Effect of Inoculum Size and Age, and Sucrose Concentration on Cell Growth to Promote Metabolites Production in Cultured Taraxacum officinale (Weber) Cells
Abstract
:1. Introduction
2. Results
2.1. Effect of Inoculum Age and Size on Cell Suspension Culture Establishment
2.1.1. Cell Growth and Viability
2.1.2. Cell Aggregation and Differentiation
2.1.3. Triterpene Content
2.2. Effect of Carbon Source on Cell Suspension Cultures
2.2.1. Effect of Carbon Source on Cell Growth
2.2.2. Effect of Carbon Source on Triterpenes Content
3. Discussion
3.1. Effect of Inoculum Age and Size on Cell Suspension Culture Establishment
3.2. Effect of Inoculum Age and Size on Triterpene Content
3.3. Effect of Sucrose Concentration on Cell Growth in Suspension Culture
4. Materials and Methods
4.1. Callus Culture
4.2. Cell Suspension Culture
4.2.1. Experiment 1—Effect of Inoculum Age and Size on Cell Growth in Suspension Culture Establishment
4.2.2. Experiment 2—Effect of Carbon Source on Triterpene Accumulation in Suspension Culture Establishment
4.3. Parameters Evaluated in Experiment 1 and 2
4.3.1. Cell Growth Measurements
Fresh Weight (fw), Dry Weight (dw)
Carbon Source
Viability, Differentiation, and Aggregation
4.3.2. Quantification of α-Amyrin and Lupeol Content
Cell Extraction
α-Amyrin and Lupeol Reference Standards
α-Amyrin and Lupeol Quantification
4.3.3. Growth Parameters
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum—A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef] [PubMed]
- González-Castejón, M.; Visioli, F.; Rodriguez-Casado, A. Diverse biological activities of dandelion. Nutr. Rev. 2012, 70, 534–547. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.; Poirrier, P.; Chamy, R.; Prüfer, D.; Schulze-Gronover, C.; Jorquera, L.; Ruiz, G. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant. J. Ethnopharmacol. 2015, 169, 244–262. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009, 285, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Hernández, L.; Palazon, J.; Navarro-Oca, A. The Pentacyclic Triterpenes, α-amyrins: A Review of Sources and Biological Activities. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; Venketeshwer Rao, University of Toronto: Toronto, ON, Canada, 2012. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Xu, F.; Zhang, P.; Deng, J.; Sun, H.; Wen, X.; Liu, J. Practical Synthesis of α-Amyrin, β-Amyrin, and Lupeol: The Potential Natural Inhibitors of Human Oxidosqualene Cyclase. Archiv. Der. Pharmazie. 2017, 350, 1700178. [Google Scholar] [CrossRef]
- Grauso, L.; Emrick, S.; de Falco, B.; Lanzotti, V.; Bonanomi, G. Common dandelion: A review of its botanical, phytochemical and pharmacological profiles. Phytochem. Rev. 2019, 18, 1115–1132. [Google Scholar] [CrossRef]
- Mulabagal, V.; Tsay, H. Plant Cell Cultures—An Alternative and Efficient Source for the Production of Biologically Important Secondary Metabolites. Int. J. Appl. Sci. Eng. 2004, 2, 29–48. [Google Scholar]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In Vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Hussain, M.S.; Ansari, S.; Ahmad, I.; Fareed, S.; Rahman, M.A.; Mohd. Saeed Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied. Sci. 2012, 4, 10. [Google Scholar] [CrossRef]
- Yue, W.; Ming, Q.-L.; Lin, B.; Rahman, K.; Zheng, C.-J.; Han, T.; Qin, L.-P. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 2016, 36, 215–232. [Google Scholar] [CrossRef]
- Kieran, P.M.; MacLoughlin, P.F.; Malone, D.M. Plant cell suspension cultures: Some engineering considerations. J. Biotechnol. 1997, 59, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Solís-Ramos, L.Y.; Carballo, L.M.; Valdez-Melara, M. Establishment of cell suspension cultures of two Costa Rican Jatropha species (Euphorbiaceae). Rev. Biol. Trop. 2013, 61, 1095–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, S.; Farkya, S.; Srivastava, A.K.; Bisaria, V.S. Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol. Bioprocess Eng. 2002, 7, 138–149. [Google Scholar] [CrossRef]
- Lian, M.-L.; Chakrabarty, D.; Paek, K.-Y. Effect of plant growth regulators and medium composition on cell growth and saponin production during cell-suspension culture of mountain ginseng (Panax ginseng C. A. mayer). J. Plant Biol. 2002, 45, 201–206. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Rekha, K.; Rajakumar, G.; Lee, T.-J.; Kim, S.-H.; Chung, I.-M. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum. Int. J. Mol. Sci. 2016, 17, 1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trong, T.T.; Truong, D.-H.; Nguyen, H.C.; Tran, D.-T.; Nguyen Thi, H.-T.; Dang, G.D.; Huu, H.N. Biomass accumulation of Panax vietnamensis in cell suspension cultures varies with addition of plant growth regulators and organic additives. Asian Pac. J. Trop. Med. 2017, 10, 907–915. [Google Scholar] [CrossRef]
- Hanus-Fajerska, E.; Czura, A.; Grabski, K.; Tukaj, Z. The effect of conditioned medium obtained from Scenedesmus subspicatus on suspension culture of Silene vulgaris (Caryophyllaceae). Acta Physiol. Plant. 2009, 31, 881–887. [Google Scholar] [CrossRef]
- Kumar, P.P.; Joy, R.W.; Thorpe, T.A. Ethylene and Carbon Dioxide Accumulation, and Growth of Cell Suspension Cultures of Picea glauca (White Spruce). J. Plant Physiol. 1990, 135, 592–596. [Google Scholar] [CrossRef]
- Singh, M.; Chaturvedi, R. Evaluation of nutrient uptake and physical parameters on cell biomass growth and production of spilanthol in suspension cultures of Spilanthes acmella Murr. Bioprocess Biosyst. Eng. 2012, 35, 943–951. [Google Scholar] [CrossRef]
- Jayaraman, S.; Daud, N.H.; Halis, R.; Mohamed, R. Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteristics of the resultant calli. J. For. Res. 2014, 25, 535–540. [Google Scholar] [CrossRef]
- Ali, M.; Abbasi, B.H.; Ahmad, N.; Ali, S.S.; Ali, S.; Ali, G.S. Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L. Bioprocess Biosyst. Eng. 2016, 39, 1945–1954. [Google Scholar] [CrossRef]
- Furuno, T.; Kamiyama, A.; Akashi, T.; Usui, M.; Takahashi, T.; Ayabe, S. Triterpenoid Constituents of Tissue Cultures and Regenerated Organs of Taraxacum officinale. Plant Tissue Cult. Lett. 1993, 10, 275–280. [Google Scholar] [CrossRef]
- Akashi, T.; Furuno, T.; Takahashi, T.; Ayabe, S.-I. Biosynthesis of triterpenoids in cultured cells, and regenerated and wild plant organs of Taraxacum officinale. Phytochemistry 1994, 36, 303–308. [Google Scholar] [CrossRef]
- Post, J.; Eisenreich, W.; Huber, C.; Twyman, R.M.; Prüfer, D.; Schulze Gronover, C. Establishment of an ex vivo laticifer cell suspension culture from Taraxacum brevicorniculatum as a production system for cis-isoprene. J. Mol. Catal. B Enzym. 2014, 103, 85–93. [Google Scholar] [CrossRef]
- Sharma, K.; Zafar, R. Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures. Plant Physiol Biochem. 2016, 103, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Walker John, M. Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 1997; Available online: http://www.palgrave.com/us/series/7651 (accessed on 23 April 2016).
- Díaz, K.; Espinoza, L.; Madrid, A.; Pizarro, L.; Chamy, R. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a Potential Source of Antibacterial Agents. Evid. Based. Complement. Altern. Med. 2018, 2018, 2706417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, E.B.; Curtis, W.R. The effect of inoculum size on the growth of cell and root cultures of Hyoscyamus muticus: Implications for reactor inoculation. Biotechnol. Bioprocess Eng. 1999, 4, 287–293. [Google Scholar] [CrossRef]
- Syono, K.; Furuya, T. Studies on plant tissue cultures I. Relationship between inocula sizes and growth of calluses in liquid culture. Plant Cell Physiol. 1968, 9, 103–114. [Google Scholar]
- Che Saad, N.; Izzatie Mazlan, F.; Abd Karim, K. Factors affecting the establishment and growth of Pogostemon cablin cell suspension cultures. Int. J. Adv. Res. Sci. Eng. Technol. 2016, 3, 2790–2796. [Google Scholar]
- Gorret, N.; bin Rosli, S.K.; Oppenheim, S.F.; Willis, L.B.; Lessard, P.A.; Rha, C.; Sinskey, A.J. Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production. J. Biotechnol. 2004, 108, 253–263. [Google Scholar] [CrossRef]
- Ben Amar, A.; Cobanov, P.; Boonrod, K.; Krczal, G.; Bouzid, S.; Ghorbel, A.; Reustle, G.M. Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: Role of conditioned medium for cell proliferation. Plant Cell Rep. 2007, 26, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.-H.H.; Ono, A.; Miyanaga, K.; Tanji, Y.; Unno, H. A kinetic model for growth of callus derived from Eucommia ulmoides aiming at mass production of a factor enhancing collagen synthesis of animal cells. Math. Comput. Simul. 2001, 56, 463–474. [Google Scholar] [CrossRef]
- Karam, N.S.; Jawad, F.M.; Arikat, N.A.; Shibl, R.A. Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue Organ Cult. 2003, 73, 117–121. [Google Scholar] [CrossRef]
- González-Vega, M.E.; Hernández-Espinosa, M.M.; Hernández-Rodríguez, A. Influencia de la edad del callo en la inducción de suspenciones celulares de cafeto. Agron. Mesoam. 2010, 21, 299–306. [Google Scholar] [CrossRef]
- KiahYann, L.; Jelodar, N.B.; Lai-Keng, C. Investigation on the effect of subculture frequency and inoculum size on the artemisinin content in a cell suspension culture of Artemisia annua L. Aust. J. Crop Sci. 2012, 6, 801–807. [Google Scholar]
- Martinez, M.E.; Jorquera, L.; Poirrier, P.; Díaz, K.; Chamy, R. Effect of the Carbon Source and Plant Growth Regulators (PGRs) in the Induction and Maintenance of an In Vitro Callus Culture of Taraxacum officinale (L) Weber Ex F.H. Wigg. Agronomy 2021, 11, 1181. [Google Scholar] [CrossRef]
- Chan, L.K.; Lim, P.S.; Choo, M.L.; Boey, P.L. Establishment of Cyperus aromaticus cell suspension cultures for the production of Juvenile hormone III. Vitr. Cell. Dev. Biol.—Plant 2010, 46, 8–12. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ghosh, B.; Jha, S. Establishment of forskolin yielding transformed cell suspension cultures of Coleus forskohlii as controlled by different factors. J. Biotechnol. 2000, 76, 73–81. [Google Scholar] [CrossRef]
- Sakano, K.; Matsumoto, M.; Yazaki, Y.; Kiyota, S.; Okihara, K. Inorganic phosphate as a negative conditioning factor in plant cell culture. Plant Sci. 1995, 107, 117–124. [Google Scholar] [CrossRef]
- Santos, R.B.; Abranches, R.; Fischer, R.; Sack, M.; Holland, T. Putting the Spotlight Back on Plant Suspension Cultures. Front. Plant Sci. 2016, 7, 297. [Google Scholar] [CrossRef] [Green Version]
- Rao, B.R.; Kumar, D.V.; Amrutha, R.N.; Jalaja, N.; Vaidyanath, K.; Rao, A.M.; Rao, S.; Polavarapu, R.; Kishor, P.B. Effect of growth regulators, carbon source and cell aggregate size on berberine production from cell cultures of Tinospora cordifolia Miers. Curr. Trends Biotechnol. Pharm. 2008, 2, 269–276. [Google Scholar]
- Haida, Z.; Syahida, A.; Ariff, S.M.; Maziah, M.; Hakiman, M. Factors Affecting Cell Biomass and Flavonoid Production of Ficus deltoidea var. kunstleri in Cell Suspension Culture System. Sci. Rep. 2019, 9, 9533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigra, H.M.; Alvarez, M.A.; Giulietti, A.M. Effect of carbon and nitrogen sources on growth and solasodine production in batch suspension cultures of Solanum eleagnifolium Cav. Plant Cell Tissue Organ Cult. 1990, 21, 55–60. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.-J. Plant Tissue Culture Procedure-Background. In Plant Propagation by Tissue Culture, 3rd ed.; Springer: Dordrecht, The Netherlands, 2008; Volume 1, pp. 1–28. [Google Scholar] [CrossRef]
- Tal, B.; Goldberg, I. Growth and Diosgenin Production by Dioscorea deltoidea Cells in Batch and Continuous Cultures. Planta Med. 1982, 44, 107–110. [Google Scholar] [CrossRef]
- Suan See, K.; Bhatt, A.; Lai Keng, C.; See, K.S.; Bhatt, A.; Keng, C.L. Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae). Rev. Biol. Trop. 2011, 59, 597–606. [Google Scholar]
- Sahraroo, A.; Mirjalili, M.H.; Corchete, P.; Babalar, M.; Fattahi-Moghadam, M.R.; Zarei, A. Enhancement of rosmarinic acid production by Satureja khuzistanica cell suspensions: Effects of phenylalanine and sucrose. SABRAO J. Breed. Genet. 2018, 50, 25–35. [Google Scholar]
- Zhong, J.-J.; Yoshida, T. High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: Effects of sucrose concentration and inoculum size. Enzyme Microb. Technol. 1995, 17, 1073–1079. [Google Scholar] [CrossRef]
- Wang, H.Q.; Yu, J.T.; Zhong, J.J. Significant improvement of taxane production in suspension cultures of Taxus chinensis by sucrose feeding strategy. Process Biochem. 1999, 35, 479–483. [Google Scholar] [CrossRef]
- Hakkim, F.L.; Kalyani, S.; Essa, M.H.; Girija, S.; Song, H. Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. Rev. Int. De Investig. Médica Y Biológica 2011, 2, 1070–1074. [Google Scholar]
- Yang, Y.; He, F.; Yu, L.; Ji, J.; Wang, Y. Flavonoid accumulation in cell suspension cultures of Glycyrrhiza inflata Batal under optimizing conditions. Z Nat. C J Biosci. 2009, 64, 68–72. [Google Scholar] [CrossRef]
- Fazal, H.; Abbasi, B.H.; Ahmad, N.; Ali, M.; Ali, S. Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell Tissue Organ Cult. 2016, 124, 573–581. [Google Scholar] [CrossRef]
- Mishra, M.R.; Srivastava, R.K.; Akhtar, N. Enhanced Alkaloid Production from Cell Culture System of Catharanthus roseus in Combined Effect of Nutrient Salts, Sucrose and Plant Growth Regulators. J. Biotechnol. Biomed. Sci. 2018, 1, 14–34. [Google Scholar] [CrossRef] [Green Version]
- Kristó, T.S.; Szoke, É.; Kéry, Á.; Terdy, P.P.; Selmeczi, L.K.; Simándi, B. Production and characterisation of Taraxacum officinale extracts prepared by supercritical fluid and solvent extractions. Acta Hortic. 2004, 597, 57–61. [Google Scholar] [CrossRef]
- Simándi, B.; Kristo, S.T.; Kéry, Á.; Selmeczi, L.K.; Kmecz, I.; Kemény, S. Supercritical fluid extraction of dandelion leaves. J. Supercrit. Fluids 2002, 23, 135–142. [Google Scholar] [CrossRef]
- Srivastava, P.; Sisodia, V.; Chaturvedi, R. Effect of culture conditions on synthesis of triterpenoids in suspension cultures of Lantana camara L. Bioprocess Biosyst. Eng. 2011, 34, 75–80. [Google Scholar] [CrossRef]
- Flores-Sánchez, I.J.; Ortega-López, J.; Montes-Horcasitas, M.d.C.; Ramos-Valdivia, A.C. Biosynthesis of Sterols and Triterpenes in Cell Suspension Cultures of Uncaria tomentosa. Plant Cell Physiol. 2002, 43, 1502–1509. [Google Scholar] [CrossRef] [Green Version]
- Feria-Romero, I.; Lazo, E.; Ponce-Noyola, T.; Cerda-García-Rojas, C.M.; Ramos-Valdivia, A.C. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa. Biotechnol. Lett. 2005, 27, 839–843. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.; Jang, M.O.; Jin, Y.-W.; Lee, E.-K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef]
- Komaraiah, P.; Naga Amrutha, R.; Kavi Kishor, P.B.L.; Ramakrishna, S.V. Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L. Enzym. Microb. Technol. 2002, 31, 634–639. [Google Scholar] [CrossRef]
- Wilson, G.; Balague, C. Biosynthesis of Anthraquinone by Cells of Galium mollugo L. Grown in a Chemostat with Limiting Sucrose or Phosphate. J. Exp. Bot. 1985, 36, 485–493. [Google Scholar] [CrossRef]
- Kikowska, M.; Budzianowski, J.; Krawczyk, A.; Thiem, B. Accumulation of rosmarinic, chlorogenic and caffeic acids in In Vitro cultures of Eryngium planum L. Acta Physiol. Plant. 2012, 34, 2425–2433. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Yun, J.H.; Hwang, Y.S.; Byun, S.Y.; Kim, D.-I. Production of taxol and related taxanes in Taxus brevifolia cell cultures: Effect of sugar. Biotechnol. Lett. 1995, 17, 101–106. [Google Scholar] [CrossRef]
- Baque, M.A.; Elgirban, A.; Lee, E.J.; Paek, K.Y. Sucrose regulated enhanced induction of anthraquinone, phenolics, flavonoids biosynthesis and activities of antioxidant enzymes in adventitious root suspension cultures of Morinda citrifolia (L.). Acta Physiol. Plant. 2012, 34, 405–415. [Google Scholar] [CrossRef]
- Lee, C.W.; Shuler, M.L. The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol. Bioeng. 2000, 67, 61–71. [Google Scholar] [CrossRef]
- Yokoyama, M.; Inomata, S.; Seto, S.; Yanagi, M. Effects of Sugars on the Glucosylation of Exogenous Hydroquinone by Catharanthus roseus Cells in Suspension Culture. Plant Cell Physiol. 1990, 31, 551–555. [Google Scholar] [CrossRef]
- Sakuta, M.; Takagi, T.; Komamine, A. Effects of sucrose on betacyanin accumulation and growth in suspension cultures of Phytolacca americana. Physiol. Plant. 1987, 71, 455–458. [Google Scholar] [CrossRef]
- Jalil, M.; Annuar, M.S.M.; Tan, B.C.; Khalid, N. Effects of Selected Physicochemical Parameters on Zerumbone Production of Zingiber zerumbet Smith Cell Suspension Culture. Evid. -Based Complement. Altern. Med. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.L.W.d.; Silveira, V.; Steiner, N.; Maraschin, M.; Guerra, M.P. Biochemical and morphological changes during the growth kinetics of Araucaria angustifolia suspension cultures. Braz. Arch. Biol. Technol. 2010, 53, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. In Current Protocols in Immunology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Adhyapak, S.; Dighe, V.V. Investigation of microscopical and physicochemical characteristics of plants with anti-diabetic activity. Int. J. Pharm. Sci. Res. 2014, 5, 882–888. [Google Scholar]
- Said, K.A.M.; Amin, M.A.M. Overview on the Response Surface Methodology (RSM) in Extraction Processes. J. Appl. Sci. Process Eng. 2016, 2, 8–17. [Google Scholar]
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 89.01 | 5 | 17.80 | 56.59 | <0.0001 | Significant |
A-Age | 0.89 | 1 | 0.89 | 2.83 | 0.1166 | |
B-Size | 39.63 | 1 | 39.63 | 125.97 | <0.0001 | |
AB | 0.16 | 1 | 0.16 | 0.52 | 0.4823 | |
A2 | 32.25 | 1 | 32.25 | 102.53 | <0.0001 | |
B2 | 30.36 | 1 | 30.36 | 96.50 | <0.0001 | |
Residual | 4.09 | 13 | 0.31 | |||
Lack of Fit | 2.44 | 2 | 1.22 | 8.17 | 0.0067 | Significant |
Pure Error | 1.65 | 11 | 0.15 | |||
Cor Total * | 93.10 | 18 | ||||
Model Summary | ||||||
Std. Dev. | 0.56 | R-Squared | 0.9561 | |||
Mean | 3.41 | Adj R-Squared | 0.9392 | |||
C.V. % | 16.45 | Pred R-Squared | 0.9044 | |||
PRESS | 8.90 | Adeq Precision | 20.034 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 1.121 × 105 | 5 | 22,411.89 | 15.74 | <0.0001 | Significant |
A-Age | 671.11 | 1 | 671.11 | 0.47 | 0.5044 | |
B-Size | 48,968.04 | 1 | 48,968.04 | 34.39 | <0.0001 | |
AB | 495.38 | 1 | 495.38 | 0.35 | 0.5654 | |
A2 | 44,830.03 | 1 | 44,830.03 | 31.49 | <0.0001 | |
B2 | 27,587.53 | 1 | 27,587.53 | 19.38 | 0.0007 | |
Residual | 18,509.61 | 13 | 1423.82 | |||
Lack of Fit | 3567.40 | 2 | 1783.70 | 1.31 | 0.3080 | Non-significant |
Pure Error | 14,942.21 | 11 | 1358.38 | |||
Cor Total * | 1.306 × 105 | 18 | ||||
Model summary | ||||||
Std. Dev. | 37.73 | R-Squared | 0.9071 | |||
Mean | 117.27 | Adj R-Squared | 0.8037 | |||
C.V. % | 32.18 | Pred R-Squared | 0.7217 | |||
PRESS | 36,331.66 | Adeq Precision | 10.205 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 1133.71 | 5 | 226.74 | 25.39 | <0.0001 | 1133.71 |
A-Age | 45.15 | 1 | 45.15 | 5.06 | 0.0425 | 45.15 |
B-Size | 682.27 | 1 | 682.27 | 76.40 | <0.0001 | 682.27 |
AB | 4.35 | 1 | 4.35 | 0.49 | 0.4975 | 4.35 |
A2 | 238.60 | 1 | 238.60 | 26.72 | 0.0002 | 238.60 |
B2 | 329.44 | 1 | 329.44 | 36.89 | <0.0001 | 329.44 |
Residual | 116.09 | 13 | 8.93 | 116.09 | ||
Lack of Fit | 38.12 | 2 | 19.06 | 2.69 | 0.1120 | 38.12 |
Pure Error | 77.98 | 11 | 7.09 | 77.98 | ||
Cor Total * | 1249.81 | 18 | 1249.81 | |||
Model summary | ||||||
Std. Dev. | 2.99 | R-Squared | 0.9071 | |||
Mean | 86.85 | Adj R-Squared | 0.8714 | |||
C.V. % | 3.44 | Pred R-Squared | 0.7642 | |||
PRESS | 294.77 | Adeq Precision | 13.496 |
Sucrose (% w/v) | Viability (%) | Aggregation Group 2 (6–25 Cells/Cluster) (%) | Differentiation (%) | ||
---|---|---|---|---|---|
1.0 | 87 a | ±3.6 | 59 a | ±4.1 | ND |
2.3 | 91 a | ±2.5 | 52 a | ±2.9 | ND |
3.2 | 87 a | ±2.8 | 41 b | ±3.4 | ND |
5.5 | 79 ba | ±5.1 | 28 c | ±1.9 | ND |
Independent Variables (Factor) | Variable Name | Levels Coded Values | Units | |
---|---|---|---|---|
−1 | +1 | |||
x1 | Age | 2 | 10 | week |
x2 | Size | 0.2 | 8 | % w/v |
Treatments | Independent Variables | |
---|---|---|
x1 Age (wk) | x2 Size (% (w/v)) | |
1 | 10 | 0.2 |
2 | 0.5 | 4.2 |
3 | 6 | 4.2 |
4 | 12 | 4.2 |
5 | 6 | 4.2 |
6 | 6 | 4.2 |
7 | 6 | 8.0 |
8 | 2 | 8.0 |
9 | 10 | 0.2 |
10 | 6 | 8.0 |
11 | 10 | 8.0 |
12 | 6 | 4.2 |
13 | 6 | 4.2 |
14 | 10 | 8.0 |
15 | 12 | 4.2 |
16 | 2 | 8.0 |
17 | 0.5 | 4.2 |
18 | 2 | 0.2 |
19 | 2 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, M.E.; Jorquera, L.; Poirrier, P.; Díaz, K.; Chamy, R. Effect of Inoculum Size and Age, and Sucrose Concentration on Cell Growth to Promote Metabolites Production in Cultured Taraxacum officinale (Weber) Cells. Plants 2023, 12, 1116. https://doi.org/10.3390/plants12051116
Martínez ME, Jorquera L, Poirrier P, Díaz K, Chamy R. Effect of Inoculum Size and Age, and Sucrose Concentration on Cell Growth to Promote Metabolites Production in Cultured Taraxacum officinale (Weber) Cells. Plants. 2023; 12(5):1116. https://doi.org/10.3390/plants12051116
Chicago/Turabian StyleMartínez, María Eugenia, Lorena Jorquera, Paola Poirrier, Katy Díaz, and Rolando Chamy. 2023. "Effect of Inoculum Size and Age, and Sucrose Concentration on Cell Growth to Promote Metabolites Production in Cultured Taraxacum officinale (Weber) Cells" Plants 12, no. 5: 1116. https://doi.org/10.3390/plants12051116
APA StyleMartínez, M. E., Jorquera, L., Poirrier, P., Díaz, K., & Chamy, R. (2023). Effect of Inoculum Size and Age, and Sucrose Concentration on Cell Growth to Promote Metabolites Production in Cultured Taraxacum officinale (Weber) Cells. Plants, 12(5), 1116. https://doi.org/10.3390/plants12051116