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Abstract: Salvia hispanica L. is an annual herbaceous plant commonly known as “Chia”. It has been
recommended for therapeutic use because of its use as an excellent source of fatty acids, protein,
dietary fibers, antioxidants, and omega-3 fatty acids. A literature survey concerning phytochemical
and biological investigations of chia extracts revealed less attention towards the non-polar extracts
of S. hispanica L. aerial parts, which motivates us to investigate their phytochemical constituents
and biological potentials. The phytochemical investigation of the non-polar fractions of S. hispanica
L. aerial parts resulted in the tentative identification of 42 compounds using UPLC-ESI-MS/MS
analysis with the isolation of β-sitosterol (1), betulinic acid (2), oleanolic acid (3), and β-sitosterol-
3-O-β-D-glucoside (4). GLC-MS analysis of the seeds’ oil showed a high concentration of omega-3
fatty acid, with a percentage of 35.64% of the total fatty acid content in the seed oil. The biological
results revealed that the dichloromethane fraction showed promising DPPH radical-scavenging
activity (IC50 = 14.73 µg/mL), antidiabetic activity with significant inhibition of the α-amylase en-
zyme (IC50 673.25 µg/mL), and anti-inflammatory activity using in vitro histamine release assay
(IC50 61.8 µg/mL). Furthermore, the dichloromethane fraction revealed moderate cytotoxic activity
against human lung cancer cell line (A-549), human prostate carcinoma (PC-3), and colon carcinoma
(HCT-116) with IC50s 35.9 ± 2.1 µg/mL, 42.4 ± 2.3 µg/mL, and 47.5 ± 1.3 µg/mL, respectively, and
antiobesity activity with IC50 59.3 µg/mL, using pancreatic lipase inhibitory assay. In conclusion,
this study’s findings not only shed light on the phytochemical constituents and biological activities of
the non-polar fractions of chia but also should be taken as a basis for the future in vivo and clinical
studies on the safety and efficacy of chia and its extracts. Further study should be focused towards
the isolation of the active principles of the dichloromethane fraction and studying their efficacy,
exact mechanism(s), and safety, which could benefit the pharmaceutical industry and folk medicine
practitioners who use this plant to cure diseases.

Keywords: Salvia hispanica; chia; Lamiaceae; UPLC-ESI-MS/MS; omega-3 fatty acid; cytotoxic;
antioxidant; antiobesity

1. Introduction

The Lamiaceae (Labiatae, Mint) family comprises 245 genera and about 7886 species
worldwide. Many genera belonging to this family have important uses in medicine, the
culinary arts, and cosmetics [1]. The chemical components of the family members have
biological roles with therapeutic value; these chemicals include essential oils, alkaloids,
flavonoids, glycosides, steroids, coumarins, tannins, and terpenoids [2].
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Salvia hispanica L. is an annual herb that is commonly known as “Chia”, native to
southern Mexico and northern Guatemala [3]. Salvia hispanica L. is mainly grown for
its seeds, which are widely consumed because of their high nutritional and medicinal
value [4–9]. Globally, research has been conducted investigating the benefits of chia seeds
and oil and their applications in the food, cosmetic, medical, and pharmaceutical industries.
A literature survey revealed more concern towards chia seeds’ constituents and biological
activities, with less attention to other parts of the plant. Previous phytochemical analyses of
S. hispanica seeds’ constituents indicated the presence of flavonoids and phenolic acids that
are linked to their antioxidant, antiobesity, antidiabetic, and antimicrobial activities [4–13].
In contrast, only a few studies have reported on the phytochemical and biological activities
of S. hispanica L. aerial parts, which exhibit the presence of neoclerodane-type diterpenoids
with the tentative identification of different phenolic compounds [14–16].

To the best of our knowledge, there are no bibliographic data in the literature about
the phytochemical composition and biological activities of the aerial parts of S. hispanica
cultivated in Egypt except our previous work that focused on the investigation of the main
bioactive constituents of the polar fraction of the aerial parts, which resulted in the tentative
detection of 37 compounds, using UPLC-ESI-MS/MS analysis with the isolation of 1,2,4,5
tetrahydroxy benzene, leucantho flavone, and rhamnetin [17]. The current study focused
on the identification of the active constituents of the non-polar fractions of the aerial parts of
S. hispanica cultivated in Egypt with the investigation of their potential biological activities,
including cytotoxic, antioxidant, anti-inflammatory, antidiabetic, and antiobesity activities,
to attract attention and provide evidence for their therapeutic value.

2. Results and Discussion
2.1. Structural Identification of Constituents by UPLC-ESI-MS/MS

UPLC-ESI-MS/MS in positive ionization mode was used to analyze the light petroleum
fraction of S. hispanica L. aerial parts (Figure 1). The tentative detection of nine compounds
was based on the fragmentation patterns that were compared with the available literature
data, as shown in Table 1.
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Table 1. Tentatively identified compounds in the light petroleum fraction of S. hispanica L. aerial parts.

No. Type Rt M+ [M+H]+ MS2 Fragments Compound Name Ref.

1 Steroid 23.57 576 577 415,267,211 β-sitosterol-O-glucoside [18]
2 Diterpene 23.76 300 301 227 Sugiol [19]

3 Triterpenoid 23.77 278 279 301,279,261 7α-hydroxy-14,15-dinorlabd-
8(17)-en-13-one [20]

4 Steroid 24.13 414 415 414,396,381 β-sitosterol [21]
5 Fatty acid 24.68 280 281 - Linoleic acid [22]
6 Fatty acid 26.54 278 279 - Linolenic acid [22]
7 Triterpenoid 29.68 456 457 248,207,203,189,175 Betulinic acid [23]
8 Triterpenoid 29.68 456 457 248,207,203,189 Oleanolic acid [24]
9 Fatty acid 29.69 256 257 - Palmitic acid [22]

Compound 1 (Rt, 23.57) showed a molecular ion peak [M+H]+ at m/z 577, a base peak
[M]+ at m/z 576, as well as a fragment ion at m/z 415 [M+H-Glu]+. In accordance with this
fragmentation pattern, the compound was classified as β-sitosterol-3-O-β-D-glucoside [18].

Compound 2 (Rt, 23.76) showed a precursor ion [M+H]+ at m/z 301 as well as a
fragment ion at m/z 227 [M+H-propene unit-H2O-CH2]+. By this fragmentation pattern,
the compound was classified as sugiol [19]. Compound 3 (Rt, 23.77) showed a precursor
ion [M+H]+ at m/z 279 as well as fragment ions at m/z 301 [M+Na]+, 279 [M+H]+, and 261
[M+H-H2O]+. The compound (3) was identified as 7α-hydroxy-14,15-dinorlabd-8(17)-en-
13-one based on this fragmentation [20].

Compound 4 (Rt, 24.13) showed a molecular ion peak [M]+ at m/z 414 and a fragment
ion at m/z 396 [M-H2O]+. In accordance with this fragmentation pattern, the compound
was classified as β-sitosterol [21].

Compounds 5, 6, and 9 (Rt, 24.68, 26.54 & 29.68 min) revealed protonated molecular
ions at m/z 281, 279, and 257, respectively. These fragments were in good agreement with
the characteristics of linoleic acid, linolenic acid, and palmitic acid, respectively. These fatty
acids were previously detected in other salvia species [22].

Compound 7 (Rt 29.68 min) showed a molecular ion fragment at m/z 457 [M+H]+ and
was tentatively identified as betulinic acid. The HPLC-ESI-MS spectra of this compound
showed MS2 fragment ions at m/z 248 [C16H24O2]+, 203 [248-COOH]+, 207 [M-C16H27]+,
189 [207-H2O]+,and 175,which comprise the characteristic fragments for betulinic acid [23].

In the same manner, compound 8 (Rt, 29.68 min) showed a molecular ion fragment
at m/z 457 [M+H]+ and prominent ion fragments at m/z 248 and 207 [C14H23O]+; it also
showed a fragment ion at 203 [C15H23]+,because of loss of COOH from 248,and another
fragment ion at m/z 189 [207-H2O]+. This fragmentation pattern was in good agreement
with the previous report of oleanolic acid [24].

For the dichloromethane fraction, the UPLC-ESI-MS/MS in negative and positive ion
modes led to the identification of 33 compounds (Figure 2). The compounds were arranged
according to retention time (Rt) and classified accordingly into different classes including
phenolic acids, flavonoids, diterpenoids, alkaloids, tannins, steroids, triterpenoids, fatty
acids, and miscellaneous compounds (Table 2).

Table 2. Tentatively identified compounds in the dichloromethane fraction of S. hispanica L.
aerial parts.

No. Type Rt M+ [M-H]− [M+H]+ MS2 Fragments Compound Name Ref.

1 Tremetone 6.39 248 249 137 6-hydroxy-7-methoxy
Tremetone [25]

2 Diterpene 7.26 316 317 299,267 Tanshinone V [26]
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Table 2. Cont.

No. Type Rt M+ [M-H]− [M+H]+ MS2 Fragments Compound Name Ref.

3 Coumarin 7.87 248 249 193,175 Brevifolin [27]

4 Alkaloid 8.82 356 357 311 Menisperine [28]

5 Phenolic acid 9.00 342 343 181 Caffeic acid hexoside [29]

6 Phenolic acid 9.12 356 355 193,160 Feruloyl hexose [30]

7 Phenolic acid 9.96 194 195 180,177,136 Ferulic acid [31]

8 Phenolic acid 10.16 354 353 191 Caffeoylquinic acid [8]

9 Phenolic acid 10.53 313 314 177,149,145,121 N-trans-Feruloyltyramine [32]

10 Diterpene 10.74 356 357 293,181 Salviacoccin [20]

11 Phenolic acid 11.10 358 359 315 Przewalskinic acid [33]

12 Diterpene 11.33 316 315 299,285 Cryptanol [20]

13 Diterpene 11.34 316 315 243 Royleanone [20]

14 Diterpene 11.44 340 341 309,295,231 Trijuganone C [22]

15 Alkaloid 11.78 338 339 295 Jatrorrhizine [28]

16 Flavonoid 11.99 360 359 344,329,314,195 5,7,3’-Trihydroxy-6,4’,5’-
trimethoxy flavone [34]

17 Diterpene 12.27 312 313 249,193 Tanshinndiol C [35]

18 Flavonoid 12.47 346 345 330,315,287 5,3’-Dihydroxy-7,8,4’-
trimethoxy flavanone [36]

19 Diterpene 12.51 346 345 330,315 7-α-Methoxy Royleanone [37]

20 Flavonoid 12.52 346 345 314,299 Axillarin [38]
21 Phenolic acid 13.38 330 329 249,197 Dimethyl-O-ellagic acid [27]
22 Diterpene 13.48 312 313 316,298 Hydroxy cryptotanshinone [39]
23 Flavonoid 13.69 330 329 345,329,312 Salvigenin [40]
24 Alkaloid 14.50 344 345 286 Tembetarine [28]
25 Flavonoid 14.93 300 301 311 Sorbifolin [41]
26 Diterpene 14.95 338 339 284,283 Methyl tanshinonate [35]
27 Flavonoid 15.21 300 299 284,255 Diosmetin or Chryseriol [42]

28 Flavonoid 15.40 300 299 227 3’-O-methylorobol or
Gliricidin [43]

29 Diterpene 15.51 300 299 229,211,171 16-Hydroxy-6,7-
didehydroferruginol [20]

30 Fatty acid 15.57 328 327 285 Oxo-dihydroxy-
octadecenoic acid [44]

31 Diterpene 17.04 330 329 269 Carnosol [45]
32 Diterpene 25.32 312 313 261 Hydroxy tanshinone VI [33]
33 Diterpene 27.12 278 279 15,16-Dihydrotanshinone I [35]

The dichloromethane fraction is high in diterpenoids (Figure 3A), most of which are
abietane quinones. There were 13 diterpenoids compounds tentatively identified as follows.

Compound 2 (Rt, 7.26 min) exhibited a precursor ion at m/z 317 [M+H]+ as well as
fragment ions at m/z 299 [(M+H-H2O)]+ and 267 [(M+H-2H2O-CH2)]+,which are charac-
teristic of tanshinone V [26]. Compound 10 (Rt, 10.74 min) exhibited a precursor ion at m/z
357 [M+H]+ as well as fragment ions at m/z 293 [(M+H-2H2O-CO)]+ and 181. Accordingly,
the compound was identified as salviacoccin [20] (Figure 4).
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In negative ion mode, compounds 12 and 13 (Rt, 11.33 and 11.34 min) showed a
molecular ion peak at m/z 315 [M-H]−. In the case of 12, the fragmentation pattern
exhibited a fragment ion at m/z 285 corresponding to [(M+H-H2O-CH2)]+, but in the
case of compound 13, a fragment ion at m/z 243 was formed after the loss of [(M+H-
3CH3-C2H5)]+. The fragmentation patterns are characteristic of cryptanol and royleanone,
respectively [20].

Compound 14 (Rt, 11.44 min) exhibited a precursor ion at m/z 341 [M+H]+ as well as
fragment ions at m/z 309 [(M+H-H2O-CH2)]+, 295 [(M+H-H2O-2CH2)]+, and 231 [(M+H-
H2O-2CH2-CO-2H2O)]+,which were formed after the loss of C3H6O. Accordingly, the
compound was tentatively identified as trijuganone C [22] (Figure 4).

Compound 17 (Rt, 12.27 min) exhibited a precursor ion at m/z 313 [M+H]+ as well
as fragment ions at m/z 249 [(M+H-2H2O-CO)]+ and 193 [(M+H-2H2O-3CO)]+. The
compound was tentatively identified as tanshindiol C [35]. Compound 19 (Rt, 12.51 min)
showed a precursor ion at m/z 345 [M-H]−, as well as fragment ions at m/z 330 [(M-H-
CH3)]−, 315 [(M-H-2CH3)]−, and 287 [(M-H-2CH3-CO)]−. The compound was tentatively
identified as 7α-methoxy royleanone [37] (Figure 4).

Compound 22 (Rt, 13.48 min) exhibited a precursor ion at m/z 313 [M+H]+ as well as
fragment ions at m/z 249 [(M+H-2H2O-CO)]+ and 197. This compound was tentatively
identified as hydroxy cryptotanshinone [39].

Compound 26 (Rt, 14.95 min) exhibited a precursor ion at m/z 339 [M+H]+ as well as a
fragment ion at m/z 311 [(M+H-CO)]+, which is characteristic of methyl tanshinonate [35].
Compound 29 (Rt, 15.51 min) exhibited a precursor ion at m/z 299 [M-H]− as well as a
fragment ion at m/z 227 [M-H-3CH3-C2H3]−. Thus, the compound (29) was identified as
16-hydroxy-6,7-didehydroferruginol [20].
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Compound 31 (Rt, 17.04 min) produced both a precursor ion at m/z 329 [M-H]− as well
as a fragment ion at m/z 285 [(M-H-CO2)]−. This fragmentation is typical for carnosol [45].

Compound 32 (Rt, 25.32 min) showed a precursor ion at m/z 313 [M+H]+, and the
presence of a fragment ion at m/z 269 [(M+H-CO2)]+ is characteristic of hydroxy tanshinone
VI [33]. Compound 33 (Rt, 27.12 min) exhibited a precursor ion at m/z 279 [M+H]+ and a
fragment ion at m/z 261 [(M+H-H2O)]+, and it was identified as 15,16-dihydrotanshinone
I [35].

Moreover, seven flavonoid aglycones were tentatively identified in the dichloromethane
fraction (Figure 3B), including compound 16 (Rt, 11.99 min), which showed a molecular
ion peak at [M-H]− at m/z 359, as well as fragment ions at m/z 344, 329, and 314, due to
successive losses of CH3, and a fragment ion at m/z 195 that formed after cleavage of the
flavone skeleton. Based on this result, the compound was classified as 5,7,3′-trihydroxy-
6,4′,5′-trimethoxy flavone [34].
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Compound 18 (Rt, 12.47 min) showed a molecular ion peak at m/z 345 [M-H]−; the
fragment ions formed after the loss of CH3 groups were at m/z 330, 315, and 287, indicating
that 18 could tentatively be identified as 5,3′-dihydroxy-7,8,4′-trimethoxy flavanone [36]
(Figure 4).

Compound 20 (Rt, 12.52 min) showed a molecular ion peak at m/z 345 [M-H]− in
addition to fragment ions formed after successive losses of CH3 groups at m/z 330 and 315.
The compound was classified as axillarin (methylated flavonol) [38].

Compound 23 (Rt, 13.69 min) presented an [M+H]+ ion at m/z 331.The MS2 spectrum
showed fragment ions at m/z 316 [331-CH3]+ and m/z 298 that formed after the loss of
H2O. The compound was classified as salvigenin (flavone) [40] (Figure 4).

Compound 25 (Rt, 14.93 min) exhibited a sorbifolin (flavone)-specific molecular ion
peak at m/z 301 [M+H]+ and a fragment ion at m/z 286 [41].Compounds 27 and 28 (Rt, 15.21
and 15.40 min) showed identical molecular ion peaks at m/z 299 [M-H]− in negative ion
mode. In the case of compound 27, the fragment ions at m/z 284 and 283 were characteristic
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of diosmetin or chryseriol (flavone) [42], whilst compound 28 revealed fragment ions at
m/z 284 and 255, characteristic of 3′-O-methylorobol or gliricidin (isoflavone) [43].

Three alkaloids were tentatively identified from the dichloromethane fraction of aerial
parts (Figure 3C), including compound 4 (Rt, 8.82 min), which exhibited a precursor ion at
m/z 357 [M+H]+ as well as a fragment ion at m/z 311 [(M+-CH3)2 NH)]+; this fragmentation
is characteristic of menisperine (M+:356.4) [28]. Compound 15 (Rt, 11.78 min) exhibited a
precursor ion at m/z 339 [M+H]+ as well as a fragment ion at m/z 295 that was formed after
the loss of CH3 and CO. Accordingly, jatrorrhizine (M+:338.4) was tentatively identified
as this compound [28]. Compound 24 (Rt, 14.50 min) showed a fragment ion at m/z
345 [M+H]+. The MS2 spectrum showed the fragment ion at m/z 312 (M+H-CH3OH)]+, so
the compound was tentatively identified as tembetarine (M+:344.4) [28] (Figure 4).

Furthermore, five compounds of phenolic acids and their derivatives were tentatively
identified from the dichloromethane fraction of the aerial parts of S. hispanica L. (Figure 5A)
and are described as follows:
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Compound 5 (Rt, 9.00 min) showed a precursor ion at m/z 343 [M+H]+ that was
successively subjected to the loss of the hexose sugar moiety to form a fragment ion at
m/z 181 [caffeic acid+H]+. Therefore, the compound (5) was identified as caffeic acid
hexoside [29].

Compound 6 (Rt, 9.12 min) revealed a precursor ion [M-H]− at m/z 355 and a fragment
ion at m/z 193, corresponding to the ferulic acid moiety after losing hexose sugar. This
fragmentation is characteristic of feruloyl hexose [30] (Figure 4). Compound 7 (Rt, 9.96 min)
showed a precursor ion at m/z 195 [M+H]+ as well as a fragment ion at m/z 180 [(M+H-
CH3)]+ and 177 [(M+H-H2O)]+ after losing CH3 and H2O, respectively. This fragmentation
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pattern is characteristic of ferulic acid [31]. Compound 8 (Rt, 10.16 min) exhibited a
fragment ion [M-H]− at m/z 353 in addition to a fragment ion at m/z 191, corresponding to
quinic acid, after losing the caffeoyl moiety. Accordingly, 8 was identified as caffeoyl quinic
acid [8]. Compound 11 (Rt, 11.10 min) exhibited mainly a precursor ion at m/z 359 [M+H]+

and a fragment ion at m/z 315 [M+H-CO2]+, which is characteristic of przewalskinic
acid [33].

Other identified miscellaneous compounds (Figure 5B) were compounds 1 and 3
(Rt, 6.39 and 7.87 min) which exhibited identical precursor ions at m/z 249 [M+H]+. For
compound 1, the fragment ion at m/z 137 was characteristic of 6-hydroxy, 7-methoxy
tremetone, while compound 3 exhibited fragment ions at m/z 193 [M+H-2CO]+ and m/z
175 (M+H-2CO-H2O)+, characteristic of brevifolin [25,27]. Compound 9 (Rt, 10.53 min)
exhibited a precursor ion at m/z 314 [M+H]+ as well as fragment ions at m/z 177,which
corresponded to ferulic aldehyde, and 121,which corresponded to 4-ethylphenol. Thus,
compound 9 was tentatively identified as feruloyl tyramine [32] (Figure 4). Compound
21 (Rt, 13.38 min) showed a fragment ion [M-H]− at m/z 329. The MS2 spectrum showed
fragment ions at m/z 314 [(MH-CH3)]−, 299 [(M-H-2CH3)]−, and 271 [(M-H-2CH3-CO)]−.
This compound was identified as dimethyl-O-ellagic acid [27]. Compound 30 (Rt, 15.57 min)
showed a fragment ion at m/z 327 [M+H]+. The MS2 spectrum showed fragment ions at
m/z 229, 211, and 171. The compound was tentatively identified as 13-Oxo-9,10 dihydroxy-
11-octadecenoic acid [44].

2.2. Isolated Compounds from the Light Petroleum Fraction

Compounds 1–4 were identified as β-sitosterol, betulinic acid, oleanolic acid, and
β-sitosterol-3-O-β-D-glucoside, respectively, through spectral analyses and comparison
with the literature data [18,46–49], as represented in Figure 6 and Table 3.
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Table 3. 1H (400 MHz) and 13C (100 MHz) NMR spectral data of compounds (1–4) in CDCl3.

No.
1 2 3 4

1H-NMR 13C-NMR 1H-NMR 1H-NMR 13C-NMR 1H-NMR 13C -NMR

1 1.47 (m) 37.3 0.90 (m)
1.68 (m) 1.64 (m) 38.6 0.98 (m)

1.78 (m) 37.3

2 1.56 (m) 31.7 1.63 (m) 1.61 (m) 27.4 1.47 (m)
1.80 (m) 29.2

3 3.50 (m) 71.8 3.20 (m) 3.32 (dd, 6.4, 4.4 Hz) 78.0 3.60 (m) 78.0

4 2.30 (m) 42.3 - - 39.0 2.10 (t, 13.2 Hz)
2.30 (d, 12.0 Hz) 38.8

5 - 140.7 0.69 (m) 0.76 (m) 55.4 - 140.9

6 5.36 (m) 121.7 1.40 (m)
1.52 (m) 1.53 (m) 18.8 5.33 (s) 121.7

7 2.02 (m) 31.9 1.43 (m) 1.49 (m) 34.0 1.37 (m)
1.95 (d, 8.0 Hz) 29.7

8 1.69 (m) 31.9 - - 39.1 1.35 (m) 31.9
9 1.56 (m) 50.2 1.23 (m) 1.55 (m) 47.6 0.92 (m) 50.1

10 - 36.5 - - 38.4 - 38.5

11 1.51 (m) 21.1 1.20 (m)
1.42 (m) 1.03 (m) 23.0 1.42 (m)

1.47 (m) 21.1

12 1.51 (m) 39.8 1.06 (m)
1.61 (m) 5.25 (t, 4.4 Hz) 125.4 1.13 (m)

1.90 (m) 39.4

13 - 42.3 2.20 (m) - 138.3 - 42.3
14 1.49 (m) 56.8 - - 41.9 1.19 (m) 56.7

15 1.58 (m) 24.3 1.40 (m)
2.27 (m) 1.61 (m) 27.4 1.02 (m)

1.50 (m) 24.3

16 1.85 (m) 28.3 1.40 (m)
1.98 (m) 1.05 (m) 23.0 1.66 (m)

1.64 (m) 28.3

17 1.45 (m) 56.1 - - 47.7 1.07 (m) 55.9
18 0.70 (s) 12.0 1.66 (m) 3.18 (m) 39.4 0.65 (s) 11.3
19 1.02 (s) 19.4 3.02 (m) 3.19 (m) 47.0 0.96 (s) 19.4
20 1.58 (m) 36.2 - - 30.4 1.32 (m) 36.0
21 0.94 (d, 8.0 Hz) 18.8 1.25 (m) 1.61 (m) 36.8 0.84 (d, 8.0 Hz) 19.1

22 0.93 (m) 34.0 1.55 (m)
2.00 (m) 1.30 (m) 33.0 0.81 (m)

1.25 (m) 33.8

23 1.16 (m) 26.1 0.99 (s) 0.99 (s) 27.9 1.12 (m) 25.9
24 1.38 (m) 45.9 0.77 (s) 0.79 (s) 16.7 0.89 (m) 45.6
25 1.56 (m) 29.2 0.85 (s) 0.91 (s) 15.3 1.61 (m) 30.2
26 0.84 (d, 8.4 Hz) 19.8 0.96 (s) 0.84 (s) 17.3 0.89 (m) 20.2
27 0.86 (d, 8.4 Hz) 19.0 1.00 (s) 1.13 (s) 26.5 0.78 (m) 19.6

28 1.10 (m) 23.1 - - 181.2 1.23 (m)
1.26 (m) 23.1

29 0.82 (m) 12.0 4.63 (s)
4.76 (s) 0.89 (s) 36.7 1.17 (m) 12.1

30 - - 1.71 (s) 0.98 (s) 24.0 - -

β-sitosterol (1): white needles; m.p. 137–139 ◦C; IR (KBr νmax, cm−1): 3416 (O-H), 2932
and 2864 (C-H aliphatic), 1642 (C=C), 1463 (-CH2), 1376 (-CH3), and 1051 (C-O). EI-MS:
m/z (relative abundance %) = 414 (M+, 100), 399 (24.19), 397 (13), 396 (31.88), 381 (15.54),
367 (1.19), 329 (6.7), 303 (2.88), 119 (1.3), 109 (1.36), 107 (3), 105 (3.41), 95 (5.23), 69 (17.8), 57
(20.9), 55 (17.41), and 43 (27.34). 1H- and 13C-NMR (CDCl3) spectral data are summarized
in Table 3.

Betulinic acid (2): white amorphous powder; IR (KBr νmax, cm−1): 3450 (O-H), 2939
and 2867 (C-H), 1682 (C=O), 1642 (C=C), 1449 (CH2), 1376 (CH3), and 1042 (C-O); EI-MS:
m/z (relative abundance %) = 456 (M+, 32), 248 (17.8), 233 (21.3), 220 (100), 207 (14.8), 203
(27.7), 189 (45.7), 175(60.2), 147 (69.8), 91 (18.6), and 79 (19.3). 1H-NMR (CDCl3) data are
summarized in Table 3.
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Oleanolic acid (3): white amorphous powder; IR (KBr νmax, cm−1): 3391 (O-H), 2930
(C-H aliphatic), 1687 (C=C), 1458 (CH2), 1377 (-CH3), and 1023 (C-O); EI-MS: m/z (relative
abundance %) = 456 (M+,100), 248 (75.79), 207 (10.48), 203 (17.13), 189 (6.67), and 119 (15.77).
1H- and 13C-NMR (CDCl3) readings are summarized in Table 3.

β-sitosterol-3-O-β-D-glucoside (4): white crystals; m.p. 272–274 ◦C; IR (KBr νmax,
cm−1): 3391 (O-H), 2931 and 2866 (C-H aliphatic), 1461 (CH2), 1366 (CH3), 1069 (C-O).
ESI-MS: m/z (Relative abundance %) = 577 (M+H+, 14.3), 576 (M+, 100), 415 (M+H–Glu,
8.89), 267 (20.1), and 211 (34.2). 1H- NMR signals of glucose moiety at δ(ppm): δ 4.21 (1H,
d, J=10 Hz, H-1‘), δ 2.89 (1H, m, H-2‘), δ 3.12 (1H, m, H-3‘), δ 3.01 (1H, m, H-4‘), δ 3.05 (1H,
m, H-5‘), δ 3.46 (1H, m, H-6‘b), and δ 3.60 ppm (1H, m, H-6‘a).13C-NMR signals of glucose
moiety at δ (ppm): δ 101.27 (C-1‘), δ 73.94 (C-2‘), δ 77.41 (C-3‘), δ 70.58 (C-4‘), δ 77.21 (C-5‘),
and δ 61.57 (C-6‘). 1H- and 13C-NMR (CDCl3) data are summarized in Table 3.

2.3. GLC-MS Analysis of Seeds Oil

The major fatty acids identified as methyl esters were linoleic acid (35.64%), linolenic
acid (23.95), palmitic acid (14.12%), stearic acid (7.63%), lauric acid (5.87%), myristic acid
(2.31%), 11,14,17-eicosatrienoic acid (0.59%), arachidic acid (0.57%), caprylic acid (0.54%),
and capric acid (0.42%). Polyunsaturated fatty acids (PUFAs) represented 60% of seeds’ oil,
while omega-3 fatty acids (linolenic acid) represented 35.64% of the total fatty acids in the
seed oil.

2.4. Cytotoxic Activity

The cytotoxic activity of the dichloromethane fraction was tested using a viability
assay with vinblastine as a standard against human lung cancer cell line (A-549), human
prostate carcinoma (PC-3), and colon carcinoma (HCT-116). The presence of flavonoids,
phenolic compounds, tannin, and glycosides is responsible for cytotoxic activities [50]. The
results revealed that the fraction had a moderate cytotoxic activity against A-549, PC-3, and
HCT-116 cell lines with IC50 of 35.9± 2.1 µg/mL, 42.4± 2.3 µg/mL, and 47.5 ± 1.3 µg/mL,
respectively, and when compared with vinblastine sulfate as a positive control, the IC50was
24.6 µg/mL, 42.4 µg/mL, and 3.5 µg/mL, respectively (Figure 7A–C).

2.5. Antioxidant Activity

The promising antioxidant result of the dichloromethane fraction refers to the flavonoids
and phenolic contents. The hydroxyl groups in phenolic compounds are responsible for
antioxidant activity because of their radical-scavenging properties [51]. The DPPH scaveng-
ing percentage of the dichloromethane fraction (IC50 = 14.73 µg/mL) was approximately
comparable to that of ascorbic acid (IC50 = 12.50 µg/mL, as shown in Figure 7D.

2.6. Anti-Inflammatory Activity

The dichloromethane fraction showed stronger anti-inflammatory activity than the
light petroleum fraction, with IC50s of 61.8 µg/mL and 458.6 µg/mL, respectively, compared
to diclofenac sodium as a positive control, with IC50 of 17.9 µg/mL (Figure 7E). The contents
of diterpenes and phenolics in the dichloromethane fraction play important roles in anti-
inflammatory activity [52]; sterols, such as β-sitosterol, betulinic acid, oleanolic acid, and
β-sitosterol-3-O-β-D-glucoside, are also known to exhibit anti-inflammatory activity [53].

2.7. Antidiabetic Activity

The antidiabetic activity of the dichloromethane fraction was tested using the α amylase
enzyme and acarbose as a positive standard. The results showed that the dichloromethane
fraction inhibited the α-amylase enzyme, with IC50 of 673.25 µg/mL compared to acarbose,
which showed IC50 of 34.71 µg/mL (Figure 7F). S. hispanica contains a high concentration of
omega-3 fatty acids (35.64% of total fatty acid content), which have been shown to reduce
insulin resistance [54].
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2.8. Antiobesity Activity

There are numerous reports on the antiobesity activity of S. hispanica L. seeds but
none on the activity of the aerial parts. The antiobesity activity was determined using
a pancreatic lipase inhibitory assay, and the results showed that the dichloromethane
fraction has moderate antiobesity activity, with IC50 59.3 µg/mL, versus orlist, with IC50
23.8 µg/mL (Figure 7G). The antiobesity activity is due to the presence of poly phenolics,
flavonoids, and terpenoids [55].

3. Material and Methods
3.1. Instruments for Spectroscopic Analyses

Infrared spectral analysis was recorded using the potassium bromide disk technique
on a PyeUnicam SP 3000 and IR spectrophotometer of Alpha (I-00523), Jasko, FT/IR-460
plus, Japan. Mass spectra were obtained on Shimadzu GC-MS-QP5050A mass spectrometer
at 70 eV. 1H and 13C-NMR spectral analyses were carried out at the faculty of pharmacy,
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Ain Shams University, Egypt, using Bruker (Zurich, Switzerland) at 400 and at 100 MHz,
respectively. Chemical shifts were given in ppm with the TMS as the internal standard.

3.2. Plant Material

Salvia hispanica L. aerial parts were collected at the flowering stage from Mushtohor
farm (Tokh, Egypt) in March 2018. This plant was identified and verified by Dr. Hussein
Abdelbaset (Professor of Plant Taxonomy, Faculty of Science, Zagazig University). A
voucher specimen (Lam.S-10) was deposited in the herbarium of the pharmacognosy
department, faculty of pharmacy, Zagazig University, Egypt.

3.3. Extract Preparation

The air-dried powdered aerial parts of Salvia hispanica L. (3 kg) were extracted by cold
maceration (5 times × 7 L) using 70% aqueous ethanol. The total extract was evaporated
under reduced pressure at 50 ◦C, yielding 540 gm of dark green viscous residue. The residue
(400 gm) was dissolved in a methanol: water mixture (1:9) then subjected to fractionation
using light petroleum and dichloromethane. The fractions were washed with distilled
water and dried over anhydrous sodium sulfate, then the solvent of each fraction was
distilled off under reduced pressure at 50 ◦C to yield a light petroleum fraction (68 gm) and
a dichloromethane fraction (4 gm).

3.4. Chromatographic Investigations

The light petroleum fraction was investigated by normal phase TLC using dichloro-
methane and methanol 99:1. The TLC plates were visualized with anisaldehyde and sulfuric
acid, and the promising fractions were subjected to chromatographic investigations.

The light petroleum fraction (33 gm) was chromatographed on a silica gel column
packed with light petroleum, and the polarity was increased successively by dichloromethane
followed by methanol. Similar fractions were collected according to the TLC profile. Frac-
tions (26–35) eluted by 80% CH2Cl2/light petroleum were combined, concentrated, and
crystallized to obtain four compounds (1–4).

3.5. LC/MS Instrument and Separation Technique

Each fraction (100 µg/mL) solution was prepared using HPLC analytical-grade
solvent MeOH, filtered with a membrane disc filter, and then subjected to LC-ESI-MS
analysis. Fractional injection volumes (10 µL) were injected into the UPLC instrument
equipped with a reverse-phase C-18 column (ACQUITY UPLC—BEH C18 1.7 µm particle
size—2.1 × 50 mm column). The mobile phase was prepared by filtering solvents using
a filter membrane disc and degassing by sonication before injection. The flow rate was
0.2 mL/min with a gradient mobile phase comprising two eluents: H2O acidified with 0.1%
formic acid and MeOH acidified with 0.1% formic acid. The parameters for analysis were
carried out using positive ion mode as follows: source temperature 150 ◦C, cone voltage
30 eV, capillary voltage 3 kV, desolvation temperature 440 ◦C, cone gas flow 50 L/h, and
desolvation gas flow 900 L/h. Mass spectra were detected in the ESI between m/z 100 and
1000. The peaks and spectra were processed using Maslynx 4.1 software and tentatively
identified by comparing their retention time and mass spectrum with the reported data.

3.6. GLC-MS of Salvia Seeds’ Oil

The seeds were pressed using the Ixtaina et al. method [56], and the oil was derivatized
using the Metcalfe et al. method [57] and recorded using Shimadzu GCMS-QP2010 (Tokyo,
Japan) equipped with Rtx-1MS fused bonded column and a split–splitless injector. The
initial column temperature was kept at 45 ◦C for 2 min (isothermal), programmed to
300 ◦C at a rate of 5 ◦C/min, and kept constant at 300 ◦C for 5 min (isothermal). The
injector temperature was 250 ◦C. The helium carrier gas flow rate was 1.41 mL/min. All
the mass spectra were recorded under the following conditions: (equipment current)
filament emission current, 60 mA; ionization voltage, 70 eV; ion source, 200 ◦C. A series of
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hydrocarbon samples (1% v/v) were injected in split mode (split ratio 1:15). The components
were identified by matching the retention indices and mass spectra with those reported in
NIST17-1 libraries and literature.

3.7. Cytotoxic Activity

The anti-cancer activity was carried out using a cell viability assay [58]. Briefly, the
cell lines used were the human lung cancer cell line (A-549), human prostate carcinoma
cells (PC-3), and colon carcinoma cells (HCT-116), and they were obtained from VACSERA
company (Tissue Culture Unit), Cairo, Egypt) [59,60]. The dichloromethane fraction was
used in various concentrations (500 to 0 µg/mL). The IC50 values of the fractions and the
standard (vinblastine sulfate) were calculated.

3.8. Antioxidant Activity

The antioxidant activity was determined using the DPPH method according to the
Leaves et al. method [61]. Briefly, the dichloromethane fraction was used at different
concentrations, 2.5, 5, 10, 20, 40, 80, 160, 320, 640, and 1280 µg/mL, which were each added
to 3 mL of DPPH solution, and the decrease in absorbance at 515 nm was determined
continuously, with data being recorded at 1min intervals until the absorbance stabilized
(16 min). The 50% inhibitory concentrations (IC50) of the dichloromethane fraction and the
standard (ascorbic acid) were determined.

3.9. Anti-Inflammatory Activity

In vitro histamine release assay was performed on light petroleum and dichloromethane
fractions according to Venkata et al.’s assay [62]. The results were expressed as inhibition
percentage, which was calculated using the following formula:

Inhibitory activity (%) = (1 − As/Ac) × 10

As is the absorbance in the presence of the test substance and Ac is the absorbance of
the control substance. The IC50 value in µg/mL was estimated.

3.10. Antidiabetic Activity

The α-amylase inhibition method was used to determine the antidiabetic activity [63].
Briefly, 1 mL of the dichloromethane fraction of various concentrations (1000 to 7.81 µg/mL)
and 1 mL of the enzyme solution were mixed and incubated at 25 ◦C for 10 min. After
incubation, 1 mL of starch (0.5%) solution was added to the mixture and incubated at 25 ◦C
for 10 min. The reaction was then stopped by adding 2 mL of dinitro-salicylic acid, followed
by heating the mixture in a boiling water bath for 5 min. After cooling, the absorbance was
measured colorimetrically at 565 nm, and the IC50 values of the dichloromethane fraction
and the standard (acarbose) were estimated.

3.11. Antiobesity Activity

The antiobesity activity was determined by pancreatic lipase inhibitory assay [64].
Briefly, the dichloromethane fraction at different concentrations (1000 to 7.81 µg/mL) was
pre-incubated with 100 µg/mL of lipase for 10 min at 37 ◦C. The reaction was then started by
adding 0.1 mL of p-nitrophenyl butyrate substrate after incubation at 37 ◦C for 15 min. The
amount of p-nitrophenol released in the reaction was measured using a multiplate reader
(Sigma Aldrich, Burlington, Massachusetts, USA). The IC50 values of the dichloromethane
fraction and the standard (orlistat) were determined.

4. Conclusions

This study represents the first report on the phytochemical constituents of the non-
polar fraction of S. hispanica aerial parts cultivated in Egypt as well as their pharmacological
potentials. The UPLC-ESI-MS/MS analyses of the non-polar fractions (light petroleum
and dichloromethane fractions) resulted in the tentative identification of 42 compounds of
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different chemical classes, including fatty acids, steroids, di- and tri-terpenoids, flavonoids,
phenolic acids, and alkaloids. The phytochemical investigation of the light petroleum
fraction resulted in the isolation of four compounds, including β-sitosterol (1), betulinic
acid (2), oleanolic acid (3), and β-sitosterol-3-O-β-D-glucoside (4). The GLC-MS analysis of
the seeds’ oil revealed that seeds contain a high concentration of omega-3 fatty acids, with
a percentage of 35.64% of the total fatty acids content.

Biologically, the dichloromethane fraction showed moderate cytotoxic activity against
the human lung cancer cell line (A-549), human prostate carcinoma (PC-3), and colon
carcinoma (HCT-116). It also exhibited remarkable antioxidant results that can be attributed
to its contents of polyphenolic compounds, in addition to antidiabetic, antiobesity, and
anti-inflammatory activities, which are attributed to the fatty acids, steroids, terpenoids,
flavonoids, and phenolic acid contents.

In conclusion, these data are considered an addition to the bibliographic data about
chia and a contribution towards the exploration of its chemical diversity as well as nu-
tritional and therapeutic value. Henceforth, further studies should be focused towards
the isolation of the active principles of the dichloromethane fraction and studying their
efficacy, the exact mechanism(s), and safety, which could aid in the development of a new
therapeutic agent and/or using chia as a safe natural alternative therapy and nutritional
strategy for the treatment of diabetes and obesity in addition to its use as an excellent
source of omega-3 fatty acids.
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