT- - - - - - - - - CAATGG | |||
GmPDS2 | 1 | WT: GCATTAATGATCGGTTACAATGG | ||
2 | −2: GCATTAATGATCGGT- - CAATGG | |||
pds-4 | GmPDS1 | 1 | WT: GCATTAATGATCGGTTACAATGG | White green |
2 | +23: GCATTAATGATCGGTTA TGCCAAATGGAAGATTTTTGCAACAATGG | |||
GmPDS2 | 1 | −1: GCATTAATGATCGGTTA-AATGG | ||
2 | 3 subs: GCATTAATGATCGGTTAGCTTGG |
Target Gene | Targets | 5′-3′ Sequence | Editing Efficiency in Hairy Root Transformation | Editing Efficiency in Whole-Plant Transformation | ||||
---|---|---|---|---|---|---|---|---|
# Cas9+ Roots | # Roots Edited | Editing Rate (%) | # Cas9+ Plants | # Plants Edited | Editing Rate (%) | |||
GmTT8a/b | 1 | GAAGACGGTGCAACAATGGAGG | 20 | 3 | 15.0% | 31 | 0 | 0.0% |
2 | GTGTGCATTCCTTTATTGGACGG | 20 | 0 | 0.0% | N/A | |||
GmTT8a | 1 | GAAGACGGTGCAACAATGGAGG | 20 | 0 | 0.0% | N/A | ||
2 | GCTCACTGGTGCAAACGAGGTGG | 17 | 14 | 82.4% | 15 | 5 | 33.3% | |
3 | GCCCAGCGAGCTGATGCAGCTGG | 10 | 6 | 60.0% | N/A | |||
GmTT8b | 1 | GAGGCACATCTATGGCTCACGG | 15 | 0 | 0.0% | N/A | ||
2 | GCTCACGGGTCAAATGAGGTGG | 12 | 12 | 100.0% | 13 | 8 | 61.5% | |
3 | GTGTGCATTCCTTTATTGGACGG | 10 | 8 | 80.0% | N/A | |||
4 | GGATATTGAGGAGGAAGAGAGG | 12 | 0 | 0.0% | N/A | |||
5 | GAAGATGAGGAGCCGAATCTGG | 9 | 7 | 77.8% | N/A |
Ref. | gRNAs to Target Pair of Homeologs | Gene Locus | Hairy Root Transformation | Whole-Plant Transformation | |||||
---|---|---|---|---|---|---|---|---|---|
# Cas9+ Roots | # Roots Edited | Editing Rate (%) | # Cas9+ Plants | # Plants Edited | Editing Rate (%) | ||||
[35] | gRNA1-1 | GGCATAGTATAGCCAAAGCATGG | 05G122200 | 21 | 15 | 71.4% | 5 | 2 | 40.0% |
08G077200 | 12 | 57.1% | 2 | 40.0% | |||||
[36] | gRNA2-1 | GATCGAGTTGATCGTAATAAGGG | 15G049200 | 23 | 14 | 60.8% | 7 | 2 | 28.5% |
08G183500 | 16 | 69.5% | 3 | 42.8% | |||||
Unpublished | gRNA3-1 | GCATTTGCCTTCGGCATGCTAGG | 18G301100 | 18 | 14 | 77.70% | 5 | 3 | 60.0% |
08G360500 | 16 | 88.80% | 2 | 40.0% | |||||
[37] | gRNA4-1 | GGTGGTGGGCCTGCAAACCTTGG | 05G012300 | 20 | 12 | 60.0% | 14 | 3 | 21.4% |
17G012400 | 7 | 35.0% | 1 | 7.1% | |||||
gRNA4-2 | GTTAAAAGTGCTGGGCTTCTTGG | 05G012300 | 20 | 11 | 55.0% | 28 | 4 | 14.3% | |
17G012400 | 9 | 45.0% | 3 | 10.7% | |||||
Unpublished | gRNA5-1 | GATTTGGACACGGACCTCGCCGG | 19G170100 | 20 | 0 | 0.0% | 45 | 0 | 0.0% |
03G168700 | 0 | 0.0% | 0 | 0.0% | |||||
gRNA5-2 | GCCGCCCCAAGTGTAAGCATCGG | 19G170100 | 20 | 9 | 45.0% | 30 | 6 | 20.0% | |
03G168700 | 10 | 50.0% | 10 | 33.3% | |||||
gRNA5-3 | GCCACACCGATGCTTACACTTGG | 19G170100 | 20 | 1 | 5.0% | Not selected | |||
03G168700 | 1 | 5.0% | |||||||
gRNA5-4 | GCTGGTGCATCCCGGGTTATTGG | 19G170100 | 20 | 5 | 25.0% | ||||
03G168700 | 2 | 10.0% | |||||||
gRNA5-5 | GGTCTCTTCCCCTGTATTCTTGG | 19G170100 | 20 | 3 | 15.0% | ||||
03G168700 | 5 | 25.0% | |||||||
Unpublished | gRNA6-1 | GCTGGCCCTGTATTTACAAATGG | 13G297700 | 20 | 1 | 5.0% | 37 | 1 | 2.7% |
12G203900 | 2 | 10.0% | 1 | 2.7% | |||||
gRNA6-2 | GTTTGGCCGCGGCCGTATAGGGG | 13G297700 | 20 | 10 | 50.0% | 42 | 8 | 19.1% | |
12G203900 | 7 | 35.0% | 9 | 21.4% | |||||
gRNA6-3 | GTATGACAACCCCTACTTGGTGG | 13G297700 | 20 | 0 | 0.0% | Not selected | |||
12G203900 | 0 | 0.0% |
Code of Target Genes or Gene Pairs | Code of gRNAs | Gene Locus | Whole-Plant Transformation | ||
---|---|---|---|---|---|
# Cas9+ Plants | Mutant Events | Editing Rate (%) | |||
7 | gRNA7-1 | 18G003900 | 26 | 7 | 26.9% |
11G253000 | 4 | 15.4% | |||
8 | gRNA8-1 | 08G163900 | 11 | 2 | 18.2% |
15G263300 | 1 | 9.1% | |||
9 | gRNA9-1 | 10G009200 | 10 | 6 | 60.0% |
02G008600 | 8 | 80.0% | |||
10 | gRNA10-1 | 04G044000 | 27 | 8 | 29.6% |
06G044200 | 10 | 37.0% | |||
11 | gRNA11 | 04G003200 | 11 | 1 | 9.1% |
12 | gRNA12 | 05G012300 | 20 | 3 | 15.0% |
13 | gRNA13 | 13G161900 | 28 | 11 | 39.3% |
14 | gRNA14 | 20G012000 | 61 | 22 | 36.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Q.; Li, J.; Wang, S.; Feng, X.; Shou, H. Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean. Plants 2023, 12, 1017. https://doi.org/10.3390/plants12051017
Kong Q, Li J, Wang S, Feng X, Shou H. Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean. Plants. 2023; 12(5):1017. https://doi.org/10.3390/plants12051017
Chicago/Turabian StyleKong, Qihui, Jie Li, Shoudong Wang, Xianzhong Feng, and Huixia Shou. 2023. "Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean" Plants 12, no. 5: 1017. https://doi.org/10.3390/plants12051017
APA StyleKong, Q., Li, J., Wang, S., Feng, X., & Shou, H. (2023). Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean. Plants, 12(5), 1017. https://doi.org/10.3390/plants12051017