Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado (Persea americana L.) Seeds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Changing Solvent and Techniques on Process Efficiency
2.2. Presence of Phytochemicals in AS Samples
2.3. Content of Total Phenols, Proanthocyanidins, and Total Proteins in AS Samples
2.4. Content of Certain Phenolic Compounds in AS Samples
2.5. Enzyme Activities of AS Samples
2.6. Antioxidant Activity of AS Samples
2.7. Antimicrobial Activity of AS Samples
3. Materials and Methods
3.1. Chemicals, Reagents, and Microorganisms
3.2. Plant Material and Preparation of Samples
3.3. Process Efficiency Evaluation
3.4. Qualitative Determination of Phytochemicals
3.5. Total Phenolic Content (TPC) Determination
3.6. Total Proanthocyanidins Content (PAC) Determination
3.7. Total Protein Content (PC) Determination
3.8. Identification and Quantification of the Phenolic Compounds
3.9. Determination of Enzymatic Activity
3.10. Determination of Antioxidant Activity
3.11. Determination of Antimicrobial Activity
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Major Tropical Fruits: Market Review 2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; p. 22. [Google Scholar]
- Domínguez, M.P.; Araus, K.; Bonert, P.; Sánchez, F.; San Miguel, G.; Toledo, M. The Avocado and Its Waste: An Approach of Fuel Potential/Application. In Environment, Energy and Climate Change II: Energies from New Resources and the Climate Change; The Handbook of Environmental Chemistry; Lefebvre, G., Jiménez, E., Cabañas, B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 199–223. ISBN 978-3-319-17100-5. [Google Scholar]
- Nwaoguikpe, R.; Braide, W.; Ujowundu, C. Biochemical Composition and Antimicrobial Activities of Seed Extracts of Avocado (Persea Americana). J. Microbiol. Antimicrob. 2011, 3, 184–190. [Google Scholar] [CrossRef]
- Leite, J.J.G.; Brito, É.H.S.; Cordeiro, R.A.; Brilhante, R.S.N.; Sidrim, J.J.C.; Bertini, L.M.; de Morais, S.M.; Rocha, M.F.G. Chemical Composition, Toxicity and Larvicidal and Antifungal Activities of Persea Americana (Avocado) Seed Extracts. Rev. Da Soc. Bras. De Med. Trop. 2009, 42, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2021, 37, 619–655. [Google Scholar] [CrossRef]
- Imafidon, K.; Fabian, A. Effects of Aqueous Seed Extract of Persea Americana Mill. (Avocado) on Blood Pressure and Lipid Profile in Hypertensive Rats. Adv. Biol. Res. 2010, 4, 116–121. [Google Scholar]
- Alarcon-Aguilara, F.J.; Roman-Ramos, R.; Perez-Gutierrez, S.; Aguilar-Contreras, A.; Contreras-Weber, C.C.; Flores-Saenz, J.L. Study of the Anti-Hyperglycemic Effect of Plants Used as Antidiabetics. J. Ethnopharmacol. 1998, 61, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Ezejiofor, A.N.; Okorie, A.; Orisakwe, O.E. Hypoglycaemic and Tissue-Protective Effects of the Aqueous Extract of Persea Americana Seeds on Alloxan-Induced Albino Rats. Malays. J. Med. Sci. 2013, 20, 31–39. [Google Scholar] [PubMed]
- Oboh, G.; Isaac, A.T.; Akinyemi, A.J.; Ajani, R.A. Inhibition of Key Enzymes Linked to Type 2 Diabetes and Sodium Nitroprusside Induced Lipid Peroxidation in Rats’ Pancreas by Phenolic Extracts of Avocado Pear Leaves and Fruit. Int. J. Biomed. Sci. 2014, 10, 208–216. [Google Scholar]
- Oboh, G.; Odubanjo, V.O.; Bello, F.; Ademosun, A.O.; Oyeleye, S.I.; Nwanna, E.E.; Ademiluyi, A.O. Aqueous Extracts of Avocado Pear (Persea Americana Mill.) Leaves and Seeds Exhibit Anti-Cholinesterases and Antioxidant Activities in Vitro. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 131–140. [Google Scholar] [CrossRef]
- Dabas, D.; Elias, R.J.; Ziegler, G.R.; Lambert, J.D. In Vitro Antioxidant and Cancer Inhibitory Activity of a Colored Avocado Seed Extract. Int. J. Food Sci. 2019, 2019, e6509421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla-Porras, A.R.; Salazar-Ospina, A.; Jimenez-Del-Rio, M.; Pereañez-Jimenez, A.; Velez-Pardo, C. Pro-Apoptotic Effect of Persea Americana Var. Hass (Avocado) on Jurkat Lymphoblastic Leukemia Cells. Pharm. Biol. 2014, 52, 458–465. [Google Scholar] [CrossRef]
- Ding, H.; Han, C.; Guo, D.; Chin, Y.-W.; Ding, Y.; Kinghorn, A.D.; D’Ambrosio, S.M. Selective Induction of Apoptosis of Human Oral Cancer Cell Lines by Avocado Extracts via a ROS-Mediated Mechanism. Nutr. Cancer 2009, 61, 348–356. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea Americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaw, K.-Y.; Parat, M.-O.; Shaw, P.N.; Falconer, J.R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef] [PubMed]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; de Alencar, S.M. Exploration of Avocado By-Products as Natural Sources of Bioactive Compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef] [Green Version]
- Hefzalrahman, T.; Morsi, M.K.S.; Morsy, N.F.S.; Hammad, K.S.M. Application of Enzyme and Ultrasound Assisted Extraction of Polyphenols from Avocado (Persea Americana Mill.) Peel as Natural Antioxidants. Acta Sci. Pol. Technol. Aliment. 2022, 21, 129–138. [Google Scholar] [CrossRef]
- Costagli, G.; Betti, M. Avocado Oil Extraction Processes: Method for Cold-Pressed High-Quality Edible Oil Production versus Traditional Production. J. Agric. Eng. 2015, 46, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea Americana Mill.) Seeds Using Response Surface Methodology. J. Anal. Methods Chem. 2020, 2020, e7541927. [Google Scholar] [CrossRef] [PubMed]
- Paramos, P.; Corazza, M.L.; Matos, H.A. Studies on Extraction from Avocado’s Waste Biomass to Generate Process Design Alternatives of Valuable Products. Bulg. Chem. Commun. 2019, 51, 47–51. [Google Scholar] [CrossRef]
- Páramos, P.R.S.; Granjo, J.F.O.; Corazza, M.L.; Matos, H.A. Extraction of High Value Products from Avocado Waste Biomass. J. Supercrit. Fluids 2020, 165, 104988. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Moreira, S.A.; Castro, L.M.G.; Pintado, M.; Saraiva, J.A. Emerging Technologies to Extract High Added Value Compounds from Fruit Residues: Sub/Supercritical, Ultrasound-, and Enzyme-Assisted Extractions. Food Rev. Int. 2018, 34, 581–612. [Google Scholar] [CrossRef]
- Kupnik, K.; Leitgeb, M.; Primožič, M.; Postružnik, V.; Kotnik, P.; Kučuk, N.; Knez, Ž.; Marevci, M.K. Supercritical Fluid and Conventional Extractions of High Value-Added Compounds from Pomegranate Peels Waste: Production, Quantification and Antimicrobial Activity of Bioactive Constituents. Plants 2022, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.X.; Chong, G.H.; Hamzah, H.; Ghazali, H.M. Comparison of Subcritical CO2 and Ultrasound-Assisted Aqueous Methods with the Conventional Solvent Method in the Extraction of Avocado Oil. J. Supercrit. Fluids 2018, 135, 45–51. [Google Scholar] [CrossRef]
- Restrepo-Serna, D.L.; Solarte-Toro, J.C.; Cardona-Alzate, C.A. A Biorefinery Approach for an Integral Valorisation of Avocado Peel and Seeds Through Supercritical Fluids. Waste Biomass Valorization 2022, 13, 3973–3988. [Google Scholar] [CrossRef]
- Wang, M.; Yu, P.; Chittiboyina, A.G.; Chen, D.; Zhao, J.; Avula, B.; Wang, Y.-H.; Khan, I.A. Characterization, Quantification and Quality Assessment of Avocado (Persea Americana Mill.) Oils. Molecules 2020, 25, 1453. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Kim, J.; Noh, M.; Choi, E.; Yoo, K.-P. Effect of Functional Groups on the Solubilities of Coumarin Derivatives in Supercritical Carbon Dioxide. Chromatographia 1998, 47, 93–97. [Google Scholar] [CrossRef]
- Akay, S.; Kayan, B.; Jouyban, A.; Martínez, F.; Acree, W.E. Solubility of Coumarin in (Ethanol + Water) Mixtures: Determination, Correlation, Thermodynamics and Preferential Solvation. J. Mol. Liq. 2021, 339, 116761. [Google Scholar] [CrossRef]
- Idris, S.; Ndukwe, G.; Gimba, C. Preliminary Phytochemical Screening and Antimicrobial Activity of Seed Extracts of Persea Americana (Avocado Pear). Bayero J. Pure Appl. Sci. 2009, 2, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, G.; Sundar, R. Biogenic One-Step Synthesis of Silver Nanoparticles (AgNPs) Using an Aqueous Extract of Persea Americana Seed: Characterization, Phytochemical Screening, Antibacterial, Antifungal and Antioxidant Activities. Inorg. Chem. Commun. 2022, 143, 109817. [Google Scholar] [CrossRef]
- Angajala, G.; Aruna, V.; Subashini, R.; Das, G.; Rajajeyaganthan, R. Phytochemical Screening and Pharmacological Examination of Persia Americana Mill (Avocado) Crude Seed Extracts. Int. J. Recent Technol. Eng. 2019, 8, 500–504. [Google Scholar] [CrossRef]
- Bonilla-Loaiza, A.M.; Váquiro-Herrera, H.A.; Solanilla-Duque, J.F. Physicochemical and Bioactive Properties of Avocado (Persea Americana Mill. Cv. Lorena). Int. J. Food Eng. 2022, 18, 303–315. [Google Scholar] [CrossRef]
- Rivai, H.; Putri, Y.; Rusdi, R. Qualitative and Quantitative Analysis of the Chemical Content of Hexane, Acetone, Ethanol and Water Extract from Avocado Seeds (Persea Americana Mill.). Sch. Int. J. Tradit. Complement. Med. 2019, 2, 25–31. [Google Scholar] [CrossRef]
- Flores, M.; Ortiz-Viedma, J.; Curaqueo, A.; Rodriguez, A.; Dovale-Rosabal, G.; Magana, F.; Vega, C.; Toro, M.; Lopez, L.; Ferreyra, R.; et al. Preliminary Studies of Chemical and Physical Properties of Two Varieties of Avocado Seeds Grown in Chile. J. Food Qual. 2019, 2019, 63750. [Google Scholar] [CrossRef]
- Monzón, L.; Becerra, G.; Aguirre, E.; Rodríguez, G.; Villanueva, E.; Monzón, L.; Becerra, G.; Aguirre, E.; Rodríguez, G.; Villanueva, E. Ultrasound-Assisted Extraction of Polyphenols from Avocado Residues: Modeling and Optimization Using Response Surface Methodology and Artificial Neural Networks. Sci. Agropecu. 2021, 12, 33–40. [Google Scholar] [CrossRef]
- Segovia, F.J.; Corral-Pérez, J.J.; Almajano, M.P. Avocado Seed: Modeling Extraction of Bioactive Compounds. Ind. Crop. Prod. 2016, 85, 213–220. [Google Scholar] [CrossRef]
- Soong, Y.-Y.; Barlow, P.J. Antioxidant Activity and Phenolic Content of Selected Fruit Seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Noorul, H.; Mujahid, M.; Badruddeen; Vartika, S.; Nesar, A.; Zafar, K.; Zohrameena, S. Physico-Phytochemical Analysis & Estimation of Total Phenolic, Flavonoids and Proanthocyanidin Content of Persea Americana (Avocado) Seed Extracts. World J. Pharm. Sci. 2017, 5, 70–77. [Google Scholar]
- Hellström, J.K.; Törrönen, A.R.; Mattila, P.H. Proanthocyanidins in Common Food Products of Plant Origin. J. Agric. Food Chem. 2009, 57, 7899–7906. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A Comprehensive Review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
- Ferreira da Vinha, A.; Moreira, J.; Barreira, S. Physicochemical Parameters, Phytochemical Composition and Antioxidant Activity of the Algarvian Avocado (Persea Americana Mill.). J. Agric. Sci. 2013, 5, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Olaeta, J.; Schwartz, M.; Undurraga, P.; Contreras, S.; Contreras, Y. Use of Hass Avocado (Persea Americana Mill.) Seed as a Processed Product. In Proceedings of the VI World Avocado Congress, Viña Del Mar, Chile, 12–19 November 2007. [Google Scholar]
- Bahru, T.B.; Tadele, Z.H.; Ajebe, E.G. A Review on Avocado Seed: Functionality, Composition, Antioxidant and Antimicrobial Properties. Chem. Sci. Int. J. 2019, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Čolnik, M.; Primožič, M.; Knez, Ž.; Leitgeb, M. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts. Front. Bioeng. Biotechnol. 2016, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, S.; Ismail, F.; Abdelatif, S.; El-Mohsen, N.; Helmy, S. Bioactive Compounds and Antioxidant Activities of Avocado Peels and Seeds. Pak. J. Biol. Sci. 2020, 23, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Characterization of Phenolic and Other Polar Compounds in the Seed and Seed Coat of Avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Al-Juhaimi, F.; Uslu, N.; Musa Özcan, M.; Babiker, E.E.; Ghafoor, K.; Mohamed Ahmed, I.; Alsawmahi, O.N. Effects of Drying Process on Oil Quality, the Bioactive Properties and Phytochemical Characteristics of Avocado (Fuerte) Fruits Harvested at Two Different Maturity Stages. J. Food Process. Preserv. 2021, 45, e15368. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Cava-Roda, R.; Taboada-Rodríguez, A.; López-Gómez, A.; Martínez-Hernández, G.B.; Marín-Iniesta, F. Synergistic Antimicrobial Activities of Combinations of Vanillin and Essential Oils of Cinnamon Bark, Cinnamon Leaves, and Cloves. Foods 2021, 10, 1406. [Google Scholar] [CrossRef]
- Ngarmsak, M.; Delaquis, P.; Toivonen, P.; Ngarmsak, T.; Ooraikul, B.; Mazza, G. Antimicrobial Activity of Vanillin against Spoilage Microorganisms in Stored Fresh-Cut Mangoes. J. Food Prot. 2006, 69, 1724–1727. [Google Scholar] [CrossRef]
- Hood, E.E. From Green Plants to Industrial Enzymes. Enzym. Microb. Technol. 2002, 30, 279–283. [Google Scholar] [CrossRef]
- Jayasekara, S.; Ratnayake, R. Microbial Cellulases: An Overview and Applications. Cellulose 2019, 293, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Sharada, R.; Venkateswarlu, G.; Venkateswar, S.; Rao, M.A. Applications of Cellulases—Review. Int. J. Pharm. Chem. Biol. Sci. 2014, 4, 424–437. [Google Scholar]
- Joshi, R. Role of Enzymes in Seed Germination. Int. J. Creat. Res. Thoughts 2018, 6, 1481–1485. [Google Scholar]
- Barros, M.; Fleuri, L.; Macedo, G. Seed Lipases: Sources, Applications and Properties—A Review. Braz. J. Chem. Eng. 2010, 27, 15–29. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, F.K.; Santos, L.O.; Buffon, J.G. Mechanism of Action, Sources, and Application of Peroxidases. Food Res. Int. 2021, 143, 110266. [Google Scholar] [CrossRef]
- Dabas, D.; Elias, R.J.; Lambert, J.D.; Ziegler, G.R. A Colored Avocado Seed Extract as a Potential Natural Colorant. J. Food Sci. 2011, 76, C1335–C1341. [Google Scholar] [CrossRef]
- Hatzakis, E.; Mazzola, E.P.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Perseorangin: A Natural Pigment from Avocado (Persea Americana) Seed. Food Chem. 2019, 293, 15–22. [Google Scholar] [CrossRef]
- Matkawala, F.; Nighojkar, S.; Nighojkar, A. Next-Generation Nutraceuticals: Bioactive Peptides from Plant Proteases. BioTechnologia 2022, 103, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Verderio, E.A.M.; Johnson, T.S.; Griffin, M. Transglutaminases in Wound Healing and Inflammation. Transglutaminases 2005, 38, 89–114. [Google Scholar] [CrossRef]
- Luciano, F.; Arntfield, S. Use of Transglutaminases in Foods and Potential Utilization of Plants as a Transglutaminase Source—Review. Biotemas 2012, 25, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Rauf, A.; Fahad, F.I.; Emran, T.B.; Mitra, S.; Olatunde, A.; Shariati, M.A.; Rebezov, M.; Rengasamy, K.R.R.; Mubarak, M.S. Superoxide Dismutase: An Updated Review on Its Health Benefits and Industrial Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 7282–7300. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.d.l.L.; Rodriguez, L.; Villegas-Aguilar, M.d.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants 2022, 11, 1049. [Google Scholar] [CrossRef]
- Dhakal, K.; Shrestha, D.; Pokhrel, T.; Bhandari, D.P.; Adhikari, A. Alpha-Glucosidase and Alpha-Amylase Inhibition Activity of Avocado Fruit of Nepalese Origin. Curr. Enzym. Inhib. 2022, 18, 105–109. [Google Scholar] [CrossRef]
- Charles, A.C.; Dadmohammadi, Y.; Abbaspourrad, A. Food and Cosmetic Applications of the Avocado Seed: A Review. Food Funct. 2022, 13, 6894–6901. [Google Scholar] [CrossRef] [PubMed]
- Kautsar, D.B.; Rois, M.F.; Faizah, N.; Widiyastuti, W.; Nurtono, T.; Setyawan, H. Antioxidant and Antimicrobial Agents from Avocado (Persea Americana) Seed Extract Encapsulated in Gum Arabic through Spray Drying Method. Period. Polytech. Chem. Eng. 2023, 67, 161–171. [Google Scholar] [CrossRef]
- Jiménez-Arellanes, A.; Luna-Herrera, J.; Ruiz-Nicolás, R.; Cornejo-Garrido, J.; Tapia, A.; Yépez-Mulia, L. Antiprotozoal and Antimycobacterial Activities of Persea Americana Seeds. BMC Complement. Altern. Med. 2013, 13, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Sánchez, D.G.; Pacheco, A.; García-Cruz, M.I.; Gutiérrez-Uribe, J.A.; Benavides-Lozano, J.A.; Hernández-Brenes, C. Isolation and Structure Elucidation of Avocado Seed (Persea Americana) Lipid Derivatives That Inhibit Clostridium Sporogenes Endospore Germination. J. Agric. Food Chem. 2013, 61, 7403–7411. [Google Scholar] [CrossRef]
- Egbuonu, A.C.; Opara, I.; Onyeabo, C.; Uchenna, N.O. Proximate, Functional, Anti Nutrient and Antimicrobial Properties of Avocado Pear (Persea Americana) Seeds. J. Nutr. Health Food Eng. 2018, 8, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Nurliza, C.; Savitri, W.; Dennis, D. Antibacterial Effect of Ethanol Extract of the Avocado Seed (Persea Americana Mill.) as an Alternative Root Canal Irrigants against Porphyromonas Gingivalis (In Vitro). Int. J. Appl. Dent. Sci. 2017, 3, 89–93. [Google Scholar]
- Rodríguez-Carpena, J.-G.; Morcuende, D.; Andrade, M.-J.; Kylli, P.; Estévez, M. Avocado (Persea Americana Mill.) Phenolics, In Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef]
- Chia, T.W.R.; Dykes, G.A. Antimicrobial Activity of Crude Epicarp and Seed Extracts from Mature Avocado Fruit (Persea Americana) of Three Cultivars. Pharm. Biol. 2010, 48, 753–756. [Google Scholar] [CrossRef]
- David, D.; Alzate, A.F.; Rojano, B.; Copete-Pertuz, L.S.; Echeverry, R.; Gutierrez, J.; Zapata-Vahos, I.C. Extraction and Characterization of Phenolic Compounds with Antioxidant and Antimicrobial Activity from Avocado Seed (Persea Americana Mill). Revis. Bionatura. 2022, 7, 51. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Antimicrobial Potential of Pomegranate Peel: A Review. Int. J. Food Sci. Technol. 2019, 54, 959–965. [Google Scholar] [CrossRef]
- Juneja, V.K.; Dwivedi, H.P.; Yan, X. Novel Natural Food Antimicrobials. Annu. Rev. Food Sci. Technol. 2012, 3, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the Antioxidant and Antimicrobial Response of the Combined Effect of Nisin and Avocado Byproducts. LWT—Food Sci. Technol. 2016, 65, 46–52. [Google Scholar] [CrossRef]
- Salinas-Salazar, C.; Hernández-Brenes, C.; Rodríguez-Sánchez, D.G.; Castillo, E.C.; Navarro-Silva, J.M.; Pacheco, A. Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes. J. Food Sci. 2017, 82, 134–144. [Google Scholar] [CrossRef]
- Soledad, C.-P.T.; Paola, H.-C.; Carlos Enrique, O.-V.; Israel, R.-L.I.; GuadalupeVirginia, N.-M.; Raúl, Á.-S. Avocado Seeds (Persea Americana Cv. Criollo Sp.): Lipophilic Compounds Profile and Biological Activities. Saudi J. Biol. Sci. 2021, 28, 3384–3390. [Google Scholar] [CrossRef]
- Bangar, S.P.; Dunno, K.; Dhull, S.B.; Kumar Siroha, A.; Changan, S.; Maqsood, S.; Rusu, A.V. Avocado Seed Discoveries: Chemical Composition, Biological Properties, and Industrial Food Applications. Food Chem. X 2022, 16, 100507. [Google Scholar] [CrossRef]
- Attia, G.H.; Marrez, D.A.; Mohammed, M.A.; Albarqi, H.A.; Ibrahim, A.M.; Raey, M.A.E. Synergistic Effect of Mandarin Peels and Hesperidin with Sodium Nitrite against Some Food Pathogen Microbes. Molecules 2021, 26, 3186. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Nussinovitch, A. CHAPTER 10—Biopolymer Films and Composite Coatings. In Modern Biopolymer Science; Kasapis, S., Norton, I.T., Ubbink, J.B., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 295–326. ISBN 978-0-12-374195-0. [Google Scholar]
- George, S.; Benny, P.V.; Kuriakose, S.; George, C. Antibiotic Activity of 2, 3-Dihydroxybenzoic Acid Isolated from Flacourtia Inermis Fruit against Multidrug Resistant Bacteria. Asian J. Pharm. Clin. Res. 2011, 4, 126–130. [Google Scholar]
- Cho, J.-Y.; Moon, J.-H.; Seong, K.-Y.; Park, K.-H. Antimicrobial Activity of 4-Hydroxybenzoic Acid and Trans 4-Hydroxycinnamic Acid Isolated and Identified from Rice Hull. Biosci. Biotechnol. Biochem. 1998, 62, 2273–2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.-M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial Activity and Mechanism of Action of Chlorogenic Acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.D. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity. Molecules 2014, 19, 19292–19349. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. P-Coumaric Acid Kills Bacteria through Dual Damage Mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids against Pathogenic Bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, R.; Zhang, Q.; He, S.; Wang, Y. Antibacterial Effect and Possible Mechanism of Salicylic Acid Microcapsules against Escherichia Coli and Staphylococcus Aureus. Int. J. Environ. Res. Public Health 2022, 19, 12761. [Google Scholar] [CrossRef]
- Talmaciu, A.I.; Ravber, M.; Volf, I.; Knez, Ž.; Popa, V.I. Isolation of Bioactive Compounds from Spruce Bark Waste Using Sub- and Supercritical Fluids. J. Supercrit. Fluids 2016, 117, 243–251. [Google Scholar] [CrossRef]
- Shaikh, J.; Patil, M. Qualitative Tests for Preliminary Phytochemical Screening: An Overview. Int. J. Chem. Stud. 2020, 8, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Das, B.K.; Al-Amin, M.M.; Russel, S.M.; Kabir, S.; Bhattacherjee, R.; Hannan, J.M.A. Phytochemical Screening and Evaluation of Analgesic Activity of Oroxylum Indicum. Indian J. Pharm. Sci. 2014, 76, 571–575. [Google Scholar] [PubMed]
- Oduola, L.I.; Olufunso, A.; Oluwole, A. Qualitative and Quantitative Phytochemical Evaluation of Quassia Undulata (Guill. & Perr.) D. Dietr. Leaves Using Different Solvent Polarities. Lek. Sirovine 2021, 41, 12–16. [Google Scholar] [CrossRef]
- Leitgeb, M.; Kupnik, K.; Knez, Ž.; Primožič, M. Enzymatic and Antimicrobial Activity of Biologically Active Samples from Aloe Arborescens and Aloe Barbadensis. Biology 2021, 10, 765. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Creative Enzymes EC 1.14.18.1 Tyrosinase_Polyphenol_Oxidase_Activity. Available online: https://www.creative-enzymes.com/pdf/EC%201.14.18.1_TYROSINASE_Polyphenol_Oxidase_Activity.pdf (accessed on 5 April 2022).
- Creative Enzymes Protocol CE_Superoxide Dismutase EC 1.15.1.1.Pdf. Available online: https://www.creative-enzymes.com/pdf/Protocol%20CE_Superoxide%20Dismutase%20EC%201.15.1.1.pdf (accessed on 5 April 2022).
- Kupnik, K.; Primožič, M.; Knez, Ž.; Leitgeb, M. Antimicrobial Efficiency of Aloe Arborescens and Aloe Barbadensis Natural and Commercial Products. Plants 2021, 10, 92. [Google Scholar] [CrossRef]
- Kupnik, K.; Primožič, M.; Vasić, K.; Knez, Ž.; Leitgeb, M. A Comprehensive Study of the Antibacterial Activity of Bioactive Juice and Extracts from Pomegranate (Punica Granatum L.) Peels and Seeds. Plants 2021, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
Phytochemicals | UE (H2O) | SE (EtOH) | SFE (scCO2 + EtOH) |
---|---|---|---|
Alkaloids | + | + | + |
Anthocyanins | ++ | + | - |
Anthraquinones | - | - | - |
Carbohydrates | - | - | - |
Cardiac glycosides | - | - | - |
Coumarins | + | ++ | - |
Emodins | - | - | - |
Flavonoids | + | + | + |
Phenolic compounds | + | + | + |
Phlobatannins | - | - | - |
Saponins | + | +++ | ++ |
Steroids | ++ | ++ | + |
Tannins | - | - | - |
Terpenoids | + | + | ++ |
Quinones | ++ | +++ | + |
Content (mganalyte/100 gDW ± SD) | ||||
---|---|---|---|---|
UE (H2O) | SE (EtOH) | SFE (scCO2 + EtOH) | ||
Flavonoids | (-)-Epicatechin | 39.20 ± 0.68 a | 15.56 ± 0.02 b | 18.26 ± 0.06 b |
Hesperidin | 118.10 ± 1.51 a | 226.78 ± 2.39 a | 9.37 ± 0.85 b | |
Quercetin | - | - | 58.07 ± 1.72 | |
Phenolic acids | Benzoic acid | 4.73 ± 0.17 | - | - |
2,3-dihydroxybenzoic acid | 106.48 ± 1.80 a | 34.26 ± 0.27 b | 14.42 ± 0.14 c | |
4-hydroxybenzoic acid | 15.41 ± 0.19 a | 7.74 ± 0.10 b | 3.47 ± 0.11 b | |
Caffeic acid | - | - | 5.92 ± 0.05 | |
Chlorogenic acid | 9.36 ± 0.81 a | 2.24 ± 0.55 b | 0.73 ± 0.12 b | |
Cinnamic acid | 34.36 ± 0.65 a | 11.33 ± 0.22 b | 13.06 ± 0.43 b | |
p-Coumaric acid | 3.23 ± 0.05 a | 6.26 ± 0.06 b | 3.25 ± 0.06 a | |
Ferulic acid | 4.97 ± 0.11 a | 6.86 ± 0.26 a | - | |
Gallic acid | 3.08 ± 0.35 a | - | 3.99 ± 0.20 a | |
Salicylic acid | - | 15.15 ± 0.56 a | 1.56 ± 0.18 b | |
Other | o-Vanillin | 55.02 ± 1.31 a | 24.85 ± 1.11 a | 45.89 ± 2.78 a |
Total content of analyzed phenolic compounds | 393.94 ± 7.63 | 351.03 ± 5.54 | 177.99 ± 6.70 |
Enzymes | Activity (U/g ± SD) | ||
---|---|---|---|
UE (H2O) | SE (EtOH) | SFE (scCO2 + EtOH) | |
Cellulase | - | - | 30.74 ± 0.11 |
Lipase | 56.30 ± 0.49 a | - | 24.54 ± 0.20 a |
Peroxidase | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Polyphenol oxidase | 4087.50 ± 71.43 a | 4250.00 ± 84.01 a | 3451.99 ± 47.17 b |
Protease | 0.10 ± 0.01 a | 0.01 ± 0.00 a | 0.33 ± 0.03 b |
Transglutaminase | 0.06 ± 0.01 a | 0.05 ± 0.00 a | 0.02 ± 0.00 b |
Superoxide dismutase | 1435.97 ± 21.41 a | 3123.97 ± 69.05 b | 638.55 ± 15.99 c |
Microorganism | Inhibition Zone (mm ± SD) | |||
---|---|---|---|---|
UE (H2O) | SE (EtOH) | SFE (scCO2 + EtOH) | ||
Gram-negative bacteria | E. coli | 14 ± 2 | 17 ± 2 | 11 ± 1 |
P. aeruginosa | 11 ± 1 | 11 ± 1 | 11 ± 1 | |
P. fluorescens | 15 ± 1 | 18 ± 2 | 15 ± 1 | |
Gram-positive bacteria | B. cereus | - | 15 ± 1 | 17 ± 1 |
S. aureus | 11 ± 1 | 13 ± 1 | 12 ± 1 | |
S. platensis | 12 ± 1 | 11 ± 1 | - | |
S. pyogenes | - | 11 ± 1 | - | |
Fungi | A. brasiliensis | - | - | 18 ± 3 |
A. flavus | - | - | 14 ± 1 | |
A. fumigatus | 12 ± 1 | - | 22 ± 2 | |
A. niger | - | - | 13 ± 2 | |
C. albicans | - | - | 17 ± 2 | |
P. cyclopium | 10 ± 1 | 13 ± 1 | 11 ± 1 | |
S. cerevisiae | - | - | - | |
T. viride | - | - | - |
Microorganisms | Incubation Period | MIC90 (μg/mL) | |||
---|---|---|---|---|---|
UE (H2O) | SE (EtOH) | SFE (scCO2 + EtOH) | |||
Gram-negative bacteria | E. coli | 8 h | - | 280 | 280 |
24 h | 210 | 280 | 210 | ||
P. aeruginosa | 8 h | 2780 | 280 | 140 | |
24 h | 2780 | 280 | 280 | ||
P. fluorescens | 8 h | 140 | 280 | 140 | |
24 h | 280 | 2780 | 140 | ||
Gram-positive bacteria | B. cereus | 8 h | 70 | 2780 | 70 |
24 h | 280 | 2780 | 210 | ||
S. aureus | 8 h | 280 | 140 | 140 | |
24 h | 2780 | 210 | 280 | ||
S. pyogenes | 8 h | - | 140 | - | |
24 h | 2780 | 280 | - | ||
Fungi | C. albicans | 8 h | - | - | 2780 |
24 h | - | - | 2780 |
Phytochemicals | (Test) Procedure | Observation |
---|---|---|
Alkaloids | (Wagner’s reagent test) 1 mL of extract + 3–4 drops of Wagner’s reagent along the sides of test tube | A reddish-brown coloration |
Anthocyanins | (NaOH test) 2 mL of extract + 1 mL of 2 N NaOH, heat for 5 min at 100 °C | A bluish-green color |
Anthraquinones | (Borntrager’s test) 1 mL of extract + few drops of 10% (w/v) ammonia solution | Pink-colored solution |
Carbohydrates | (Molish’s test) 2 mL of extracts + few drops of alcoholic α–naphthol + 1 mL conc. H2SO4 along the sides of test tube | Violet ring at the interface of the two liquids |
Cardiac glycosides | (Keller–Killiani test) 1 mL of extract + 1.5 mL glacial acetic acid + 1 drop of 5% (w/v) FeCl3 solution + few drops of conc. H2SO4 along the side of test tube | A greenish-blue-colored solution |
Coumarins | (NaOH test) 1 mL of 10% (w/v) NaOH + 1 mL of extract | A yellow color |
Emodins | 1 mL of extract + 2 mL NH4OH + 3 mL benzene | A red color |
Flavonoids | (Alkaline reagent test) 1 mL of extract + 2 mL of 2% (w/v) NaOH + few drops of diluted HCl | A yellow color; solution then becomes colorless on addition of diluted acid |
Phenolic compounds | (Ferric chloride test) 1 mL of extract + 2 mL of distilled H2O + few drops of 5% (w/v) FeCl3 solution | A blue/green/black color |
Phlobatannins | (HCl test) 1 mL of extract + 2 mL of 1% (v/v) HCl | A red precipitate |
Saponins | (Foam test) 2 mL of extract + 5 mL distilled H2O; vigorously shake for 15 min | Persistent foam after 10 min |
Steroids | (Salkowski test) 2 mL of extract + 2 mL of CHCl3 + 2 mL of conc. H2SO4 | A reddish-brown ring at the junction |
Tannins | (Braymer’s test) 1 mL of extract + few drops of 10% (w/v) FeCl3 solution | A dark blue or greenish-black color |
Terpenoids | 1 mL of extract + 2 mL of CHCl3 + few drops (max. of 0.5 mL) of conc. H2SO4 along the side of test tube | A reddish-brown color at the interface |
Quinones | (Sulfuric acid test) 1 mL of H2SO4 + 1 mL of extract; shake well for 5 min | A red color |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupnik, K.; Primožič, M.; Kokol, V.; Knez, Ž.; Leitgeb, M. Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado (Persea americana L.) Seeds. Plants 2023, 12, 1201. https://doi.org/10.3390/plants12051201
Kupnik K, Primožič M, Kokol V, Knez Ž, Leitgeb M. Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado (Persea americana L.) Seeds. Plants. 2023; 12(5):1201. https://doi.org/10.3390/plants12051201
Chicago/Turabian StyleKupnik, Kaja, Mateja Primožič, Vanja Kokol, Željko Knez, and Maja Leitgeb. 2023. "Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado (Persea americana L.) Seeds" Plants 12, no. 5: 1201. https://doi.org/10.3390/plants12051201
APA StyleKupnik, K., Primožič, M., Kokol, V., Knez, Ž., & Leitgeb, M. (2023). Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado (Persea americana L.) Seeds. Plants, 12(5), 1201. https://doi.org/10.3390/plants12051201