Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents
Abstract
:1. Introduction
2. Citrus medica L. and Citrus × clementina Hort. Ex Tan.
3. Methodology
4. Chemical Composition
4.1. C. medica L.
4.2. C. × clementina Hort. Ex Tan.
5. Biological Properties
5.1. Antibacterial and Antifungal Properties
5.2. Anti-Inflammatory Activity
5.3. Antioxidant and Neuroprotective Effects
5.4. Enzymatic Inhibitory Activities
5.5. Application in Foods
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soetjipto, H. Antibacterial properties of essential oil in some Indonesian herbs. In Potential Essentials Oils; IntechOpen: London, UK, 2018; Volume 41. [Google Scholar]
- Mutlu-Ingok, A.; Catalkaya, G.; Capanoglu, E.; Karbancioglu-Guler, F. Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Front. 2021, 2, 508–518. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Tallian, K. Essential oil of lavender in anxiety disorders: Ready for prime time? Ment. Health Clin. 2017, 7, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid. Based Complement. Altern. Med. 2014, 2014, 651593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile compounds in Citrus essential oils: A comprehensive review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Zibaee, E.; Kamalian, S.; Tajvar, M.; Amiri, M.S.; Ramezani, M.; Moghadam, A.T.; Emami, S.A.; Sahebkar, A. Citrus species: A review of traditional uses, phytochemistry and pharmacology. Curr. Pharm. Design 2020, 26, 44–97. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Shan, Y.; Wu, Y.; Liu, G.; Chen, B.; Yao, S. Simultaneous determination of flavanones, hydroxycinnamic acids and alkaloids in Citrus fruits by HPLC-DAD-ESI/MS. Food Chem. 2011, 127, 880–885. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. J. Sci. Food Agric. 2011, 91, 1855–1862. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A. Polyphenols effect on circulating lipids and lipoproteins: From biochemistry to clinical evidence. Curr. Pharm. Des. 2018, 24, 178–190. [Google Scholar] [CrossRef]
- Liu, Y.; Heying, E.; Tanumihardjo, S.A. History, global distribution, and nutritional importance of Citrus fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Zhao, C.; Wan, X.Z.; Zhou, S.; Cao, H. Natural polyphenols: A potential therapeutic approach to hypoglycemia. eFood 2020, 1, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.B. Recent advances on the stability of dietary polyphenols. eFood 2022, 3, e21. [Google Scholar] [CrossRef]
- Dugo, P.; Mondello, L. Citrus Oils: Composition, Advanced Analytical Techniques, Contaminants, and Biological Activity; CRC Press: Boca Raton, FL, USA, 2011; Volume 49. [Google Scholar]
- Tranchida, P.Q.; Bonaccorsi, I.; Dugo, P.; Mondello, L.; Dugo, G. Analysis of Citrus essential oils: State of the art and future perspectives. A review. Flavour Frag. J. 2012, 27, 98–123. [Google Scholar] [CrossRef]
- Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, K.; Therios, I. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece. Molecules 2013, 18, 10639–10647. [Google Scholar] [CrossRef] [Green Version]
- Venturini, N.; Curk, F.; Desjobert, J.M.; Karp, D.; Costa, J.; Paolini, J. Chemotaxonomic investigations of peel and petitgrain essential oils from 17 citron cultivars. Chem. Biodiv. 2010, 7, 736–751. [Google Scholar] [CrossRef]
- Denaro, M.; Smeriglio, A.; Xiao, J.; Cornara, L.; Burlando, B.; Trombetta, D. New insights into Citrus genus: From ancient fruits to new hybrids. Food Front. 2020, 1, 305–328. [Google Scholar] [CrossRef]
- Ferini, A.; Giorlando, A.; Tuoto, G. Il cedro (Citrus medica L.); Pàtron Editore: Bologna, Italy, 1973. [Google Scholar]
- Luro, F.; Venturini, N.; Costantino, G.; Paolini, J.; Ollitrault, P.; Costa, J. Genetic and chemical diversity of citron (Citrus medica L.) based on nuclear and cytoplasmic markers and leaf essential oil composition. Phytochemistry 2012, 77, 186–196. [Google Scholar] [CrossRef]
- Cutuli, G.; Di Martino, E.; Lo Giudice, V.; Pennisi, L.; Raciti, G.; Russo, F.; Scuderi, A.; Spina, P. Trattato di Agrumicoltura; Edagricole: Bologna, Italy, 1985; p. 21. [Google Scholar]
- Venturini, N.; Barboni, T.; Curk, F.; Costa, J.; Paolini, J. Citrus medica L. var. Corsican fruit and liqueur composition. Food Technol. Biotechnol. 2014, 52, 403–410. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Li, C.H.; Shen, Y.C.; Wu, T.S. Anti-inflammatory principles from the stem and root barks of Citrus medica. Chem. Pharm. Bull. 2010, 58, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.D.; Shalev, Y.R.; Cohen, S.; Fallik, E. Postharvest handling of “etrog” citron (Citrus medica, L.) fruit. Israel J. Plant Sci. 2016, 63, 64–75. [Google Scholar] [CrossRef]
- Leporini, M.; Tundis, R.; Sicari, V.; Pellicanò, T.M.; Dugay, A.; Deguin, B.; Loizzo, M.R. Impact of extraction processes on phytochemicals content and biological activity of Citrus × clementina Hort. Ex Tan. leaves: New opportunity for under-utilized food by-products. Food Res. Int. 2020, 127, 108742. [Google Scholar] [CrossRef] [PubMed]
- Menichini, F.; Tundis, R.; Bonesi, M.; de Cindio, B.; Loizzo, M.R.; Conforti, F.; Statti, G.A.; Menabeni, R.; Bettini, R.; Menichini, F. Chemical composition and bioactivity of Citrus medica L. cv. Diamante essential oil obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction. Nat. Prod. Res. 2011, 25, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Poiana, M.; Sicari, V.; Mincione, B. A comparison between the chemical composition of the oil, solvent extract and supercritical carbon dioxide extract of Citrus medica L. cv. Diamante. J. Essent. Oil Res. 1998, 10, 145–152. [Google Scholar] [CrossRef]
- Gabriele, B.; Fazio, A.; Dugo, P.; Costa, R.; Mondello, L. Essential oil composition of Citrus medica L. cv. Diamante (Diamante citron) determined after using different extraction methods. J. Sep. Sci. 2009, 32, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Vekiari, S.A.; Protopapadakis, E.E.; Gianovits-Argyriadou, N. Composition of the leaf and peel oils of Citrus medica L. ‘Diamante’ from Crete. J. Essent. Oil Res. 2004, 16, 528–530. [Google Scholar] [CrossRef]
- Aliberti, L.; Caputo, L.; De Feo, V.; De Martino, L.; Nazzaro, F.; Souza, L.F. Chemical composition and in vitro antimicrobial, cytotoxic, and central nervous system activities of the essential oils of Citrus medica L. cv. ‘Liscia’ and C. medica cv. ‘Rugosa’ cultivated in Southern Italy. Molecules 2016, 21, 1244. [Google Scholar] [CrossRef] [Green Version]
- Dung, N.X.; Pha, N.M.; Lo, V.N.; Thien, N.H.; Leclercq, P.A. Chemical investigation of the fruit peel oil of Citrus medica L. var. sarcodactylis (Noot.) Swingle from Vietnam. J. Essent. Oil Res. 1996, 8, 15–18. [Google Scholar] [CrossRef]
- Shiota, H. Volatile components in the peel oil from fingered citron (Citrus medica L. var. sarcodactylis Swingle). Flavour Fragr. J. 1990, 5, 33. [Google Scholar] [CrossRef]
- Lota, M.L.; De Rocca Serra, D.; Tomi, F.; Bessiere, J.M.; Casanova, J. Chemical composition of peel and leaf essential oils of Citrus medica L. and C. limonimedica Lush. Flavour Fragr. J. 1999, 14, 161–166. [Google Scholar] [CrossRef]
- Cotroneo, A.; Verzera, A.; Alfa, M.; Dugo, G. On the authenticity of citrus essential oils. XN. Citron essential oil. Essenze Deriv. Agrum. 1986, 56, 105. [Google Scholar]
- Fleisher, Z.; Fleisher, A. The Essential Oils of Etrog (Citrus medica L. Var. ethrog Engl.). J. Essent. Oil Res. 1991, 3, 377. [Google Scholar] [CrossRef]
- Fleisher, Z.; Fleisher, A. Citrus petitgrain oils of Israel. Perfum. Flavor 1996, 21, 11. [Google Scholar]
- Kirbalar, Š.I.; Gök, A.; Kirbašlar, F.G.; Tepe, S. Volatiles in Turkish clementine (Citrus clementina Hort.) peel. J. Essent. Oil Res. 2012, 24, 153–157. [Google Scholar] [CrossRef]
- Thi Nguyen, T.T.; Thi Tran, T.T.; Hua, T.M.; Diep, T.T.; Chau, D.K.N.; Duus, F.; Le, T.N. Investigation of peel and leaf essential oils of Citrus clementina Hort. ex Tan. growing in the south of Vietnam. J. Essent. Oil Res. 2016, 28, 96–103. [Google Scholar] [CrossRef]
- Ruberto, G.; Biondi, D.; Piattelli, M.; Rapisarda, P.; Starrantino, A. Essential oil of the new citrus hybrid, Citrus clementina × C. limon. J. Essent. Oil Res. 1994, 6, 1–8. [Google Scholar] [CrossRef]
- Leporini, M.; Loizzo, M.R.; Sicari, V.; Pellicanò, T.M.; Reitano, A.; Dugay, A.; Deguin, B.; Tundis, R. Citrus × clementina hort. Juice enriched with its by-products (peels and leaves): Chemical composition, in vitro bioactivity, and impact of processing. Antioxidants 2020, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Ruberto, G.; Renda, A.; Piattelli, M.; Rapisarda, P.; Starrantino, A. Essential oil of two new pigmented Citrus hybrids, Citrus clementina × Citrus sinensis. J. Agric. Food Chem. 1997, 45, 467–471. [Google Scholar] [CrossRef]
- Miguel, M.G.; Dandlen, S.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Duarte, A.; Faisca, J. Essential oils of flowers of Citrus sinensis and Citrus clementina cultivated in Algarve, Portugal. Acta Hortic. 2008, 773, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Germanà, M.A.; Palazzolo, E.; Chiancone, B.; Saiano, F. Characterization of leaf essential oil composition of homozygous and heterozygous Citrus clementina Hort. Extan. and its ancestors. J. Essent. Oil-Bear. Plants 2013, 16, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Mitropoulou, G.; Fitsiou, E.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Bardouki, H.; Vamvakias, M.; Panas, P.; Chlichlia, K.; Pappa, A.; Kourkoutas, Y. Citrus medica essential oil exhibits significant antimicrobial and antiproliferative activity. LWT 2017, 84, 344–352. [Google Scholar] [CrossRef]
- Guo, J.; Hu, X.; Gao, Z.; Li, G.; Fu, F.; Shang, X.; Liang, Z.; Shan, Y. Global transcriptomic response of Listeria monocytogenes exposed to Fingered Citron (Citrus medica L. var. sarcodactylis Swingle) essential oil. Food Res. Int. 2021, 143, 110274. [Google Scholar] [PubMed]
- AL-Kalifawi, E.J. The Antimicrobial activity of essential oils of Al-Abbasʹs (AS). hand fruit peel (Citrus medica) var. sarcodactylis Swingle. J. Nat. Sci. Res. 2015, 5, 19–27. [Google Scholar]
- Saei-Dehkordi, S.S.; Tajik, H.; Moradi, M.; Khalighi-Sigaroodi, F. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem. Toxicol. 2010, 48, 1562–1567. [Google Scholar] [CrossRef]
- Sandri, I.G.; Zacaria, J.; Fracaro, F.; Delamare, A.P.L.; Echeverrigaray, S. Antimicrobial activity of the essential oils of Brazilian species of the genus Culina against foodborne pathogens and spoiling bacteria. Food Chem. 2007, 103, 823–828. [Google Scholar] [CrossRef]
- Aliyah, A.H.; Rante, H.M.; Ningsih, D.R. GC-MS analysis and antimicrobial activity determination of Citrus medica L. var proper leaf essential oil from South Sulawesi against skin pathogen microorganism. IOP Conf. Ser. Mater. Sci. Eng. 2017, 259, 012001. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef] [Green Version]
- Vitalini, S.; Iriti, M.; Ovidi, E.; Laghezza Masci, V.; Tiezzi, A.; Garzoli, S. Detection of volatiles by HS-SPME-GC/MS and biological effect evaluation of Buddha’s hand fruit. Molecules 2022, 27, 1666. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Cianfaglione, K.; Azzouz, M.; Batiha, G.E.-S.; Alkhuriji, A.F.; Al-Megrin, W.A.I.; Ben-Attia, M.; Eldahshan, O.A. Sustainable extraction, chemical profile, cytotoxic and antileishmanial activities in-vitro of some Citrus species leaves essential oils. Pharmaceuticals 2022, 15, 1163. [Google Scholar] [CrossRef]
- Anis Ben, H.; Mohamed, T.; Riadh Ben, M.; Raoudha Mezghani, J.; Mohamed, D.; Samir, J. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar]
- Celaya, L.S.; Alabrudzinska, M.H.; Molina, A.C.; Viturro, C.I.; Silvia, M. The inhibition of methicillin-resistant Staphylococcus aureus by essential oils isolated from leaves and fruits of Schinus areira depending on their chemical compositions. Acta Biochim. Pol. 2014, 61, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Cha, K.H.; Kim, S.N.; Altantsetseg, S.; Shatar, S.; Sarangerel, O.; Nho, C.W. The antimicrobial activity of essential oil from Dracocephalum foetidum against pathogenic microorganisms. J. Microbiol. 2007, 45, 53–57. [Google Scholar] [PubMed]
- Li, L.; Li, Z.-W.; Yin, Z.-Q.; Wei, Q.; Jia, R.-Y.; Zhou, L.-J.; Xu, J.; Song, X.; Yi Zhou, Y.; Du, Y.-H.; et al. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum. Int. J. Clin. Exp. Med. 2014, 7, 1721–1727. [Google Scholar] [PubMed]
- Sudhof, H.; Klenke, C.; Greiner, J.F.W.; Müller, J.; Brotzmann, V.; Ebmeyer, J.; Kaltschmidt, B.; Kaltschmidt, C. 1,8-Cineol reduces mucus-production in a novel human ex vivo model of late rhinosinusitis. PLoS ONE 2015, 10, e0133040. [Google Scholar] [CrossRef]
- Brown, S.K.; Garver, W.S.; Orlando, R.A. 1,8-cineole: An underappreciated anti-inflammatory therapeutic. J. Biomol. Res. Ter. 2017, 6, 6–11. [Google Scholar] [CrossRef]
- Miladinović, D.L.; Ilić, B.S.; Kocić, B.D. Chemoinformatics approach to antibacterial studies of essential oils. Nat. Prod. Commun. 2015, 10, 1063–1066. [Google Scholar] [CrossRef] [Green Version]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Van Griensven, L.J. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents. Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Zuo, X.; Gu, Y.; Wang, C.; Zhang, J.; Zhang, J.; Wang, G.; Wang, F. A systematic review of the anti-inflammatory and immunomodulatory properties of 16 essential oils of herbs. Evid. -Based Complement. Altern. Med. 2020, 2020, 8878927. [Google Scholar] [CrossRef]
- Kim, K.N.; Ko, Y.J.; Yang, H.M.; Ham, Y.-M.; Roh, S.W.; Jeon, Y.-J.; Ahn, G.; Kang, M.-C.; Yoon, W.-J.; Kim, D.; et al. Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis) through blocking JNK, ERK and NF-κB signaling pathways in LPS-activated RAW 264.7 cells. Food Chem. Toxicol. 2013, 57, 126–131. [Google Scholar]
- Yoon, W.J.; Lee, N.H.; Hyun, C.G. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J. Oleo Sci. 2010, 59, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Juergens, L.J.; Worth, H.; Juergens, U.R. New perspectives for mucolytic, anti-inflammatory and adjunctive therapy with 1,8-cineole in COPD and asthma: Review on the new therapeutic approach. Adv. Ther. 2020, 37, 1737–1753. [Google Scholar] [CrossRef] [Green Version]
- Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Ferreira Mendes, A. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol. 2015, 750, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H.; et al. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res. 2013, 180, e47-54. [Google Scholar] [CrossRef] [PubMed]
- Migheli, R.; Lostia, G.; Galleri, G.; Rocchitta, G.; Serra, P.A.; Bassareo, V.; Acquas, E.; Peana, A.T. Neuroprotective effect of (R)-(-)-linalool on oxidative stress in PC12 cells. Phytomed. Plus 2021, 1, 100073. [Google Scholar] [CrossRef]
- de Oliveira Ramalho, T.R.; Pacheco de Oliveira, M.T.; Lima, A.L.; Bezerra-Santos, C.R.; Piuvezam, M.R. Gamma-terpinene modulates acute inflammatory response in mice. Planta Med. 2015, 81, E3. [Google Scholar]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene—What are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef]
- Lorenzetti, B.B.; Souza, G.E.; Sarti, S.J.; Santos Filho, D.; Ferreira, S.H. Myrcene mimics the peripheral analgesic activity of lemongrass tea. J. Ethnopharmacol. 1991, 34, 43–48. [Google Scholar] [CrossRef]
- Souza, M.; Siani, A.C.; Ramos, M.; Menezes-de-Lima, O.; Henriques, M. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie 2003, 58, 582–586. [Google Scholar]
- Tian, J.; Zhang, R.; Weng, Y.; Qin, Q.; Zhang, X.; Liu, A.; Lin, N. Myrcene enhances the cardioprotective effect through matrix remodelling in an experimental model of heart failure. Arch. Med. Sci. 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Pohl, F.; Kong Thoo Lin, P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials. Molecules 2018, 23, 3283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velmurugan, B.; Baskaran, R.; Bharathi Priya, L.; Rajan, V.; Weng, C. Neuroprotective role of phytochemicals. Molecules 2018, 23, 2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Menichini, F. Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders: An update. Curr. Med. Chem. 2008, 15, 1209–1228. [Google Scholar] [CrossRef]
- Magalingam, K.B.; Radhakrishnan, A.; Ping, N.S.; Haleagrahara, N. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed. Res. Int. 2018, 2018, 374046. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, M.; Watanabe, H.; Kameoka, H. Inhibition of acetylcholinesterase activity by monoterpenoids with a p-menthane skeleton. J. Agric. Food Chem. 1997, 45, 677–679. [Google Scholar] [CrossRef]
- Miyazawa, M.; Watanabe, H.; Umemoto, K.; Kameoka, H. Inhibition of acetylcholinesterase activity by essential oils of Mentha species. J. Agric. Food Chem. 1998, 46, 3431–3434. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef]
- Eddin, L.B.; Jha, N.K.; Meeran, M.F.N.; Kesari, K.K.; Beiram, R.; Ojha, S. Neuroprotective potential of limonene and limonene containing natural products. Molecules 2021, 26, 4535. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 2013, 62, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Burgos, E.; Gómez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef] [PubMed]
- Essa, M.; Braidy, N.; Bridge, W.; Subash, S.; Manivasagam, T.; Vijayan, R.; Al-Adawi, S.; Guillemin, G. Review of natural products on Parkinson’s disease pathology. J. Aging Res. Clin. Pract. 2014, 3, 1–8. [Google Scholar] [CrossRef]
- Ciftci, O.; Ozdemir, I.; Tanyildizi, S.; Yildiz, S.; Oguzturk, H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzop-dioxin-induced oxidative stress in rats liver. Toxicol. Ind. Health. 2011, 27, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, O.; Oztanir, M.N.; Cetin, A. Neuroprotective effects of b-myrcene following global cerebral ischemia/reperfusion-mediated oxidative and neuronal damage in a C57BL/J6 mouse. Neurochem. Res. 2014, 39, 1717–1723. [Google Scholar] [CrossRef]
- Bonamin, F.; Moraes, T.M.; Dos Santos, R.C.; Kushima, H.; Faria, F.M.; Silva, M.A.; Junior, I.V.; Nogueira, L.; Bauab, T.M.; Souza Brito, A.R.M.; et al. The effect of a minor constituent of essential oil from Citrus aurantium: The role of β-myrcene in preventing peptic ulcer disease. Chem. Biol. Interact. 2014, 212, 11–19. [Google Scholar] [CrossRef]
- Basak, S.; Candan, F. Effect of Laurus nobilis L. Essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran. J. Pharm. Res. 2013, 12, 367–379. [Google Scholar]
- Basak, S.S.; Candan, F. Chemical composition and in vitro antioxidant and antidiabetic activities of Eucalyptus camaldulensis Dehnh. essential oil. J. Iran. Chem. Soc. 2010, 7, 216–226. [Google Scholar] [CrossRef]
- Capetti, F.; Cagliero, C.; Marengo, A.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Bio-guided fractionation driven by in vitro α-amylase inhibition assays of essential oils bearing specialized metabolites with potential hypoglycemic activity. Plants 2020, 9, 1242. [Google Scholar] [CrossRef]
- Murali, R.; Saravanan, R. Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomed. Prev. Nutr. 2012, 2, 269–275. [Google Scholar] [CrossRef]
- More, T.A.; Kulkarni, B.R.; Nalawade, M.L.; Arvindekar, A.U. Antidiabetic activity of linalool and limonene in streptozotocin-induced diabetic rat: A combinatorial therapy approach. Int. J. Pharm. Pharmaceut. Sci. 2014, 6, 159–163. [Google Scholar]
- Zolghadri, S.; Bahrami, A.; Khan, M.T.H.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enz. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuura, R.; Ukeda, H.; Sawamura, M. Tyrosinase inhibitory activity of Citrus essential oils. J. Agric. Food Chem. 2006, 54, 2309–2313. [Google Scholar] [CrossRef]
- Capetti, F.; Tacchini, M.; Marengo, A.; Cagliero, C.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Citral-containing essential oils as potential tyrosinase inhibitors: A bio-guided fractionation approach. Plants 2021, 10, 969. [Google Scholar] [CrossRef]
- Ren, G.; Xue, P.; Sun, X.; Zhao, G. Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena Regal tea. BMC Complement. Altern. Med. 2018, 18, 307. [Google Scholar] [CrossRef] [Green Version]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus essential oils (CEOs) and their applications in food: An overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Alparslan, Y.; Baygar, T. Effect of chitosan film coating combined with orange peel essential oil on the shelf life of deepwater pink shrimp. Food Bioprocess Technol. 2017, 10, 842–853. [Google Scholar] [CrossRef]
- Chiabrando, V.; Giacalone, G. Effects of Citrus essential oils incorporated in alginate coating on quality of fresh-cut Jintao kiwifruit. J. Food Nutr. Res. 2019, 58, 177–186. [Google Scholar]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Randazzo, W.; Jiménez-Belenguer, A.; Settanni, L.; Perdones, A.; Moschetti, M.; Palazzolo, E.; Guarrasi, V.; Vargas, M.; Germanà, M.A.; Moschetti, G. Antilisterial effect of Citrus essential oils and their performance in edible film formulations. Food Control 2016, 59, 750–758. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.; Cho, T.J.; Rhee, M.S. Citrus fruit extracts with carvacrol and thymol eliminated 7-log acid-adapted Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes: A potential of effective natural antibacterial agents. Food Res. Int. 2018, 107, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, G.; Nikolaou, A.; Santarmaki, V.; Sgouros, G.; Kourkoutas, Y. Citrus medica and Cinnamomum zeylanicum essential oils as potential biopreservatives against spoilage in low alcohol wine products. Foods 2020, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, A.; Ziaee, E.; Shad, E.; Razmjooei, M.; Eskandari, M.H.; Aminlari, M. Antibacterial effect of essential oils against spoilage bacteria from vacuum-packed cooked cured sausages. J. Food Prot. 2018, 81, 1386–1393. [Google Scholar] [CrossRef] [PubMed]
- Okhli, S.; Mirzaei, H.; Hosseini, S.E. Antioxidant activity of citron peel (Citrus medica L.) essential oil and extract on stabilization of sunflower oil. OCL 2020, 27, 32. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.; Totti, B.; Rozza, A. Limonene: Aroma of innovation in health and disease. Chemico-Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Akhavan-Mahdavi, S.; Sadeghi, R.; Faridi Esfanjani, A.; Hedayati, S.; Shaddel, R.; Dima, C.; Malekjani, N.; Boostani, S.; Jafari, S.M. Nanodelivery systems for d-limonene; techniques and applications. Food Chem. 2022, 384, 132479. [Google Scholar] [CrossRef]
- Ibáñez, M.D.; Sanchez-Ballester, N.M.; Blázquez, M.A. Encapsulated limonene: A pleasant lemon-like aroma with promising application in the agri-food industry. a review. Molecules 2020, 25, 2598. [Google Scholar] [CrossRef]
- Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocoll. 2018, 77, 152–162. [Google Scholar] [CrossRef]
- Dhital, R.; Mora, N.B.; Watson, D.G.; Kohli, P.; Choudhary, R. Efficacy of limonene nano coatings on post-harvest shelf life of strawberries. LWT 2018, 97, 124–134. [Google Scholar] [CrossRef]
- Umagiliyage, A.L.; Becerra-Mora, N.; Kohli, P.; Fisher, D.J.; Choudhary, R. Antimicrobial efficacy of liposomes containing d-limonene and its effect on the storage life of blueberries. Postharvest Biol. Technol. 2017, 128, 130–137. [Google Scholar] [CrossRef]
- Zahi, M.R.; El Hattab, M.; Liang, H.; Yuan, Q. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine. Food Chem. 2017, 221, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Andriotis, E.G.; Papi, R.M.; Paraskevopoulou, A.; Achilias, D.S. Synthesis of D-limonene Loaded polymeric nanoparticles with enhanced antimicrobial properties for potential application in food packaging. Nanomaterials 2021, 11, 191. [Google Scholar] [CrossRef]
- Lotfabadi, V.S.; Mortazavi, S.A.; Yeganehzad, S. Study on the release and sensory perception of encapsulated d-limonene flavor in crystal rock candy using the time-intensity analysis and HS-GC/MS spectrometry. Food Sci. Nutr. 2020, 8, 933–941. [Google Scholar] [CrossRef]
- Ravichandran, C.; Badgujar, P.C.; Gundev, P.; Upadhyay, A. Review of toxicological assessment of d-limonene, a food and cosmetics additive. Food Chem. Toxicol. 2018, 120, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Trinetta, V.; Morgan, M.T.; Coupland, J.N.; Yucel, U. Essential oils against pathogen and spoilage microorganisms of fruit juices: Use of versatile antimicrobial delivery systems. J. Food Sci. 2017, 82, 471–476. [Google Scholar] [CrossRef] [PubMed]
Compound | [27] * | [28] * | [29] # |
---|---|---|---|
Thujene | 1.2 | 0.9 | 0.28–0.59 |
α-Pinene | 2.5 | 2.1 | 0.69–1.47 |
Camphene | 0.9 | tr | tr–0.01 |
Sabinene | 0.4 | 0.2 | 0.14–0.24 |
β-Pinene | 2.6 | 1.9 | 0.93–1.39 |
Myrcene | 2.1 | 1.6 | 1.13–1.47 |
α-Phellandrene | 0.2 | 0.1 | 0.04–0.05 |
α-Terpinene | 1.2 | 0.5 | 0.35–0.41 |
p-Cymene | tr | 0.5 | - |
Limonene | 35.4 | 60.8 | 51.27–60.56 |
(Z)-β-Ocimene | - | 1.4 | 0.75–1.19 |
(E)-β-Ocimene | 2.4 | 1.9 | 1.10–1.74 |
γ-Terpinene | 24.5 | 23.4 | 20.89–24.40 |
Terpinolene | 1.5 | 1.0 | 0.87–1.08 |
Linalool | 0.6 | 0.1 | 0.17–0.37 |
n-Nonanal | 0.2 | 0.1 | 0.04–0.09 |
Citronellal | 0.3 | 0.1 | 0.04–0.08 |
Terpinen-4-ol | 1.5 | 0.1 | 0.04–0.10 |
α-Terpineol | 1.1 | 0.2 | 0.21–0.61 |
n-Decanal | 0.1 | tr | 0.04–0.07 |
Nerol | 1.0 | 0.1 | - |
Neral | 4.4 | 0.8 | 1.12–3.77 |
Geraniol | 0.3 | 0.1 | 0.01–0.22 |
Perilla aldehyde | 0.2 | - | 0.01–0.02 |
Geranial | 5.5 | 1.0 | 1.80–6.26 |
Citronellyl acetate | 0.2 | tr | 0.01–0.04 |
Neryl acetate | 0.5 | 0.2 | 0.11–0.20 |
Geranyl acetate | 0.4 | 0.2 | 0.19–0.41 |
β-Elemene | 0.1 | tr | 0.01–0.02 |
β-Cubebene | 0.1 | - | - |
β-Caryophyllene | 0.3 | 0.1 | 0.10–0.22 |
trans-α-Bergamotene | 0.1 | 0.2 | 0.28–0.48 |
trans-β-Farnesene | 0.5 | tr | tr |
α-Humulene | 0.2 | tr | 0.03–0.06 |
β-Bisabolene | 1.2 | 0.3 | 0.40–0.67 |
Tetradecanal | tr | - | 0.01–0.02 |
γ-Cadinene | tr | tr | - |
δ-Cadinene | 0.2 | - | - |
Germacrene B | - | tr | - |
(E)-Nerolidol | - | tr | - |
Spathulenol | - | tr | - |
β-Bisabolol | 0.4 | tr | - |
Citropten | 0.9 | - | - |
Compound | Peel | ||||
---|---|---|---|---|---|
[38] * | [39] * | [40] | [41] ** | [42] | |
α-Pinene | 1.27 | 0.60 | 0.47 | 1.10–3.13 | 0.43 |
Camphene | - | - | 0.38 | - | - |
Sabinene | 0.83 | 0.20 | - | 3.56–9.10 | 0.15 |
β-Pinene | - | - | 1.83 | - | - |
n-Octanal | 0.44 | 0.20 | 0.37 | - | 0.13 |
Myrcene | 4.64 | 0.95 | - | 3.56–9.10 | 1.82 |
δ-3-Carene | 0.21 | - | - | - | 0.05 |
α-Phellandrene | 0.05 | - | - | - | - |
δ-3-Carene | 0.06 | 0.05 | - | 0.22–0.36 | - |
α-Terpinene | 0.05 | - | - | - | - |
p-Cymene | 0.05 | - | - | - | - |
Limonene | 88.12 | 95.03 | 94.77 | 61.31–83.09 | 95.46 |
(E)-β-Ocimene | - | - | - | 3.31 | - |
γ-Terpinene | 0.05 | - | - | 0.32–0.33 | - |
Terpinolene | 0.05 | - | - | 0.30 | - |
Linalool | 1.02 | 0.30 | 0.82 | 3.39–6.64 | 0.53 |
Citronellal | 0.40–0.75 | 0.08 | 0.07 | - | 0.05 |
Terpinen-4-ol | - | - | 0.05 | 0.20–0.88 | - |
α-Terpineol | 0.15 | 0.05 | 0.12 | 1.55 | 0.07 |
n-Decanal | 0.71 | 0.18 | 0.34 | 0.47–1.55 | 0.27 |
Nerol | - | 0.05 | - | - | - |
Geranial | - | - | 0.06 | - | - |
Neryl acetate | 0.06 | - | - | - | - |
Geranyl acetate | 0.06 | - | - | - | - |
β-Copaene | 0.10 | - | - | - | - |
β-Elemene | 0.05 | - | - | - | - |
β-Cubebene | 0.10 | - | - | - | - |
Dodecanal | 0.18 | - | 0.06 | - | 0.05 |
β-Caryophyllene | 0.05 | 0.06 | - | - | - |
β-Bisabolene | - | 0.07 | - | - | - |
γ-Muurolene | - | 0.05 | - | - | - |
δ-Cadinene | 0.06 | 0.05 | - | 0.22–0.36 | - |
(E)-Nerolidol | 0.05 | - | - | - | - |
β-Sinensal | 0.10 | - | - | 0.22–0.31 | - |
α-Sinensal | 0.30 | 0.07 | 0.11 | 0.37–0.70 | 0.07 |
Compound | Leaves | |
---|---|---|
[39] * | [26] ** | |
Thujene | 0.15 | 0.51–1.43 |
α-Pinene | 0.66 | 4.73–5.0 |
Sabinene | 19.52 | 22.59–23.32 |
β-Pinene | 1.12 | - |
Myrcene | 1.75 | 4.22–4.45 |
δ-3-Carene | - | 6.33–7.06 |
α-Phellandrene | 0.08 | 1.37–1.59 |
δ-3-Carene | 0.07 | 0.19–0.28 |
α-Terpinene | 0.41 | 2.08–2.64 |
Limonene | 1.95 | 5.88–6.62 |
(Z)-β-Ocimene | 0.29 | - |
(E)-β-Ocimene | 5.0 | 6.52–7.16 |
γ-Terpinene | 0.97 | 3.01–3.72 |
Terpinolene | - | 2.89–3.14 |
Linalool | 7.51 | 10.41–16.83 |
Citronellal | - | 2.87 |
Terpinen-4-ol | 0.06 | 2.43–4.54 |
α-Terpineol | - | 0.38–1.40 |
n-Decanal | - | 0.14–0.17 |
Nerol | - | 0.81–1.27 |
Neral | - | 0.14–0.16 |
Geranial | - | 0.12–0.20 |
Citronellyl acetate | 0.32 | - |
Neryl acetate | - | 0.13 |
Geranyl acetate | 18.04 | 0.20–0.64 |
β-Elemene | 7.49 | 0.24 |
β-Cubebene | - | 0.24 |
β-Caryophyllene | 0.13 | 0.69–1.92 |
trans-β-Farnesene | - | 0.34–0.75 |
α-Humulene | - | 0.11–0.22 |
γ-Elemene | 2.30 | - |
β-Bisabolene | 0.13 | - |
α-Muurolene | 5.32 | - |
γ-Muurolene | 0.41 | - |
α-Selinene | 3.06 | - |
δ-Cadinene | 0.07 | 0.19–0.28 |
Germacrene B | - | 0.31–1.04 |
(E)-Nerolidol | 0.52 | 0.20–0.35 |
Spathulenol | 0.06 | - |
γ-Eudesmol | 0.49 | - |
α-Muurolol | 1.31 | - |
β-Sinensal | - | 3.14–4.77 |
α-Sinensal | - | 1.46–2.68 |
Compound | Flowers |
---|---|
[43] | |
α-Pinene | 0.8–1.2 |
Sabinene | 34.8–47.9 |
β-Pinene | 1.8–2.2 |
Myrcene | 2.4–3.2 |
δ-3-Carene | 0.2–0.4 |
p-Cymene | 1.7–2.4 |
Limonene | 6.2–9.6 |
(Z)-β-Ocimene | 0.1 |
(E)-β-Ocimene | 0.5–1.4 |
γ-Terpinene | 0.1–0.6 |
Terpinolene | 0.1–0.2 |
Linalool | 16.8–28.9 |
Terpinen-4-ol | 3.0–3.9 |
α-Terpineol | 0.5–0.9 |
β-Elemene | 0.2–0.7 |
β-Caryophyllene | 0.2–1.3 |
β-Caryophyllene oxide | 0.3–0.9 |
(E)-Nerolidol | 4.2–7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tundis, R.; Xiao, J.; Silva, A.S.; Carreiró, F.; Loizzo, M.R. Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. Plants 2023, 12, 991. https://doi.org/10.3390/plants12050991
Tundis R, Xiao J, Silva AS, Carreiró F, Loizzo MR. Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. Plants. 2023; 12(5):991. https://doi.org/10.3390/plants12050991
Chicago/Turabian StyleTundis, Rosa, Jianbo Xiao, Ana Sanches Silva, Filipa Carreiró, and Monica Rosa Loizzo. 2023. "Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents" Plants 12, no. 5: 991. https://doi.org/10.3390/plants12050991
APA StyleTundis, R., Xiao, J., Silva, A. S., Carreiró, F., & Loizzo, M. R. (2023). Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. Plants, 12(5), 991. https://doi.org/10.3390/plants12050991