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Abstract: Seeds play a critical role in ensuring food security for the earth’s 8 billion people. There is
great biodiversity in plant seed content traits worldwide. Consequently, the development of robust,
rapid, and high-throughput methods is required for seed quality evaluation and acceleration of crop
improvement. There has been considerable progress in the past 20 years in various non-destructive
methods to uncover and understand plant seed phenomics. This review highlights recent advances
in non-destructive seed phenomics techniques, including Fourier Transform near infrared (FT-NIR),
Dispersive-Diode Array (DA-NIR), Single-Kernel (SKNIR), Micro-Electromechanical Systems (MEMS-
NIR) spectroscopy, Hyperspectral Imaging (HSI), and Micro-Computed Tomography Imaging (micro-
CT). The potential applications of NIR spectroscopy are expected to continue to rise as more seed
researchers, breeders, and growers successfully adopt it as a powerful non-destructive method for
seed quality phenomics. It will also discuss the advantages and limitations that need to be solved
for each technique and how each method could help breeders and industry with trait identification,
measurement, classification, and screening or sorting of seed nutritive traits. Finally, this review will
focus on the future outlook for promoting and accelerating crop improvement and sustainability.
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1. Introduction to Seeds, Applications, and Nutrition

A seed is the fertilized mature ovule that contains an embryo to grow a new plant
via germination. Most seeds also contain endosperm, a triploid nutritive tissue rich in
starch, oils, and protein to nourish the surrounding embryo [1]. As seeds are one of the
foundations of human life and nutrition (70% of the human diet), seed quality traits are
fundamentally important and represent a worldwide economic value of over 120 billion
USD [2].

Seeds contain three major food compartments, including endosperm, embryo, and
testa (Figure 1). Seed nutrient quality involves three major macronutrients, carbohydrates,
lipids, and proteins. In addition, food crop seeds are rich in mineral nutrients such as iron
(Fe), zinc (Zn), and magnesium (Mg), as well as vitamins such as vitamins E, B1, B2, and
B3 [1].

Proteins are one of the three essential macronutrients. They are the building blocks
of muscle cells and the skeletal bone system in humans [3]. Proteins are an essential part
of a healthy and nutritious diet and are found in the endosperm of monocots and in the
cotyledons of the dicots seed parts (Figure 1). Plant-based proteins can be obtained from
flax seeds and legumes, including soybeans, common beans, chickpeas, and peas.

Lipids (oils and fats) are one of the essential macromolecules found in the embryo
of seeds (Figure 1). Oils are one of the most important ingredients for our diets, and they
can be obtained from a variety of plants, including olives, coconuts, vegetables, peanuts,
flaxseed, and sesame seeds [1].
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starch for energy is usually obtained from staple food crops such as corn, wheat, and rice. 
Fibers are complex carbohydrates found in the testa and cell walls of the endosperm or 
cotyledon (Figure 1). 

 
Figure 1. Anatomy of seeds, whole spectra modalities across wavelengths, and specific applications. 
NIR: near infrared; UV: ultraviolet; VIS: visible; MW: microwave; μCT: micro-computed tomogra-
phy; HSI: hyperspectral imaging; SKNIRS: single kernel near infrared spectroscopy; OT: overtone; 
NMR: nuclear magnetic resonance; MRI: magnetic resonance imaging. Note: Some whole spectra 
modalities not included in the review are radiowaves and microwaves. 

Plants and seeds also contain mineral nutritional quality traits and support human 
diet and health. Global seed bank awareness and mining are critical to global food security 
and sustainability [4]. Accurate phenotyping of mineral nutrient content and plant and 
seed genetic variation is, therefore, imperative for the sustainability of future food systems 
in the face of the world’s population increases and climate-stressed environments [5,6]. 

Over the past two decades, several studies have shown the diversity of seed quality 
traits, including through seed ionomics, the study of the elemental composition of plants 
and seeds [7]. Jarecki and Migut have researched legume seed quality traits and concluded 
that white yellow lupins were rich in protein copper (Cu), phosphorus (P), magnesium 
(Mg), calcium (Ca), and zinc (Zn), peas were rich in iron (Fe), faba beans were rich in P 
and Cu, and soybeans were rich in protein, fat, potassium (K), P, Mg, Zn, Cu, and Ca [8]. 
In a study with 25 faba bean genotypes, Khazaei and Vandenberg have demonstrated that 
low tannin faba bean genotypes had greater seed Ca, Mg, manganese (Mn), and cadmium 
(Cd) compared with normal tannin genotypes [9]. In a study with flax seeds, it has been 
reported that a serving size of 28 g of flax provided 37% of the daily value (DV) of Cu, 
31% of Mn, 28% of Mg, and 19% of Zn [10]. 

Figure 1. Anatomy of seeds, whole spectra modalities across wavelengths, and specific applications.
NIR: near infrared; UV: ultraviolet; VIS: visible; MW: microwave; µCT: micro-computed tomography;
HSI: hyperspectral imaging; SKNIRS: single kernel near infrared spectroscopy; OT: overtone; NMR:
nuclear magnetic resonance; MRI: magnetic resonance imaging. Note: Some whole spectra modalities
not included in the review are radiowaves and microwaves.

Carbohydrates are essential macronutrients because they are the vital main energy
sources for humans and animals. Starch is a complex storage carbohydrate. Worldwide,
starch for energy is usually obtained from staple food crops such as corn, wheat, and rice.
Fibers are complex carbohydrates found in the testa and cell walls of the endosperm or
cotyledon (Figure 1).

Plants and seeds also contain mineral nutritional quality traits and support human
diet and health. Global seed bank awareness and mining are critical to global food security
and sustainability [4]. Accurate phenotyping of mineral nutrient content and plant and
seed genetic variation is, therefore, imperative for the sustainability of future food systems
in the face of the world’s population increases and climate-stressed environments [5,6].

Over the past two decades, several studies have shown the diversity of seed quality
traits, including through seed ionomics, the study of the elemental composition of plants
and seeds [7]. Jarecki and Migut have researched legume seed quality traits and concluded
that white yellow lupins were rich in protein copper (Cu), phosphorus (P), magnesium
(Mg), calcium (Ca), and zinc (Zn), peas were rich in iron (Fe), faba beans were rich in P and
Cu, and soybeans were rich in protein, fat, potassium (K), P, Mg, Zn, Cu, and Ca [8]. In
a study with 25 faba bean genotypes, Khazaei and Vandenberg have demonstrated that
low tannin faba bean genotypes had greater seed Ca, Mg, manganese (Mn), and cadmium
(Cd) compared with normal tannin genotypes [9]. In a study with flax seeds, it has been
reported that a serving size of 28 g of flax provided 37% of the daily value (DV) of Cu, 31%
of Mn, 28% of Mg, and 19% of Zn [10].

In a pea genetic variation study, it has been reported that a serving size of 100 g of pea
provided 73% of the daily value of Cu, 65% of Mn, 45% of Zn, 43% of P, 39% of Mg, 37% of
Fe, 28% of K, and 8% of Ca [11]. Studies with soybeans [12] and common beans [13] have
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demonstrated significant correlations between Zn and other mineral nutrients. Furthermore,
both studies identified and reported a core set of high nutrient content accessions for
soybeans [12] and common beans [13].

2. Non-Destructive Seed Quality Phenomics Techniques and Platforms

Phenomics, the study of the physical and biochemical characteristics of organisms, in-
cludes the measurement of phenotypic traits, including seed protein, oil, moisture content,
and morphology. Non-destructive phenomics techniques are methods used to study and
measure traits without damaging the seeds or plants. There are several non-destructive phe-
nomics techniques, including magnetic resonance imaging (MRI), fluorescence microscopy,
computed tomography (CT), and spectroscopic techniques such as near infrared (NIR)
spectroscopy. These techniques enable researchers to collect detailed information about the
molecular, biochemical, and structural characteristics of an organism in a non-invasive way.
Non-destructive phenomics techniques can be used to study the growth and development
of crops and their response to climate stress and allow researchers to better understand the
underlying mechanisms that drive biological processes [14].

Future food safety is an increasingly important issue, and seeds play a critical role in
addressing it. Plant biologists need techniques to better utilize the broad diversity of food
crop seeds. Furthermore, recent advances in non-destructive phenotyping allow data col-
lection through rapid and cost-effective methods such as near-infrared (NIR) spectroscopy
(Table 1, Figure 1).

Table 1. Summary of six major non-destructive seed phenomics techniques at a glance. Fourier Trans-
form (FT-NIR), Dispersive-Diode Array (DA-NIR), Single-Kernel (SKNIR), Micro-Electromechanical
Systems (MEMS-NIR), Hyperspectral Imaging (HSI), and Micro-Computed Tomography Imag-
ing (micro-CT).

Platform Instrument Sample Size Time Other Advantages

(a) Fourier Transform
(FT-NIR)
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Table 1. Cont.

Platform Instrument Sample Size Time Other Advantages

(e) Hyperspectral
Imaging (HSI)

Plants 2023, 12, x FOR PEER REVIEW 5 of 13 
 

 

(e) Hyperspectral Im-
aging (HSI) 

 

bulk seeds 6 sec 

-Wavelength range: 930–2500 nm 
-Benchtop device 
-Very high-cost instrument 
-Calibration is scanning an object with 
known properties (reference tile) 
-At-line and on-line measurement 

(f) Micro-Computed 
Tomography Imaging 

(micro-CT) 

 

bulk seeds up to 14 h 

-Utilizes x-rays 
-Benchtop device; Time: long 
-Very high-cost instrument 
-Calibration is scanning an object with 
known density 
-At-line measurement 

Advances in optical sensing technologies such as hyperspectral imaging (HSI), X-ray 
technologies, and micro-computed tomography (micro-CT) have become valuable tools 
in seed phenotyping (Table 1, Figure 1). Examples of six major non-destructive seed phe-
nomics methods are listed in Table 1. 

Various detector array sensors have been used in NIR instruments. Silicon (Si) based 
detectors such as charged coupled devices (CCD) and photometric diode arrays (PDA) 
are commonly used in DA-NIR and some portable NIR spectrometers. Indium gallium 
arsenide (InGaAs) detectors are used in FT-NIR, SKNIR, and HIS. While InGaAs detectors 
cover a wide wavelength range (~905–1684 nm), Si detector technologies have a more lim-
ited wavelength range (~380–1100 nm) [15,16]. 

NIR spectroscopy has gathered vast attention as an alternative to wet chemistry 
methods in various fields for food, oil, and agriculture applications. There are various NIR 
spectroscopy instruments suitable for measuring products in various forms (e.g., solid 
powders, whole seeds, or single seeds). Overall, NIRS instruments have significant ad-
vantages, including speed, user-friendliness, and non-destructive nature. However, they 
require prediction or calibration model development before seed measurements can be 
performed (Table 1) [17]. 

2.1. Fourier Transform Near Infrared (FT-NIR) Spectroscopy (Bulk Based) 
The Fourier transform near infrared (FT-NIR) spectrometer generates spectra via a 

Fourier transform algorithm from an interferometer system. It can be used in different 
modes of transmissive and reflective measurement [18] (Table 1. 

FT-NIR spectroscopy has become a widely used tool; however, like any other tech-
nique, FT-NIR spectroscopy has advantages and limitations. Some of the key advantages 
of FT-NIR spectroscopy include high wavelength resolution, speed, and its non-invasive 
nature. Challenges in using FT-NIR spectroscopy are its cost and complexity (Table 1). 

bulk seeds 6 s

-Wavelength range: 930–2500 nm
-Benchtop device
-Very high-cost instrument
-Calibration is scanning an object
with known properties
(reference tile)
-At-line and on-line
measurement

(f) Micro-Computed
Tomography Imaging

(micro-CT)

Plants 2023, 12, x FOR PEER REVIEW 5 of 13 
 

 

(e) Hyperspectral Im-
aging (HSI) 

 

bulk seeds 6 sec 

-Wavelength range: 930–2500 nm 
-Benchtop device 
-Very high-cost instrument 
-Calibration is scanning an object with 
known properties (reference tile) 
-At-line and on-line measurement 

(f) Micro-Computed 
Tomography Imaging 

(micro-CT) 

 

bulk seeds up to 14 h 

-Utilizes x-rays 
-Benchtop device; Time: long 
-Very high-cost instrument 
-Calibration is scanning an object with 
known density 
-At-line measurement 

Advances in optical sensing technologies such as hyperspectral imaging (HSI), X-ray 
technologies, and micro-computed tomography (micro-CT) have become valuable tools 
in seed phenotyping (Table 1, Figure 1). Examples of six major non-destructive seed phe-
nomics methods are listed in Table 1. 

Various detector array sensors have been used in NIR instruments. Silicon (Si) based 
detectors such as charged coupled devices (CCD) and photometric diode arrays (PDA) 
are commonly used in DA-NIR and some portable NIR spectrometers. Indium gallium 
arsenide (InGaAs) detectors are used in FT-NIR, SKNIR, and HIS. While InGaAs detectors 
cover a wide wavelength range (~905–1684 nm), Si detector technologies have a more lim-
ited wavelength range (~380–1100 nm) [15,16]. 

NIR spectroscopy has gathered vast attention as an alternative to wet chemistry 
methods in various fields for food, oil, and agriculture applications. There are various NIR 
spectroscopy instruments suitable for measuring products in various forms (e.g., solid 
powders, whole seeds, or single seeds). Overall, NIRS instruments have significant ad-
vantages, including speed, user-friendliness, and non-destructive nature. However, they 
require prediction or calibration model development before seed measurements can be 
performed (Table 1) [17]. 

2.1. Fourier Transform Near Infrared (FT-NIR) Spectroscopy (Bulk Based) 
The Fourier transform near infrared (FT-NIR) spectrometer generates spectra via a 

Fourier transform algorithm from an interferometer system. It can be used in different 
modes of transmissive and reflective measurement [18] (Table 1. 

FT-NIR spectroscopy has become a widely used tool; however, like any other tech-
nique, FT-NIR spectroscopy has advantages and limitations. Some of the key advantages 
of FT-NIR spectroscopy include high wavelength resolution, speed, and its non-invasive 
nature. Challenges in using FT-NIR spectroscopy are its cost and complexity (Table 1). 

bulk seeds up to
14 h

-Utilizes X-rays
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-Very high-cost instrument
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with known density
-At-line measurement

Advances in optical sensing technologies such as hyperspectral imaging (HSI), X-ray
technologies, and micro-computed tomography (micro-CT) have become valuable tools
in seed phenotyping (Table 1, Figure 1). Examples of six major non-destructive seed
phenomics methods are listed in Table 1.

Various detector array sensors have been used in NIR instruments. Silicon (Si) based
detectors such as charged coupled devices (CCD) and photometric diode arrays (PDA)
are commonly used in DA-NIR and some portable NIR spectrometers. Indium gallium
arsenide (InGaAs) detectors are used in FT-NIR, SKNIR, and HIS. While InGaAs detectors
cover a wide wavelength range (~905–1684 nm), Si detector technologies have a more
limited wavelength range (~380–1100 nm) [15,16].

NIR spectroscopy has gathered vast attention as an alternative to wet chemistry
methods in various fields for food, oil, and agriculture applications. There are various
NIR spectroscopy instruments suitable for measuring products in various forms (e.g.,
solid powders, whole seeds, or single seeds). Overall, NIRS instruments have significant
advantages, including speed, user-friendliness, and non-destructive nature. However, they
require prediction or calibration model development before seed measurements can be
performed (Table 1) [17].

2.1. Fourier Transform Near Infrared (FT-NIR) Spectroscopy (Bulk Based)

The Fourier transform near infrared (FT-NIR) spectrometer generates spectra via a
Fourier transform algorithm from an interferometer system. It can be used in different
modes of transmissive and reflective measurement [18] (Table 1.

FT-NIR spectroscopy has become a widely used tool; however, like any other technique,
FT-NIR spectroscopy has advantages and limitations. Some of the key advantages of FT-
NIR spectroscopy include high wavelength resolution, speed, and its non-invasive nature.
Challenges in using FT-NIR spectroscopy are its cost and complexity (Table 1).

FT-NIR spectroscopy has been used to determine composition traits in food crops
globally [19]. In a pea study [20], FT-NIR technology was used for protein prediction of
whole seeds. In a study screening 840 pea samples, protein content was predicted success-
fully (R2 = 0.72). In a study with 101 maize samples from five different countries, FT-NIR
spectroscopy separated their geographical origins with 98% accuracy in intact seeds [21]. A
study with 152 rice varieties [22], reported that seed amylose content (R2 = 0.88) and fat
content (R2 = 0.76) were successfully predicted by FT-NIR spectroscopy. Additionally, both
near infrared (NIR) and mid infrared (MIR) spectroscopy were used for oilseed quantifica-
tion analysis [23]. Wheat kernels and other grains were studied for seed morphology using
FT-IR spectroscopy and microscopy, as reviewed by Wetzel and Brewer [24].
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In a study with 20 sorghum hybrids [23], FT-NIR spectroscopy successfully predicted
tannins and cellulose in both flours and whole seeds (R2 = 0.88). Higher prediction accuracy
was reported with flours compared to non-destructed whole sorghum grains [25]. In studies
with maize seeds, FT-NIR spectroscopy successfully predicted storage quality parameters
such as moisture content (R2 = 0.96) and seed hardness (R2 = 0.95) [26], as well as chemical
characteristics such as seed protein, fat, ash, and carbohydrates [27].

2.2. Dispersive Diode Array NIR (DA-NIR) Spectroscopy (Bulk Based)

Dispersive diode array NIR (DA-NIR) usually includes a dispersive grating element
and a 256-diode array that collects wavelength intensities [28]. DA-NIR spectroscopy has
become a widely used tool, although, like any other technique, DA-NIR spectroscopy has
advantages and limitations. Some key advantages of DA-NIR spectroscopy include speed,
robustness, and non-invasive nature. One challenge to the use of DA-NIR spectroscopy is
low resolution (Table 1).

Seed quality traits such as protein, oil, moisture, and starch can absorb NIR light.
Therefore, DA-NIR instruments can quantify seed parameter concentrations simultaneously
via their unique fingerprint spectra outcome (Figure 1). DA-NIR spectroscopy instruments
are more often used in on-line and at-line analysis (Table 1). In a study with soybean seeds,
DA-NIR spectroscopy was used to accurately classify healthy and damaged seeds with
94% accuracy [29]. In a study with twenty-five hundred canola samples [30], DA-NIR
spectroscopy successfully predicted seed moisture (R2 = 0.97) and oil content (R2 = 0.84).

2.3. Single Kernel NIR (SKNIR) Spectroscopy (Single-Seed Based)

Recently, substantial progress has been made in single-kernel NIR (SKNIR) spec-
troscopy systems. SKNIR spectroscopy is not only a non-destructive and non-invasive
technique, but it also enables single-seed prediction of chemical quality traits (Figure 2,
Table 1).

While SKNIR spectroscopy is now widely used, it has advantages and limitations.
Some of the key advantages of SKNIR spectroscopy include low cost, high speed, and its
non-invasive nature. One challenge to SKNIR spectroscopy is its low sensitivity (Table 1).

SKNIR spectroscopy has been extensively used to determine composition traits, es-
pecially in the United States. Delwiche demonstrated the viability of protein predictions
in single wheat seeds [31]. The Armstrong laboratory developed and tested SKNIR spec-
troscopy that collects spectra from single seeds while they are falling inside a glass tube [24].
More recent improvements have allowed InGaAs LED detectors to be used in faster, but
more costly, SKNIRS systems [32]. Similar SKNIR spectroscopy instruments were suc-
cessfully calibrated to quantify protein, seed weight, oil, moisture, and starch content in
maize [33], common beans [34], soybeans [35], sorghum [36], and garden peas [17]. SKNIR
spectroscopy is an indirect secondary method that requires calibration model develop-
ment to relate scanned data and reference data to predict unknown seed samples (Table 1,
Figure 2).

In a study with 200 varieties of wheat seeds [32], SKNIR spectroscopy successfully
predicted protein concentrations based on single seeds and successfully sorted seeds for
protein content [37]. In a study with single sorghum kernels [38], SKNIR spectroscopy was
reported as a suitable technique for measuring the grain attributes of moisture content
(R2 = 0.98) and kernel weight (R2 = 0.99), but not seed hardness. In studies with wheat
and millet, Dowell et al. [39] successfully demonstrated the use of an automated SKNIR
spectroscopy system and effectively sorted seeds for protein, hardness, and waxiness.
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Figure 2. Overall calibration example for NIR Spectroscopy. After the completion of calibration
and validation, calibration can be used to predict unknown seed samples for traits such as protein
content. yPREDICT: prediction; B0: the intercept from the model; bn: beta coefficients; Xn: spectra of
future seeds; n: data point number; RMSEC: root mean square error of calibration; RMSEP: root mean
square error of prediction; SNV: standard normal variate; MSC: multiplicative scatter correction; PCA:
principal component analysis (see Section 2.3 for more details).

Figure 2 shows an example of calibration development for NIR spectroscopy instru-
ments [10,33]. There are several calibration techniques for NIR instruments, including
partial least squares (PLS) regression and multiple linear regression (MLR), among oth-
ers [15]. A typical calibration development consists of six steps, which are described in
Figure 2. The first step is to collect 50 to 100 varieties of seed samples. The second step is
to scan seed samples with the NIR spectrometer and collect raw spectra data. The third
step is to carry out a wet chemistry laboratory analysis for reference data. The fourth step
is to pre-process the NIR spectra, including techniques such as standard normal variate
(SNV). The fifth step is to develop a calibration model using PLS regression [40]. The sixth
step is to obtain an equation to use for future unknown sample predictions of that specific
trait [10,15,40].
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y was defined as:
y = B0 + Σ bn × Xn

where y is the prediction, B0 is the intercept from the model, bn is the regression coefficient,
Xn is the predictor, and n is the sample number [40].

2.4. Micro Electromechanical Systems NIR (MEMS-NIR) Spectroscopy (Bulk Based)

Micro electromechanical systems NIR (MEMS-NIR) spectrometers are hand-held NIR
analyzers that are used in the verification of material identity and quantification [16,41].
Some of the main advantages of MEMS-NIR spectroscopy include the ability to screen
food and pharmaceuticals extremely rapidly and from anywhere (on-site measurements,
Table 1). Furthermore, MEMS-NIR analyzers have the potential to be integrated into
cellular phones and smartphone applications. One of the main disadvantages of MEMS-
NIR spectroscopy is its limited NIR wavelength ranges (Table 1) [42]. Furthermore, Yan
et al. [43] evaluated hand-held MEMS-NIR spectroscopy and reported some challenges that
resulted in unrealistic promises due to the difficulty for non-experts to use the technology
and interpret the data.

MEMS-NIR spectroscopy has been used in a limited number of studies to determine
composition traits in plants and seeds. In a study with millet seed quality detection [44],
hand-held NIR spectroscopy with a smartphone connection accurately predicted seed fat
content and quality. However, in another review of miniaturization versus performance,
Bec et al. [45] recommended comprehensive laboratory validation studies to adapt hand-
held NIR spectroscopy technology. In a study with 110 single peanut kernels (R2 = 0.88) [46],
a portable NIR spectroscopy predicted essential amino acids and a few non-essential amino
acids with good performance. More recently, it has been reported that a newer technology
with a 360◦ integrating sphere (GrainSense technology) could be used for handheld NIR
devices for rapid measurement of grain protein, moisture, and nitrogen levels [47].

2.5. Hyperspectral Imaging (HSI) (Bulk Based)

Hyperspectral imaging (HSI) is an emerging non-destructive phenotyping technique
that uses cameras to obtain images in multiple wavelengths (Table 1) [48]. This combination
produces spectral data over spatial dimensions of imaging that can help to create seed
quality content and variability maps [49]. More recently, the HSI method has been used
in the determination of the chemical composition of grains [50] as well as the protein
content of peanuts [51]. Moreover, HSI also has other application areas, including cultivar
identification [52], crop disease identification [53], and protein detection [54]. One challenge
to HSI is its very high cost and complexity (Table 1).

HSI NIR technology has been recently used for the determination of seed composi-
tional traits. In a study with eight chickpea varieties [55], HSI-NIR spectroscopy accurately
predicted single-seed protein content (R2 = 0.95) and was recommended for breeding
studies of high-protein chickpeas. In a study with 1491 soybean samples [56], HSI-NIR
spectroscopy was used to predict protein content in both seed (R2 = 0.90) and powder
(R2 = 0.93) forms with high accuracy.

In a study with 35 barley varieties [57], HSI-NIR spectroscopy was able to identify
barley varieties with 98% accuracy and was recommended for non-destructive seed quality
and safety evaluation. In a study with 221 rice accessions, Barnaby et al. [58] concluded
that HSI-NIR spectroscopy can be used for non-destructive phenotyping of rice grain
chalk determination.

In a study with 100 seeds of soybean [59], HSI-NIR spectroscopy was used to suc-
cessfully estimate oleic acid and linoleic acid with 93% accuracy in single seeds. It was
further indicated that HSI-NIR spectroscopy has good potential for high-oleic acid soybean
seed classification.

In a study with cucumber seeds [60], HSI-NIR spectroscopy accurately predicted mois-
ture content at the single seed level (R2 = 0.92). Another study with 17 corn varieties [61]
reported 90% accuracy in variety classification.
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2.6. Micro Computed Tomography (Micro-CT) (Bulk or Single Seed Based)

Micro-computed tomography (micro-CT) is a high-energy radiation technique that
emits X-rays to a seed sample and produces a gray image of the density of the inside seed
(Table 1) [35]. Its mechanism is based on scanning rotating seed samples in 2D slices and
then constructing 3D models to accurately reveal seed anatomical and morphological fea-
tures, including density (R2 = 0.92), volume (R2 = 0.92), area (R2 = 0.92), length (R2 = 0.92),
and width (R2 = 0.92) [35].

Micro-CT has become a widely used tool; however, like any other technique, micro-CT
has its advantages and limitations. Some of the key advantages of micro-CT include high
resolution and a non-invasive nature. One challenge to micro-CT is the very high cost and
scanning times (Table 1).

Micro-CT has been used for the determination of seed composition traits worldwide. In
a study with soybeans, X-ray micro-CT successfully differentiated two contrasting cultivars
and measured their density and physical properties, as shown in Figure 3. Furthermore,
it has been used as a volume calculator for maize seeds [30] as well as to determine the
kernel hardness of maize seeds [62].

Plants 2023, 12, x FOR PEER REVIEW 10 of 13 
 

 

cultivars and measured their density and physical properties, as shown in Figure 3. Fur-
thermore, it has been used as a volume calculator for maize seeds [30] as well as to deter-
mine the kernel hardness of maize seeds [62]. 

 
Figure 3. Sample images of the seeds of two contrasting soybean cultivars (A,B) after scanning with 
X-ray micro-computed tomography (micro-CT). 

In a study with six corn varieties [63], micro-CT successfully detected crack charac-
teristics and breakage rate (R2 = 0.99) for mechanical harvesting purposes. In a study with 
four quinoa genotypes [64], micro-CT scanning accurately determined embryo volume 
from bulk seeds and seed density from single seeds. 

In a study with six corn varieties [65], micro-CT accurately determined specific sur-
face area (R2 = 0.93), seed volume (R2 = 0.58), and seed density (R2 = 0.93). It was further 
reported that the breakage rate is correlated with seed density in maize [65]. 

3. Conclusions and Future Outlook 
Accurately quantifying seed functional and nutritional traits is paramount for plant 

breeding programs and global human nutrition sustainability [66–68]. Recent advances in 
non-destructive seed quality phenotyping are presented and discussed in this review. 
Among the techniques covered, SKNIR spectroscopy in seed content prediction is a rap-
idly maturing technology with great future potential. Its usefulness has been proven sig-
nificant due to many benefits, including speed, accuracy, durability, and user-friendly op-
eration. 

In the coming decade, emphasis should be placed on more state-of-the-art and im-
proved methodologies to develop more sensitive and less costly spectrometers together 
with more capable software to carry out prediction models and more robust algorithms 
[10,14,15,21]. 

To conclude, achieving more powerful and cost-effective seed quality phenomics is 
a critically important target for future food security and food crop breeding efforts. This 
article provides a review of non-destructive phenotyping methods and applications for 
seed biology and technology in food crop plants. 

Figure 3. Sample images of the seeds of two contrasting soybean cultivars (A,B) after scanning with
X-ray micro-computed tomography (micro-CT).

In a study with six corn varieties [63], micro-CT successfully detected crack character-
istics and breakage rate (R2 = 0.99) for mechanical harvesting purposes. In a study with
four quinoa genotypes [64], micro-CT scanning accurately determined embryo volume
from bulk seeds and seed density from single seeds.

In a study with six corn varieties [65], micro-CT accurately determined specific surface
area (R2 = 0.93), seed volume (R2 = 0.58), and seed density (R2 = 0.93). It was further
reported that the breakage rate is correlated with seed density in maize [65].

3. Conclusions and Future Outlook

Accurately quantifying seed functional and nutritional traits is paramount for plant
breeding programs and global human nutrition sustainability [66–68]. Recent advances
in non-destructive seed quality phenotyping are presented and discussed in this review.
Among the techniques covered, SKNIR spectroscopy in seed content prediction is a rapidly
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maturing technology with great future potential. Its usefulness has been proven significant
due to many benefits, including speed, accuracy, durability, and user-friendly operation.

In the coming decade, emphasis should be placed on more state-of-the-art and
improved methodologies to develop more sensitive and less costly spectrometers to-
gether with more capable software to carry out prediction models and more robust al-
gorithms [10,14,15,21].

To conclude, achieving more powerful and cost-effective seed quality phenomics is
a critically important target for future food security and food crop breeding efforts. This
article provides a review of non-destructive phenotyping methods and applications for
seed biology and technology in food crop plants.
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