Next Article in Journal
Nitric Oxide and Proline Modulate Redox Homeostasis and Photosynthetic Metabolism in Wheat Plants under High Temperature Stress Acclimation
Next Article in Special Issue
Phytochemical Composition and Antibacterial Activity of Barleria albostellata C.B. Clarke Leaf and Stem Extracts
Previous Article in Journal
New Approach to the Systematics of the Section Psammiris (Iris, Iridaceae): What Does Chloroplast DNA Sequence Tell Us?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review

Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
Plants 2023, 12(6), 1255; https://doi.org/10.3390/plants12061255
Submission received: 26 February 2023 / Revised: 7 March 2023 / Accepted: 9 March 2023 / Published: 10 March 2023
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)

Abstract

:
The current study is aimed at providing a systematic review of the ethnomedicinal, phytochemical and pharmacological properties of Fabaceae species used as sources of traditional medicinies in Zimbabwe. Fabaceae is one of the well-known plant families of ethnopharmacological importance. Of the approximately 665 species of the Fabaceae family occurring in Zimbabwe, about 101 are used for medicinal purposes. Many communities in the country, mainly in peri-urban, rural and marginalized areas with limited access to healthcare facilities, rely on traditional medicines as their primary healthcare. The study reviewed research studies undertaken on Zimbabwe’s Fabaceae species during 1959 to 2022. Information was gathered from literature sourced from Google Scholar, Science Direct, Scopus, PubMed, books, dissertations, theses and scientific reports. This study showed that 101 species are traditionally used to manage human and animal diseases in Zimbabwe. The genera with the highest number of medicinal uses are Indigofera, Senna, Albizia, Rhynchosia and Vachellia. Species of these genera are used as traditional medicines against 134 medical conditions, mainly gastrointestinal conditions, female reproductive conditions, respiratory conditions and sexually transmitted infections. Shrubs (39.0%), trees (37.0%) and herbs (18.0%) are the primary sources of traditional medicines, while roots (80.2%), leaves (36.6%), bark (27.7%) and fruits (8.9%) are the most widely used plant parts. Many of Zimbabwe’s Fabaceae species used as sources of traditional medicines have been assessed for their phytochemical and pharmacological properties, corroborating their medicinal uses. However, there is a need to unravel the therapeutic potential of the family through further ethnopharmacological research focusing on toxicological studies, in vitro and in vivo models, biochemical assays and pharmacokinetic studies.

1. Introduction

The Fabaceae (Leguminosae), often referred to as the bean, legume or pea family, is the third largest plant family after the Asteraceae and Orchidaceae in terms of plant species numbers [1]. The Fabaceae family consists of approximately 770 genera and 19,500 species [1,2] recorded in almost all of the biomes in the world except Antarctica and the high Arctic [3]. Research has shown that the success of the family in dominating in several hospitable and disturbed habitats is ascribed to the ability of the species to fix atmospheric nitrogen, thus allowing the plant species to grow in nutrient-poor soils [4,5,6]. Recent morphological and molecular research has supported that the Fabaceae family is a monophyletic family [2,7]. However, the Fabaceae family is divided into six subfamilies, namely the Caesalpinioideae (148 genera and 4400 species), Cercidoideae (12 genera and 335 species), Detarioideae (84 genera and 760 species), Dialiodeae (17 genera and 85 species), Duparquetioideae (monotypic genus) and Faboideae (or Papilionoideae) (503 genera and 14,000 species) [2]. Members of the Fabaceae family include trees, shrubs, subshrubs, woody lianas, climbing annuals, herbs and aquatics [8]. The flowers are asymmetric, bilaterally symmetric or radially symmetric, and are pollinated by bats, birds and insects [9]. The leaves of the majority of species belonging to the Fabaceae family are compound, double-compound or trifoliolate, sometimes with a swollen leaf base, a superior ovary with one locular, and the fruit is usually a two-valved, dehiscent pod that is rarely fleshy but is sometimes indehiscent and occasionally breaking into segments [10,11].
The majority of the members of the Fabaceae family are culturally and economically important throughout the world, and are used as sources of traditional medicines, food, timber, garden ornamentals, dyes, fibres, fuels, gums and insecticides [6,12,13]. The role played by Fabaceae species in the provision of ecosystem services and goods that support human wellbeing and survival have been highlighted in some studies conducted in different countries of the world [14,15]. Many members of this family have been widely studied for their bioactive chemical constituents such as phenolic acids, flavonoids, lectins, saponins, alkaloids and carotenoids [16]. Pharmacological studies have shown that some species exhibit potent anticancer, antioxidant, antimicrobial, anti-inflammatory, analgesic, antiulcer, antidiabetic, antirheumatic, cytotoxic and antiparasitic activities, among others [16,17,18]. Therefore, extensive phytochemical and pharmacological evaluations of some of the utilized Fabaceae species may lead to the discovery and development of novel pharmaceutical products, functional food ingredients and cosmetic products. Despite the discovery of several secondary metabolites in the Fabaceae, this family has attracted disproportionately little attention in the context of ethnopharmacological research. It is, therefore, within this context that this study was undertaken, with the aim of exploring and documenting the ethnomedicinal knowledge of Zimbabwe. Such a synthesis identified the gaps in knowledge on the therapeutic potential of the Fabaceae species and may also provide helpful information on ethnopharmacological research areas that require further research.

2. Materials and Methods

A literature search on Fabaceae species used as traditional medicines in Zimbabwe was conducted from September 2021 to November 2022. This information was retrieved from different online databases such as BioMed Central, Web of Science, Springerlink, Google Scholar, Scielo, PubMed, Science Direct, ACS Publications, Scopus and JSTOR. In addition, theses, dissertations, book chapters, books and scientific reports were retrieved from the libraries of the University of Fort Hare (UFH) in South Africa and the National Herbarium (SRGH) in Harare, Zimbabwe. Keywords and terminologies such as Zimbabwe, ethnobotany, ethnomedicine, ethnopharmacology, indigenous, medicine, phytomedicine, traditional medicine, Zimbabwean Fabaceae, Zimbabwean Leguminosae, medicinal Fabaceae, medicinal Leguminosae, Zimbabwean traditional medicine, Fabaceae and Leguminosae were used to search for relevant articles as shown in the PRISMA flow diagram (Figure 1). From each article, the following information was collected: the scientific names of the plant species, their growth form, plant part(s) used, methods of preparation and medicinal uses. The medicinal use categories were classified according to the Economic Botany Data Collection Standard [19]. The scientific names of the Fabaceae species from the original data sources were updated to the recently accepted names according to the Plants of the World Online website [20]. The Fabaceae subfamilies were updated following the classifications of the “Legume Phylogeny Working Group”, which presently recognizes six subfamilies: Caesalpinioideae, Cercidoideae, Detarioideae, Dialioideae, Duparquetioideae and Papilionoideae [2].

3. Results and Discussion

3.1. Medicinal Plant Diversity

This study recorded 101 species traditionally used to manage and treat human and animal diseases in Zimbabwe (Table 1). Of these, 91 species are indigenous to Zimbabwe (90.1%), while nine species are exotic (8.9%), either naturalized as weeds or cultivated in home gardens and agricultural fields as ornamentals, fodder or food plants. The subfamilies Caesalpinoideae and Faboideae are dominant, with 54 species (53.5%) and 55 species (54.5%), respectively, and the remaining two species belonging to the Cercidoideae. Therefore, 101 species (15.2%) out of 665 species of the Fabaceae family known to occur in Zimbabwe [21] are used as sources of traditional medicines. A similar study by Van Wyk [6] showed that 338 species out of 1748 Fabaceae species (19.3%) are used as traditional medicines in southern Africa. Similar findings have been reported in Thailand, where 261 species out of 688 Fabaceae species are used as sources of traditional medicines [22]. Macêdo et al. [23] and Sutjaritjai et al. [24] argued that the prominence of Fabaceae taxa in traditional pharmacopoeia throughout the world is possibly associated with the wide distribution of the family, as the different growth forms of the species grow in many types of habitats and vegetation, and therefore are available in all seasons.
Indigofera is the genus with the highest number of medicinal Fabaceae species (12 species), followed by Senna (six species), and Albizia, Rhynchosia and Vachellia with five species each (Figure 2). However, the genera associated with the highest number of records in the literature are Elephantorrhiza (12 records), Pterocarpus (11 records), Senna (10 records), Albizia and Erythrina (nine records each) and Vachellia with eight records (Figure 2). The number of medicinal species found in each genus is significantly correlated to the total number of species in each genus in Zimbabwe (p < 0.01, r = 0.772). These results are consistent with those observed by Anorld et al. [49], who recorded 11 medicinal species of Albizia, followed by Rhynchosia (12 species), Senna (17 species), and Indigofera and Vachellia with 32 species each. In Botswana, Hedberg and Staugård [50] argued that one Senna species, followed by Albizia (three species), Rhynchosia (four species), Indigofera (five species) and Vachellia (six species) were used as traditional medicines in that country. Moreover, several species of Albizia, Elephantorrhiza, Erythrina, Senna and Vachellia are included in the monograph Medicinal Plants of South Africa, with detailed information on their botany, medicinal uses, preparation, dosage, active ingredients and pharmacological effects [51].

3.2. Growth Habit and Parts Used

Shrubs (39.0%), followed by trees (37.0%) and herbs (18.0%), are the primary sources of the medicinal Fabaceae species in Zimbabwe (Figure 3A). The plant parts used for traditional medicine preparations include bark, bark fibre, bark sap, bulbs, charcoal, fibre, flowers, fruits, leaves, pods, rhizomes, roots, root bark, root sap, sap, seeds, tubers and twigs (Table 1). The roots are the most frequently used (81 species), followed by leaves (37 species), bark (28 species), fruits (nine species), seeds (four species), twigs (three species) and tubers (two species), with the rest of the plant parts represented by a single species each (Figure 3B). However, harvesting the roots of herbaceous plants for medicinal purposes is not sustainable, as it threatens the survival of these plants used to treat human and animal diseases. It is well recognized by conservationists that medicinal plants primarily valued for their roots and those which are intensively harvested for their bark often tend to be the most threatened by overexploitation [52,53]. Afzelia quanzensis, Baikiaea plurijuga, Dalbergia melanoxylon and Pterocarpus angolensis are listed in the Zimbabwean Red Data List, as these four species are threatened with extinction mainly due to overexploitation as sources of timber for construction or wood carving [54].

3.3. Usage Categories with High Numbers of Reports

The 134 medical reports of Fabaceae species in Zimbabwe (Table 1 and Table 2) are classified into 19 major health disorder categories following the International Classification of Primary Care’s classification system [19]. Most use records are in the categories of gastrointestinal problems (92 usage reports) and female reproductive problems (58 usage reports) (Table 2). Similarly, gastrointestinal problems, reproductive problems in women, respiratory problems and sexually transmitted infections (Table 2) are treated with the highest number of species. The categories of gastrointestinal problems, reproductive problems, respiratory problems and sexually transmitted infections are among the 10 major causes of death in Zimbabwe [55]. Muchandiona [56] argued that the prevalence of gastrointestinal disorders and respiratory infections is due to poor solid waste management by the local councils in Zimbabwe, which has worsened over the years. Similarly, gastrointestinal disorders, such as diarrhoea and dysentery, are also a major concern in neighbouring countries such as Mozambique [57,58,59] and South Africa [60,61,62]. Therefore, gastrointestinal problems are among the most common reasons local people use traditional medicines and consult traditional healers [57,59,60,61,62].
Fifteen medicinal species are known to have more than eight usage reports (Figure 4). These species included Albizia amara, Albizia antunesiana, Brachystegia boehmii, Cassia abbreviate, Dichrostachys cinerea, Elephantorrhiza goetzei, Erythrina abyssinica, Peltophorum africanum, Piliostigma thonningii, Pterocarpus angolensis, Schotia brachypetala, Senna singueana, Vachellia karroo, Vigna unguiculata and Xeroderris stuhlmannii. Some of these plant species are widely used as sources of traditional medicines in Angola [63], Botswana [50,64], Eswatini [65], Malawi [66,67], Mozambique [58,68], Namibia [69,70], South Africa [71,72] and Zambia [73,74]. The importance of these species as sources of traditional medicines is documented in the monographs Medicinal and Magical Plants of Southern Africa: An Annotated Checklist [49], Plant Resources of Tropical Africa 11: Medicinal Plants 1 and 2 [75,76] and Medicinal Plants of South Africa [51]. Research by Van Wyk [77] revealed that Colophospermum mopane, Dichrostachys cinerea and Vachellia karroo are commercially exploited in local, regional or international trade in eastern, southern and western Africa.

3.4. Phytochemistry and Pharmacological Properties of Fabaceae Species

The Fabaceae species used as sources of traditional medicines in Zimbabwe are rich in chemical constituents (Table 3). The majority of these species are characterized by flavonoids (57.4%), followed by terpenoids (42.6%), tannins (40.6%), saponins (34.7%), phenolics (30.7%) and alkaloids (28.7%) (Table 3). Research by Wink [78] showed that the main secondary metabolites of the Fabaceae family include alkaloids, non-protein amino acids, cyanogens, peptides, phenolics, polyketides and terpenoids. This author argued that these secondary metabolites serve as defence compounds against herbivores and microbes and also serve as signal compounds to attract pollinating and fruit-dispersing animals. Fabaceae species used as traditional medicines and food plants are characterized by nutrients such as proteins, lipids, carbohydrates, mineral elements, fatty acids, amino acids, fibres and vitamins, which are important for animal and human health [79,80]. The majority of documented species have several proven pharmacological activities (Table 3) such as inhibition of the acetylcholinesterase enzyme, and anticancer, antidiabetic, antifertility, anthelmintic, antiamoebic, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, cytotoxic, hepatoprotective, hypoglycaemic and immunomodulatory effects. Despite the discovery of several secondary metabolites in the Fabaceae family, its species have attracted disproportionately little attention in the context of ethnopharmacological research over the years. The relative importance of the Fabaceae species as medicinal plants is demonstrated by the fact that about 10% of the species documented in this study are commercially important. The species that are commercially developed with potential to be developed into health products or pharmaceutical drugs and are regularly traded on the international markets include Abrus precatorius, Albizia adianthifolia, Cajanus cajan, Colophospermum mopane, Dichrostachys cinerea, Lessertia frutescens, Senna italica, Senna occidentalis, Tamarindus indica, Vachellia karroo and Vachellia nilotica [77,81].

4. Conclusions

This review is a compilation of literature sources on the Fabaceae species used as traditional medicines in Zimbabwe, providing an important repository of ethnopharmacological data required for future studies. The Fabaceae family is characterized by several species used as traditional medicines for the treatment and management of different ailments and diseases. The literature search showed that there is a paucity of information on the cultural practices associated with usage of Fabaceae species, including information on their dosages and administration. Therefore, there is a need for ethnobotanical research into and documentation of the cultural value of the Fabaceae species in Zimbabwe. Fabaceae species that are exotic to Zimbabwe are also used as sources of traditional medicines, corroborating the general observation that traditional pharmacopoeias are not static social institutions but fluid and dynamic, characterized by the addition of exotic plant species as herbal medicines.
Several Fabaceae species used as traditional medicines are known to contain bioactive compounds which have demonstrated diverse pharmacological properties against several disease-causing pathogens. Plant extracts and phytochemical compounds isolated from Fabaceae species have shown inhibition of the acetylcholinesterase enzyme and many other properties, such as antitumor, antidiabetic, antifertility, anthelmintic, antiamoebic, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, cytotoxic, hepatoprotective, hypoglycaemic and immunomodulatory. However, the majority of the studied biological activities have mainly been in vitro assays, while clinical and in vivo studies are lacking. It is recommended that the unstudied biological activities of the medicinal species should be investigated to unravel the therapeutic potential of the considered Fabaceae species, using both in vitro and in vivo models. Furthermore, the toxicological properties of these species should be evaluated and the mechanism of action of the identified phytochemicals should be elucidated based on their pharmacological properties.

Funding

This research was funded by the University of Fort Hare, grant number R188.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
  2. The Legume Phylogeny Working Group (LPWG). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 2017, 66, 44–77. [Google Scholar] [CrossRef] [Green Version]
  3. Harris, S. Alders, birches and willows. In Encyclopedia of Forest Sciences; Burley, J., Evans, J., Youngquist, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1414–1419. [Google Scholar]
  4. Sprent, J.I. Nodulation in Legumes; Royal Botanic Gardens: London, UK, 2001. [Google Scholar]
  5. Sprent, J.I.; Ardley, J.; James, E.K. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytolog. 2017, 215, 40–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Van Wyk, B.-E. The diversity and multiple uses of southern African legumes. Aust. Syst. Bot. 2019, 32, 519–546. [Google Scholar] [CrossRef]
  7. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar] [CrossRef] [Green Version]
  8. Hasanuzzaman, M.; Araújo, S.; Gill, S.S. The Plant Family Fabaceae: Biology and Physiological Responses to Environmental Stresses; Springer: Singapore, 2020. [Google Scholar]
  9. Palgrave, M.C. Keith Coates Palgrave Trees of Southern Africa; Struik Publishers: Cape Town, South Africa, 2002. [Google Scholar]
  10. Leistner, O.A. Seed Plants of Southern Africa: Families and Genera; Strelitzia 10; National Botanical Instritute: Pretoria, South Africa, 2000. [Google Scholar]
  11. Koekemoer, M.; Steyn, H.M.; Bester, S.P. Guide to Plant Families of Southern Africa; Strelitzia 31; South African National Biodiversity Institute: Pretoria, South Africa, 2014. [Google Scholar]
  12. Lewis, G.; Schrire, B.; Mackinder, B.; Lock, M. Legumes of the World; The Board of Trustees of the Royal Botanic Gardens: London, UK, 2005. [Google Scholar]
  13. Semenya, S.S.; Maroyi, A. Ethnomedicinal uses of Fabaceae species for respiratory infections and related symptoms in the Limpopo province, South Africa. J. Pharm. Nutr. Sci. 2018, 8, 219–229. [Google Scholar] [CrossRef]
  14. Molares, S.; Ladio, A. The usefulness of edible and medicinal Fabaceae in Argentine and Chilean Patagonia: Environmental availability and other sources of supply. Evid.-Based Complement. Alt. Med. 2012, 2012, 901918. [Google Scholar] [CrossRef] [Green Version]
  15. Maroyi, A. Diversity of use and local knowledge of wild and cultivated plants in the Eastern Cape province, South Africa. J. Ethnobiol. Ethnomed. 2017, 13, 43. [Google Scholar] [CrossRef] [Green Version]
  16. Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: A comprehensive review. Molecules 2022, 27, 3863. [Google Scholar] [CrossRef]
  17. Ahmad, F.; Anwar, F.; Hira, S. Review on medicinal importance of Fabaceae family. Pharmacologyonline 2016, 152, 151–156. [Google Scholar]
  18. Obistioiu, D.; Cocan, I.; Tîrziu, E.; Herman, V.; Negrea, M.; Cucerzan, A.; Neacsu, A.-G.; Cozma, A.L.; Nichita, I.; Hulea, A.; et al. Phytochemical profile and microbiological activity of some plants belonging to the Fabaceae family. Antibiotics 2021, 10, 662. [Google Scholar] [CrossRef] [PubMed]
  19. Cook, F.E.M. Economic Botany Data Collection Standard; International Working Group on Taxonomic Databases for Plant Sciences (TDWG), Royal Botanic Gardens: London, UK, 1995. [Google Scholar]
  20. POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2023. Available online: https://powo.science.kew.org (accessed on 23 January 2023).
  21. Mapaura, A.; Timberlake, J. A Checklist of Zimbabwean Vascular Plants; Southern African Botanical Diversity Network Report No. 33; SABONET: Pretoria, South Africa, 2004. [Google Scholar]
  22. Sutjaritjai, N.; Wangpakapattanawong, P.; Balslev, H.; Inta, A. Traditional uses of Leguminosae among the Karen in Thailand. Plants 2019, 8, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Macêdo, M.J.F.; Ribeiro, D.A.; Santos, M.d.O.; Macêdo, D.G.d.; Macedo, J.G.F.; Almeida, B.V.d.; Saraiva, M.E.; Lacerda, M.N.S.d.; Souza, M.M.d.A. Fabaceae medicinal flora with therapeutic potential in Savanna areas in the Chapada do Araripe, Northeastern Brazil. Rev. Bras. Farmacogn. 2018, 28, 738–750. [Google Scholar] [CrossRef]
  24. Sutjaritjai, N.; Panyadee, P.; Phumthum, M.; Inta, A.; Balslev, H. High diversity of medicinal uses of Thai legumes (Fabaceae) and their potential in public herbal medicine. Diversity 2022, 14, 588. [Google Scholar] [CrossRef]
  25. Gelfand, M.; Mavi, S.; Drummond, R.B.; Ndemera, B. The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopeia; Mambo Press: Gweru, Zimbabwe, 1985. [Google Scholar]
  26. Ndamba, J.; Nyazema, N.; Makaza, N.; Anderson, C.; Kaondera, K.C. Traditional herbal remedies used for the treatment of urinary schistosomiasis in Zimbabwe. J. Ethnopharmacol. 1994, 42, 125–132. [Google Scholar] [CrossRef] [PubMed]
  27. Maroyi, A. Use of ethnomedicinal herbs to treat and manage schistosomiasis in Zimbabwe: Past trends and future directions. In Ethnobotany: Application of Medicinal Plants; Martinez, J.L., Munoz-Acevedo, A., Rai, M., Eds.; CRC Press: London, UK, 2019; pp. 36–47. [Google Scholar]
  28. Shopo, B.; Mapaya, R.J.; Maroyi, A. Ethnobotanical study of medicinal plants traditionally used in Gokwe South District, Zimbabwe. S. Afr. J. Bot. 2022, 149, 29–48. [Google Scholar] [CrossRef]
  29. Harvey, T.E.C.; Armitage, F.B. Some herbal remedies and observations on the Nyanga of Matabeleland. Cent. Afr. J. Med. 1961, 7, 193–207. [Google Scholar]
  30. Mureyi, D.D.; Monera, T.G.; Maponga, C.C. Prevalence and patterns of prenatal use of traditional medicine among women at selected Harare clinics: A cross-sectional study. BMC Complement. Alt. Med. 2012, 12, 306. [Google Scholar] [CrossRef] [Green Version]
  31. Chituku, S.; Nikodem, C.; Maroyi, A. Use of herbal, complementary and alternative medicines among pregnant women in Makoni District, Zimbabwe. Lat. Am. Caribb. Bull. Med. Aromat. Pl. 2022, 21, 631–645. [Google Scholar] [CrossRef]
  32. Mwale, M.; Bhebhe, E.; Chimonyo, M.; Halimani, T.E. Use of herbal plants in poultry health management in the Mushagashe small-scale commercial farming area in Zimbabwe. Int. J. Appl. Res. Vet. Med. 2005, 3, 163–170. [Google Scholar]
  33. Gumbochuma, G.V.R.; Hamandishe, E.T.; Nyahangare, V.E.; Imbayarwo-Chikosi, G.; Ncube, S. Ethno veterinary practices for poultry and cattle in Zimbabwe: A case study of Takavarasha village. Sci. J. Anim. Sci. 2013, 2, 355–359. [Google Scholar]
  34. Wild, H.; Gelfand, M. Some native herbal remedies at present in use in Mashonaland. Cent. Afr. J. Med. 1959, 5, 292–305. [Google Scholar] [PubMed]
  35. Mavi, S. Medicinal plants and their uses in Zimbabwe. In Indigenous Knowledge and Its Uses in Southern Africa; Norman, H., Snyman, I., Cohen, M., Eds.; Human Sciences Research Council: Pretoria, South Africa, 1996; pp. 67–73. [Google Scholar]
  36. Maroyi, A. Ethnobotanical study of medicinal plants used by people in Nhema communal area, Zimbabwe. J. Ethnopharmacol. 2011, 136, 347–354. [Google Scholar] [CrossRef] [PubMed]
  37. Maroyi, A. Traditional use of medicinal plants in south-central Zimbabwe: Review and perspectives. J. Ethnobiol. Ethnomed. 2013, 9, 31. [Google Scholar] [CrossRef] [Green Version]
  38. Chinemana, F.; Drummond, R.B.; Mavi, S.; De Zoysa, I. Indigenous plant remedies in Zimbabwe. J. Ethnopharmacol. 1985, 14, 159–172. [Google Scholar] [CrossRef]
  39. Matowa, P.R.; Gundidza, M.; Gwanzura, L.; Nhachi, C.F.B. A survey of ethnomedicinal plants used to treat cancer by traditional medicine practitioners in Zimbabwe. BMC Complement. Med. Therap. 2020, 20, 278. [Google Scholar] [CrossRef]
  40. Kambizi, L.; Afolayan, A.J. An ethnobotanical study of plants used for the treatment of sexually transmitted diseases (njovhera) in Guruve District, Zimbabwe. J. Ethnopharmacol. 2001, 77, 5–9. [Google Scholar] [CrossRef]
  41. Ngarivhume, T.; Van’T Klooster, C.I.E.A.; De Jong, J.T.V.M.; Van Der Westhuizen, J.H. Medicinal plants used by traditional healers for the treatment of malaria in the Chipinge district in Zimbabwe. J. Ethnopharmacol. 2015, 159, 224–237. [Google Scholar] [CrossRef] [Green Version]
  42. Mudonhi, N.; Nunu, W.N.; Sibanda, N.; Khumalo, N. Exploring traditional medicine utilisation during antenatal care among women in Bulilima District of Plumtree in Zimbabwe. Sci. Rep. 2021, 11, 6822. [Google Scholar] [CrossRef]
  43. Chigora, P.; Masocha, R.; Mutenheri, F. The role of indigenous medicinal knowledge (IMK) in the treatment of ailments in rural Zimbabwe: The case of Mutirikwi communal lands. J. Sustain. Dev. Afr. 2007, 9, 26–43. [Google Scholar]
  44. Mawoza, T.; Nhachi, C.; Magwali, T. Prevalence of traditional medicine use during pregnancy, at labour and for postpartum care in a rural area in Zimbabwe. Clin. Mother Child Health. 2019, 16, 321. [Google Scholar] [PubMed]
  45. Nyagumbo, E.; Pote, W.; Shopo, B.; Nyirenda, T.; Chagonda, I.; Mapaya, R.J.; Maunganidze, F.; Mavengere, W.N.; Mawere, C.; Mutasa, I.; et al. Medicinal plants used for the management of respiratory diseases in Zimbabwe: Review and perspectives potential management of COVID-19. Phys. Chem. Earth 2022, 128, 103232. [Google Scholar] [CrossRef] [PubMed]
  46. Maroyi, A.; Cheikhyoussef, A. A comparative study of medicinal plants used in rural areas of Namibia and Zimbabwe. Indian J. Trad. Knowl. 2015, 14, 401–406. [Google Scholar]
  47. Gundidza, M.; Gweru, N.; Magwa, M.L.; Ramalivhana, N.J.; Humphrey, G.; Samie, A.; Mmbengwa, V. Phytochemical composition and biological activities of essential oil of Rhynchosia minima (L) (DC) (Fabaceae). Afr. J. Biotech. 2009, 8, 721–724. [Google Scholar]
  48. Matekaire, T.; Bwakura, T.M. Ethnoveterinary medicine: A potential alternative to orthodox animal health delivery in Zimbabwe. Int. J. Appl. Res. Vet. Med. 2004, 2, 269–273. [Google Scholar]
  49. Arnold, T.H.; Prentice, C.A.; Hawker, L.C.; Snyman, E.E.; Tomalin, M.; Crouch, N.R.; Pottas-Bircher, C. Medicinal and Magical Plants of Southern Africa: An Annotated Checklist; Strelitzia 13; National Botanical Institute: Pretoria, South Africa, 2002. [Google Scholar]
  50. Hedberg, I.F.; Staugård, F. Traditional Medicinal Plants: Traditional Medicine in Botswana; Ipelegeng Publishers: Gaborone, Botswana, 1989. [Google Scholar]
  51. Van Wyk, B.-E.; Van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa; Briza Publication: Pretoria, South Africa, 2013. [Google Scholar]
  52. Maroyi, A. Warburgia salutaris (Bertol. f.) Chiov.: A multi-use ethnomedicinal plant species. J. Med. Plant Res. 2013, 7, 53–60. [Google Scholar]
  53. Maroyi, A. The genus Warburgia: A review of its traditional uses and pharmacology. Pharm. Biol. 2014, 52, 378–391. [Google Scholar] [CrossRef] [Green Version]
  54. Mapaura, A.; Timberlake, J. Zimbabwe. In Southern African Plant Red Data Lists; Golding, J.S., Ed.; Southern African Botanical Diversity Network Report No. 14; South African National Biodiversity Institute: Pretoria, South Africa, 2002; pp. 157–182. [Google Scholar]
  55. Nyabani, P. Epidemiological transition and the dual burden of communicable and noncommunicable diseases in Zimbabwe. Int. J. Non-Commun. Dis. 2021, 6, 166–171. [Google Scholar]
  56. Muchandiona, A. Challenges and Opportunities in Solid Waste Management in Zimbabwe’s Urban Councils. Master’s Thesis, University of Zimbabwe, Harare, Zimbabwe, 2013. [Google Scholar]
  57. Ribeiro, A.; Romeiras, M.M.; Tavares, J.; Faria, M.T. Ethnobotanical survey in Canhane village, district of Massingir, Mozambique: Medicinal plants and traditional knowledge. J. Ethnobiol. Ethnomed. 2010, 6, 33. [Google Scholar] [CrossRef] [Green Version]
  58. Bruschi, P.; Morganti, M.; Mancini, M.; Signorini, M.A. Traditional healers and laypeople: A qualitative and quantitative approach to local knowledge on medicinal plants in Muda (Mozambique). J. Ethnopharmacol. 2011, 138, 543–563. [Google Scholar] [CrossRef]
  59. Barbosa, F.; Hlashwayo, D.; Sevastyanov, V.; Chichava, V.; Mataveia, A.; Boane, E.; Cala, A. Medicinal plants sold for treatment of bacterial and parasitic diseases in humans in Maputo city markets, Mozambique. BMC Complement. Med. Ther. 2020, 20, 19. [Google Scholar] [CrossRef] [PubMed]
  60. Semenya, S.S.; Maroyi, A. Medicinal plants used by the Bapedi traditional healers to treat diarrhoea in the Limpopo Province, South Africa. J. Ethnopharmacol. 2012, 144, 395–401. [Google Scholar] [CrossRef]
  61. Maroyi, A. Treatment of diarrhoea using traditional medicines: Contemporary research in South Africa and Zimbabwe. Afr. J. Trad. Complement. Alt. Med. 2016, 13, 5–10. [Google Scholar] [CrossRef] [Green Version]
  62. Rankoana, S.A. Indigenous plant-derived medicines used for gastrointestinal disorders in Limpopo province, South Africa. Soc. Sci. Hum. Educ. J. 2022, 3, 242–251. [Google Scholar]
  63. Catarino, S.; Duarte, M.C.; Costa, E.; Carrero, P.G.; Romeiras, M.M. Conservation and sustainable use of the medicinal Leguminosae plants from Angola. PeerJ 2019, 7, e6736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Setshogo, M.P.; Mbereki, C.M. Floristic diversity and uses of medicinal plants sold by street vendors in Gaborone, Botswana. Afr. J. Plant Sci. Biotech. 2011, 5, 69–74. [Google Scholar]
  65. Amusan, O.O.; Dlamini, P.S.; Msonthi, J.D.; Makhubu, L.P. Some herbal remedies from Manzini region of Swaziland. J. Ethnopharmacol. 2002, 79, 109–112. [Google Scholar] [CrossRef]
  66. Bundschuh, T.V.; Hahn, K.; Wittig, R. The medicinal plants of the woodlands in northern Malawi (Karonga District). Flora Veg. Sudano-Sambesica 2011, 14, 3–8. [Google Scholar] [CrossRef]
  67. Chikowe, I.; Mtewa, A.G.; Tembo, D.; Smith, D.; Ibrahim, E.; Mwamatope, B.; Nkhungulu, J.; Kumpalume, P.; Maroyi, A. Potential of Malawi’s medicinal plants in COVID-19 disease management: A review. Malawi Med. J. 2021, 32, 85–107. [Google Scholar] [CrossRef]
  68. Moura, I.; Duvane, J.A.; Silva, M.J.E.; Ribeiro, N.; Ribeiro-Barros, I. Woody species from the Mozambican Miombo woodlands: A review on their ethnomedicinal uses and pharmacological potential. J. Med. Plants Res. 2018, 12, 15–31. [Google Scholar]
  69. Cheikhyoussef, A.; Shapi, M.; Matengu, K.; Ashekele, H.M.U. Ethnobotanical study of indigenous knowledge on medicinal plant use by traditional healers in Oshikoto region, Namibia. J. Ethnobiol. Ethnomed. 2011, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Cheikhyoussef, A.; Mapaure, I.; Shapi, M. The use of some indigenous plants for medicinal and other purposes by local communities in Namibia with emphasis on Oshikoto region: A review. Res. J. Med. Plants 2011, 5, 406–419. [Google Scholar]
  71. Magwede, K.; Van Wyk, B.-E.; Van Wyk, A.E. An inventory of Vhavenḓa useful plants. S. Afr. J. Bot. 2019, 122, 57–89. [Google Scholar] [CrossRef]
  72. Mhlongo, L.S.; Van Wyk, B.-E. Zulu medicinal ethnobotany: New records from the Amandawe area of KwaZulu-Natal, South Africa. S. Afr. J. Bot. 2019, 122, 266–290. [Google Scholar] [CrossRef]
  73. Chinsembu, K.C. Ethnobotanical study of plants used in the management of HIV/AIDS-related diseases in Livingstone, southern province, Zambia. Evid.-Based Complement. Alt. Med. 2016, 2016, 4238625. [Google Scholar] [CrossRef] [Green Version]
  74. Chinsembu, K.C.; Syakalima, M.; Semenya, S.S. Ethnomedicinal plants used by traditional healers in the management of HIV/AIDS opportunistic diseases in Lusaka, Zambia. S. Afr. J. Bot. 2019, 122, 369–384. [Google Scholar] [CrossRef]
  75. Schmelzer, G.H.; Gurib-Fakim, A. Plant Resources of Tropical Africa 11: Medicinal Plants 1; Backhuys Publishers: Leiden, The Netherlands, 2008. [Google Scholar]
  76. Schmelzer, G.H.; Gurib-Fakim, A. Plant Resources of Tropical Africa 11: Medicinal Plants 2; Backhuys Publishers: Leiden, The Netherlands, 2013. [Google Scholar]
  77. Van Wyk, B.-E. A review of African medicinal and aromatic plants. In Medicinal and Aromatic Plants of the World: Africa; Neffati, M., Najjaa, H., Mathé, A., Eds.; Springer: Leiden, The Netherlands, 2017; Volume 3, pp. 19–60. [Google Scholar]
  78. Wink, M. Evolution of secondary metabolites in legumes (Fabaceae). S. Afr. J. Bot. 2013, 89, 164–175. [Google Scholar] [CrossRef] [Green Version]
  79. Margier, M.; Georgé, S.; Hafnaoui, N.; Remond, D.; Nowicki, M.; Chaffaut, L.D.; Amiot, M.-J.; Reboul, E. Nutritional composition and bioactive content of Legumes: Characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients 2018, 10, 1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  80. Çakir, Ö.; Uçarli, C.; Tarhan, C.; Pekmez, M.; Turgut-Kara, N. Nutritional and health benefits of legumes and their distinctive genomic properties. Food Sci. Technol. Camp. 2019, 39, 1–12. [Google Scholar] [CrossRef] [Green Version]
  81. Van Wyk, B.-E. A review of commercially important African medicinal plants. J. Ethnopharmacol. 2015, 176, 118–134. [Google Scholar] [CrossRef]
  82. Qian, H.; Wang, L.; Li, Y.; Wang, B.; Li, C.; Fang, L.; Tang, L. The traditional uses, phytochemistry and pharmacology of Abrus precatorius L.: A comprehensive review. J. Ethnopharmacol. 2022, 296, 115463. [Google Scholar] [CrossRef] [PubMed]
  83. Fullas, F.; Kornberg, L.J.; Wani, M.C.; Wall, M.E.; Farnsworth, N.R.; Chagwedera, T.E.; Kinghorn, A.D. Two new aromatic constituents from the rootwood of Aeschynomene mimosifolia. J. Nat. Prod. 1996, 59, 190–192. [Google Scholar] [CrossRef] [PubMed]
  84. Steenkamp, V.; Fernandes, A.C.; Van Rensburg, C.E.J. Screening of Venda medicinal plants for antifungal activity against Candida albicans. S. Afr. J. Bot. 2007, 73, 256–258. [Google Scholar] [CrossRef] [Green Version]
  85. Praveen, P.; Thippeswamy, S.; Mohana, D.C.; Manjunath, K. Antimicrobial efficacy and phytochemical analysis of Albizia amara (Roxb.) Boiv. an indigenous medicinal plant against some human and plant pathogenic bacteria and fungi. J. Pharm. Res. 2011, 4, 832–835. [Google Scholar]
  86. Indravathi, G.; Reddy, R.S.; Babu, P.S. Albizia amara: A potential medicinal plant: A review. Int. J. Sci. Res. 2016, 5, 621–627. [Google Scholar]
  87. Nivetha, S.; Padmini, S.; Tamilselvi, S. A review on phytopharmacological properties of Arappu. Int. Res. J. Pharm. 2017, 8, 11. [Google Scholar]
  88. Maroyi, A. Albizia adianthifolia: Botany, medicinal uses, phytochemistry and pharmacological properties. Sci. World J. 2018, 2018, 7463584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Alombong, A.G.; Bashige, C.V.; Manya, M.H.; Kamwimba, M.A.; Bakari, A.S.; Okusa, N.P. In vitro antioxidant activity and in vivo aphrodisiac activity in male Cavia porcellus of Albizia adianthifolia (Schum.) W. Wight and Pericopsis angolensis (Baker) Meeuwen. World J. Biol. Pharm. Health Sci. 2021, 5, 44–52. [Google Scholar] [CrossRef]
  90. Mohamed, T.K.; Nassar, M.I.; Gaara, A.H.; El-Kashak, W.A.; Brouard, I.; El-Toumy, S.A. Secondary metabolites and bioactivities of Albizia anthelmintica. Pharmacogn. Pharmacogn. Res. 2013, 5, 80–85. [Google Scholar] [CrossRef] [Green Version]
  91. Nawinda, T.N. Antibacterial, Antioxidant and Phytochemical Investigation of Albizia anthelmintica Leaves, Roots and Stem Bark. Master’s Thesis, University of Namibia, Windhoek, Namibia, 2016. [Google Scholar]
  92. Chipiti, T.; Ibrahim, M.A.; Singh, M.; Islam, M.S. In vitro α-amylase and α-glucosidase inhibitory effects and cytotoxic activity of Albizia antunesiana extracts. Pharmacogn. Mag. 2015, 11, S231. [Google Scholar]
  93. Meshram, G.G.; Kumar, A.; Rizvi, W.; Tripathi, C.D.; Khan, R.A. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of Albizzia lebbeck in rats. J. Trad. Complement. Med. 2016, 6, 172–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Ali, M.T.; Haque, S.T.; Kabir, M.L.; Rana, S.; Haque, M.E. A comparative study of in vitro antimicrobial, antioxidant and cytotoxic activity of Albizia lebbeck and Acacia nilotica stem bark. Bull. Fac. Pharm. Cairo Univ. 2018, 56, 34–38. [Google Scholar] [CrossRef]
  95. Jahangir, U. Siris (Albizzia lebbeck (L.) Benth.) in view of Unani and contemporary pharmacology. Int. J. Green Pharm. 2018, 12, 2. [Google Scholar]
  96. Rukunga, G.M.; Waterman, P.G. Triterpenes of Albizia versicolor and Albizia schimperana stem barks. Fitoterapia 2001, 72, 188–190. [Google Scholar] [CrossRef] [PubMed]
  97. He, Y.; Wang, Q.; Ye, Y.; Liu, Z.; Sun, H. The ethnopharmacology, phytochemistry, pharmacology and toxicology of genus Albizia: A review. J. Ethnopharmacol. 2020, 257, 112677. [Google Scholar] [CrossRef] [PubMed]
  98. Sim, E.W.; Lai, S.Y.; Chang, Y.P. Antioxidant capacity, nutritional and phytochemical content of peanut (Arachis hypogaea L.) shells and roots. Afr. J. Biotech. 2012, 11, 11547–11551. [Google Scholar]
  99. Morgan, J.W.W.; Orsler, R.J. Rhodesian teak tannin. Phytochemistry 1967, 6, 1007–1012. [Google Scholar] [CrossRef]
  100. Nafuka, S.N.; Mumbengegwi, D.R. Phytochemical analysis and in vitro anti-plasmodial activity of selected ethnomedicinal plants used to treat malaria associated symptoms in northern Namibia. Int. Sci. Technol. J. Namibia. 2013, 2, 78–93. [Google Scholar]
  101. Moabi, Y. Phytochemical and Biological Activity Studies on the Twigs of Baikiaea plurijuga and the Tubers of Ipomoea bolusiana. Master’s Thesis, University of Botswana, Gaborone, Botswana, 2016. [Google Scholar]
  102. Ahmed, A.S.; Elgorashi, E.E.; Moodley, N.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. The antimicrobial, antioxidative, anti-inflammatory activity and cytotoxicity of different fractions of four South African Bauhinia species used traditionally to treat diarrhoea. J. Ethnopharmacol. 2012, 143, 826–839. [Google Scholar] [CrossRef]
  103. Aderogba, M.A.; McGaw, L.J.; Ogundaini, A.O.; Eloff, J.N. Antioxidant activity and cytotoxicity study of the flavonol glycosides from Bauhinia galpinii. Nat. Prod. Res. 2007, 21, 591–599. [Google Scholar] [CrossRef]
  104. Chidewe, C.K.; Chirukamare, P.; Nyanga, L.K.; Zvidzai, C.J.; Chitindingu, K. Phytochemical constituents and the effect of processing on antioxidant properties of seeds of an underutilized wild legume Bauhinia petersiana: Phytochemicals, antioxidant activity of B. petersiana seeds. J. Food Biochem. 2016, 40, 326–334. [Google Scholar] [CrossRef]
  105. Ahmed, A.S.; Moodley, N.; Eloff, J.N. Bioactive compounds from the leaf extract of Bauhinia galpinii (Fabaceae) used as antidiarrhoeal therapy in southern Africa. S. Afr. J. Bot. 2019, 126, 345–353. [Google Scholar] [CrossRef]
  106. Erhabor, J.O.; Omokhua, A.G.; Ondua, M.; Abdalla, M.A.; McGaw, L.J. Pharmacological evaluation of hydro-ethanol and hot water leaf extracts of Bauhinia galpinii (Fabaceae): A South African ethnomedicinal plant. S. Afr. J. Bot. 2020, 128, 28–34. [Google Scholar] [CrossRef]
  107. Chingwaru, C.; Tanja, B.; Chingwaru, W. Aqueous extracts of Pericopsis angolensis and Swartzia madagascariensis with high antimicrobial activities against Escherichia coli O157, Shigella spp. and Salmonella enterica subsp. enterica (Serovar typhi). Afr. J. Biot. 2019, 18, 831–844. [Google Scholar] [CrossRef] [Green Version]
  108. Maroyi, A. A review of medicinal uses, phytochemistry and biological activities of Bolusanthus speciosus (Bolus) Harms (Fabaceae). J. Pharm. Nutr. Sci. 2020, 10, 239–246. [Google Scholar] [CrossRef]
  109. Chitemerere, T.A.; Mukanganyama, S. In vitro antibacterial activity of selected medicinal plants from Zimbabwe. Afr. J. Plant Sci. Biotech. 2011, 5, 1–7. [Google Scholar]
  110. Chirisa, E.; Mukanganyama, S. Evaluation of in vitro antiinflammatory and antioxidant activity of selected Zimbabwean plant extracts. J. Herbs Spices Med. Pl. 2016, 22, 157–172. [Google Scholar] [CrossRef]
  111. Chitemerere, T.A. In Vitro Antibacterial Activity of Selected Plant Extracts from Zimbabwe. Master’s Thesis, University of Zimbabwe, Harare, Zimbabwe, 2016. [Google Scholar]
  112. Ndlovu, L.R.; Nherera, F.V. Chemical composition and relationship to in vitro gas production of Zimbabwean browseable indigenous tree species. Anim. Feed Sci. Technol. 1997, 69, 121–129. [Google Scholar] [CrossRef]
  113. Baloyi, J.J.; Acamovic, T.; Ngongoni, N.T.; Hamudikuwanda, H. Proanthocyanadin (condensed tannin) content of Brachystegia spiciformis browse harvested at different stages of growth from three sites in Zimbabwe. Afr. J. Range Forage Sci. 2006, 23, 197–200. [Google Scholar] [CrossRef]
  114. Mair, C.E.; Grienke, U.; Wilhelm, A.; Urban, E.; Zehl, M.; Schmidtke, M.; Rollinger, J.M. Anti-influenza triterpene saponins from the bark of Burkea africana. J. Nat. Prod. 2018, 81, 515–523. [Google Scholar] [CrossRef]
  115. Musa, A.O.; Usman, H.K.; Titus, I.; Olorukooba, A.B.; Aliyu, A.B.; Bello, H. Analgesic and anti-inflammatory studies of methanol stem bark extract of Burkea africana Hook (Fabaceae). Trop. J. Nat. Prod. Res. 2018, 2, 375–379. [Google Scholar] [CrossRef]
  116. Namadina, M.M.; Aliyu, B.S.; Haruna, H.; Sunusi, U.; Kamal, R.M.; Balarabe, S.; Ibrahim, S.; Nuhu, Y.; Adamu, M.M.; Aminu, M.A.; et al. Pharmacognostic and acute toxicity study of Burkea africana root. J. Appl. Sci. Environ. Manag. 2020, 24, 565–573. [Google Scholar] [CrossRef]
  117. Tungmunnithum, D.; Hano, C. Cosmetic potential of Cajanus cajan (L.) Millsp: Botanical data, traditional uses, phytochemistry and biological activities. Cosmetics 2020, 7, 7040084. [Google Scholar] [CrossRef]
  118. Okeleye, B.I.; Mkwetshana, N.T.; Ndip, R.N. Evaluation of the antibacterial and antifungal potential of Peltophorum africanum: Toxicological effect on human Chang liver cell line. Sci. World J. 2013, 2013, 878735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  119. Mongalo, N.I.; Mafoko, B.J. Cassia abbreviata Oliv. A review of its ethnomedicinal uses, toxicology, phytochemistry, possible propagation techniques and pharmacology. Afr. J. Pharm. Pharmacol. 2013, 7, 2901–2906. [Google Scholar]
  120. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef]
  121. Cheikhyoussef, A.; Mumbengegwi, G.; Maroyi, A. Traditional uses, phytochemistry, and pharmacology of mopane (Colophospermum mopane) in southern African countries. In Ethnobotany: From the Traditional to Ethnopharmacology; Martinez, J.L., Maroyi, A., Wagner, M.L., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 203–220. [Google Scholar]
  122. Shankar, K.R.; Gurjar, C.; Khatoon, B.A. Pharmacological investigations of Crotalaria laburnifolia. BioMed. Pharmacol. J. 2008, 1, 239. [Google Scholar]
  123. Kiondo, F.; Feyissa, T.; Ndakidemi, P.A.; Seth, M. In vitro propagation of Dalbergia melanoxylon Guill. & Perr.: A multipurpose tree. Am. J. Res. Commun. 2014, 2, 181–194. [Google Scholar]
  124. Matata, D.Z.; Ngassapa, O.D.; Machumi, F.; Moshi, M.J. Screening of plants used as traditional anticancer remedies in Mkuranga and Same Districts, Tanzania, using brine shrimp toxicity bioassay. Evid.-Based Complement. Alt. Med. 2018, 2018, 3034612. [Google Scholar] [CrossRef] [Green Version]
  125. Najeeb, T.M.; Issa, T.O.; Mohamed, Y.S.; Ahmed, R.H.; Makhawi, A.M.; Khider, T.O. Phytochemical screening, antioxidant and antimicrobial activities of Dalberegia melanoxylon tree. World Appl. Sci. J. 2018, 36, 826–833. [Google Scholar]
  126. Bekker, M.; Malan, E.; Steenkamp, J.A.; Brandt, E.V. An isoflavanoid–neoflavonoid and an O-methylated isoflavone from the heartwood of Dalbergia nitidula. Phytochemistry 2002, 59, 415–418. [Google Scholar] [CrossRef] [PubMed]
  127. Dzoyem, J.P.; McGaw, L.J.; Eloff, J.N. In vitro antibacterial, antioxidant and cytotoxic activity of acetone leaf extracts of nine under-investigated Fabaceae tree species leads to potentially useful extracts in animal health and productivity. BMC Complement. Alt. Med. 2014, 14, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Ngonda, F.; Magombo, Z.; Mpeketula, P.; Mwatseteza, J. Extraction, characterization and pharmacological evaluation of leaves and root bark of Dalbergiella nyasae (Baker f.). Pharmacogn. J. 2012, 4, 65–72. [Google Scholar] [CrossRef]
  129. Aworet-Samseny, R.R.; Souza, A.; Kpahé, F.; Konaté, K.; Datté, J.Y. Dichrostachys cinerea (L.) Wight et Arn (Mimosaceae) hydro-alcoholic extract action on the contractility of tracheal smooth muscle isolated from guinea-pig. BMC Complement. Alt. Med. 2011, 11, 23. [Google Scholar] [CrossRef] [Green Version]
  130. Irie-N’guessan, A.G.; Kouakou, S.L.; Effo, K.E.; Adepo, A.A.; Kouakou-Siransy, N.G. Anti-inflammatory and antioxidant potential of Dichrostachys cinerea root bark, an Ivorian anti-asthmatic herbal. Int. J. Pharmacol. Res. 2017, 7, 248–254. [Google Scholar]
  131. Irie-N’guessan, A.G.; Kouakou, S.L.; Koua, K.B.; Effo, K.E.; Djadji, A.T.; Diarrassouba, N. Anticonvulsant and analgesic assessment of Dichrostachys cinerea root bark, an Ivorian anti-asthmatic herbal, in mice. J. Pharmacol. Clin. Res. 2018, 6, 1–6. [Google Scholar]
  132. Mazimba, O.; Kwape, T.; Gaobotse, G. Dichrostachys cinerea: Ethnomedicinal uses, phytochemistry and pharmacological activities: A review. Nat. Prod. J. 2022, 12, 20–30. [Google Scholar] [CrossRef]
  133. Shava, C.; Mutsaka, P.; Moyo, B.; Sithole, S.; Chitemerere, T.; Mukanganyama, S. Antibacterial and anticancer properties of Dolichos kilimandscharicus (Fabaceae). J. Biol. Act. Prod. Nat. 2016, 6, 112–135. [Google Scholar]
  134. Sithole, S.; Mushonga, P.; Nhamo, L.N.R.; Chi, G.F.; Mukanganyama, S. Phytochemical fingerprinting and activity of extracts from the leaves of Dolichos kilimandscharicus (Fabaceae) on Jurkat-T cells. BioMed. Res. Int. 2020, 2020, 1263702. [Google Scholar] [CrossRef]
  135. Tshikalange, T.E.; Meyer, J.J.M.; Hussein, A.A. Antimicrobial activity, toxicity and the isolation of a bioactive compound from plants used to treat sexually transmitted diseases. J. Ethnopharmacol. 2005, 96, 515–519. [Google Scholar] [CrossRef]
  136. Maroyi, A. Elephantorrhiza burkei Benth. (Fabaceae): Review of its medicinal uses, phytochemistry and biological activities. J. Crit. Rev. 2021, 8, 1173–1180. [Google Scholar]
  137. Maroyi, A. Elephantorrhiza elephantina: Traditional uses, phytochemistry, and pharmacology of an important medicinal plant species in southern Africa. Evid.-Based Complement. Alt. Med. 2017, 2017, 6403905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Maroyi, A. Phytochemical and ethnopharmacological review of Elephantorrhiza goetzei (Harms) Harms. Asian Pac. J. Trop. Med. 2017, 10, 107–113. [Google Scholar] [CrossRef] [PubMed]
  139. Mmbengwa, V.; Samie, A.; Gundidza, M.; Matikiti, V.; Ramalivhana, N.J.; Magwa, M.L. Biological activity and phytoconstituents of essential oil from fresh leaves of Eriosema englerianum. Afr. J. Biotech. 2009, 8, 361–364. [Google Scholar]
  140. Nasimolo, J.; Kiama, S.G.; Gathumbi, P.K.; Makanya, A.N.; Kagira, J.M. Erythrina abyssinica prevents meningoencephalitis in chronic Trypanosoma brucei brucei mouse model. Metab. Brain Dis. 2014, 29, 509–519. [Google Scholar] [CrossRef]
  141. Munodawafa, T.; Moyo, S.; Chipurura, B.; Chagonda, L. Brine shrimp lethality bioassay of some selected Zimbabwean traditional medicinal plants. Int. J. Phytopharm. 2016, 7, 229–232. [Google Scholar]
  142. Chitopo, W.; Muchacha, I.; Mangoyi, R. Evaluation of the antimicrobial activity of Erythrina abyssinica leaf extract. J. Microb. Biochem. Technol. 2019, 11, 2. [Google Scholar]
  143. Macharia, F.K.; Mwangi, P.W.; Yenesew, A.; Bukachi, F.; Nyaga, N.M.; Wafula, D.K. Hepatoprotective effects of Erythrina abyssinica Lam ex DC against non alcoholic fatty liver disease in sprague dawley rats. BioRxiv 2019, 11, 577–607. [Google Scholar]
  144. Obakiro, S.B.; Kiprop, A.; Kigondu, E.; K’Owino, I.; Odero, M.P.; Manyim, S.; Omara, T.; Namukobe, J.; Owor, R.O.; Gavamukulya, Y.; et al. Traditional medicinal uses, phytoconstituents, bioactivities, and toxicities of Erythrina abyssinica Lam. ex DC. (Fabaceae): A systematic review. Evid.-Based Complement. Alt. Med. 2021, 2021, 5513484. [Google Scholar] [CrossRef]
  145. Bedane, K.B.; Masesane, I.B.; Majinda, R.R.T. New isoflavans from the root bark of Erythrina livingstoniana. Phytochem. Lett. 2016, 17, 55–58. [Google Scholar] [CrossRef]
  146. Bedane, K.B.; Kusari, S.; Masesane, I.B.; Spiteller, M.; Majinda, R.R.T. Flavanones of Erythrina livingstoniana with antioxidant properties. Fitoterapia 2016, 108, 48–54. [Google Scholar] [CrossRef] [PubMed]
  147. Zarin, M.A.; Wan, H.Y.; Isha, A.; Armania, N. Antioxidant, antimicrobial and cytotoxic potential of condensed tannins from Leucaena leucocephala hybrid-Rendang. Food Sci. Hum. Wellness 2016, 5, 65–75. [Google Scholar] [CrossRef] [Green Version]
  148. Maroyi, A. A review of botany, medicinal uses, phytochemistry and biological activities of Erythrophleum africanum. J. Pharm. Sci. Res. 2019, 11, 3559–3564. [Google Scholar]
  149. Son, N.T. Genus Erythrophleum: Botanical description, traditional use, phytochemistry and pharmacology. Phytochem. Rev. 2019, 18, 571–599. [Google Scholar] [CrossRef]
  150. Abdulqawi, L.N.A.; Quadri, S.A. In-vitro antibacterial activities of extracts of Yemeni plants Myrtus communis L. and Flemingia grahamiana Wight & Arn. Int. J. Pharm. Sci. Res. 2020, 12, 956–962. [Google Scholar]
  151. Abdulqawi, L.N.A.; Quadri, S.A.; Islam, S.; Santra, M.K.; Farooqui, M. Chemical compositions and anticancer activity of Yemeni plant Flemingia grahamiana Wight & Arn. and Myrtus communis L. Trop. J. Nat. Prod. Res. 2021, 5, 877–882. [Google Scholar]
  152. Ndung’u, J.W.; Anino, E.; Njuguna, D.K.; Mwangangi, R.; Jepkorir, M.; Mbugua, R.W.; Chepng’etich, J.; Ngule, C.M.; Mwitari, P. Phytochemical screening and synergistic antiproliferative activity against selected cancer cell lines of Moringa oleifera and Indigofera arrecta leaf extracts. Eur. J. Med. Plants 2018, 23, 1–11. [Google Scholar] [CrossRef]
  153. Gerometta, E.; Grondin, I.; Smadja, J.; Frederich, M.; Gauvin-Bialecki, A. A review of traditional uses, phytochemistry and pharmacology of the genus Indigofera. J. Ethnopharmacol. 2020, 253, 112608. [Google Scholar] [CrossRef]
  154. Sunita, B.; Jyoti, N. Phytochemical screening and bioevaluation of Indigofera astragalina L. Adv. Plant Sci. 2014, 27, 137–139. [Google Scholar]
  155. Mouafon, I.L.; Tiani, G.L.M.; Mountessou, B.Y.G.; Lateef, M.; Ali, M.S.; Green, I.R.; Ngadjui, B.T.; Kouam, S.F. Chemical constituents of the medicinal plant Indigofera spicata Forsk (Fabaceae) and their chemophenetic significance. Biochem. Syst. Ecol. 2021, 95, 104230. [Google Scholar] [CrossRef]
  156. Patent. 2015/05/27. KR-101523434-B1. A Composition Comprising Julbernardia globiflora Extracts having Anti-Cancer Activity. Available online: https://patents.google.com/patent/KR101561736B1/en (accessed on 13 January 2023).
  157. Van Wyk, B.-E.; Albrecht, C. A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J. Ethnopharmacol. 2008, 119, 620–629. [Google Scholar] [CrossRef]
  158. Zayed, M.Z.; Samling, B. Phytochemical constituents of the leaves of Leucaena leucocephala from Malaysia. Int. J. Pharm. Pharm. Sci. 2016, 8, 174–179. [Google Scholar] [CrossRef]
  159. Dzoyem, J.P.; Aro, A.O.; McGaw, L.J.; Eloff, J.N. Antimycobacterial activity against different pathogens and selectivity index of fourteen medicinal plants used in southern Africa to treat tuberculosis and respiratory ailments. S. Afr. J. Bot. 2016, 102, 70–74. [Google Scholar] [CrossRef]
  160. Deivasigamani, R. Phytochemical analysis of Leucaena leucocephala on various extracts. J. Phytopharmacol. 2018, 7, 480–482. [Google Scholar] [CrossRef]
  161. Zayed, M.Z.; Sallam, S.M.A.; Shetta, N.D. Review article on Leucaena leucocephala as one of the miracle timber trees. Int. J. Pharm. Pharm. Sci. 2018, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
  162. Bessong, P.O.; Obi, C.L.; Andréola, M.-L.; Rojas, L.B.; Pouységu, L.; Igumbor, E.; Meyer, J.J.M.; Quideau, S.; Litvak, S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005, 99, 83–91. [Google Scholar] [CrossRef]
  163. Samie, A.; Obi, C.L.; Bessong, P.O.; Namrita, L. Activity profiles of fourteen selected medicinal plants from Rural Venda communities in South Africa against fifteen clinical bacterial species. Afr. J. Biotech. 2005, 4, 1443–1451. [Google Scholar]
  164. Mazimba, O.; Masesane, I.B.; Majinda, R.R.T.; Muzila, A. GC-MS analysis and antimicrobial activities of the non-polar extracts of Mundulea sericea. S. Afr. J. Chem. 2012, 65, 50–52. [Google Scholar]
  165. Khyade, M.S.; Waman, M.B. Chemical profile and antioxidant properties of Mundulea sericea. Pharmacogn. J. 2017, 9, 213–220. [Google Scholar] [CrossRef] [Green Version]
  166. Vongtau, H.O.; Amos, S.; Binda, L.; Kapu, S.D.; Gamaniel, K.S.; Kunle, O.F.; Wambebe, C. Pharmacological effects of the aqueous extract of Neorautanenia mitis in rodents. J. Ethnopharmacol. 2000, 72, 207–214. [Google Scholar] [CrossRef]
  167. Lasisi, A.A.; Adesomoju, A. Neoraudiol, a new isoflavonoid and other antimicrobial constituents from the tuberous root of Neorautanenia mitis (A. Rich) Verdcourt. J. Saudi Chem. Soc. 2012, 19, 404–409. [Google Scholar] [CrossRef] [Green Version]
  168. Nyamboki, D.K.; Wanga, L.A. Review of the phytochemical and pharmacological studies of the genus Ormocarpum. Pharmacogn. Rev. 2022, 16, 95–99. [Google Scholar] [CrossRef]
  169. Chukwujekwu, J.C.; Amoo, S.O.; Van Staden, J. Antimicrobial, antioxidant, mutagenic and antimutagenic activities of Distephanus angulifolius and Ormocarpum trichocarpum. J. Ethnopharmacol. 2013, 148, 975–979. [Google Scholar] [CrossRef] [PubMed]
  170. Kilonzo, M.; Rubanza, C.; Richard, U.; Sangiwa, G. Antimicrobial activities and phytochemical analysis of extracts from Ormocarpum trichocarpum (Taub.) and Euclea divinorum (Hiern) used as traditional medicine in Tanzania. Tanzan. J. Health Res. 2019, 21, 1–12. [Google Scholar] [CrossRef]
  171. Chalo, D.M.; Lukhoba, C.; Fidahussein, D.S.; Nguta, J.M. Antimicrobial activity, toxicity and phytochemical screening of selected medicinal plants of Losho, Narok County, Kenya. Biofarmasi Rumphius J. Nat. Prod. Biochem. 2017, 15, 29–43. [Google Scholar] [CrossRef] [Green Version]
  172. Mongalo, N.I. Peltophorum africanum Sond [Mosetlha]: A review of its ethnomedicinal uses, toxicology, phytochemistry and pharmacological activities. J. Med. Plants Res. 2013, 7, 3484–3491. [Google Scholar]
  173. Mazimba, O. Pharmacology and phytochemistry studies in Peltophorum africanum. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 145–153. [Google Scholar] [CrossRef] [Green Version]
  174. Adebayo, S.A.; Steel, H.C.; Shai, L.J.; Eloff, J.N. Investigation of the mechanism of anti-inflammatory action and cytotoxicity of a semipurified fraction and isolated compounds from the leaf of Peltophorum africanum (Fabaceae). J. Evid.-Based Complement. Alt. Med. 2017, 22, 840–845. [Google Scholar] [CrossRef] [Green Version]
  175. Abu-Reidah, I.M.; Arráez-Román, D.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phytochemical characterisation of green beans (Phaseolus vulgaris L.) by using highperformance liquid chromatography coupled with time-of-flight mass spectrometry. Phytochem. Anal. 2013, 24, 105–116. [Google Scholar] [CrossRef]
  176. Ramadhani, U.P.; Chandra, B.; Rivai, H. Overview of phytochemistry and pharmacology of chickpeas (Phaseolus vulgaris). World J. Pharm. Pharm. Sci. 2020, 9, 442–461. [Google Scholar]
  177. Ntsoelinyane, P.H.; Mashele, S.S.; Manduna, I.T. The anticancer, antioxidant and phytochemical screening of Philenoptera violacea and Xanthocercis zambesiaca leaf, flower and twig extracts. Int. J. Pharmacol. Res. 2014, 4, 100–105. [Google Scholar]
  178. Adamu, M.A.; Yahaya, T.A.; Abigail, B.; Adeola, S.O. Pharmacological effects of Piliostigma thonningii leaf extract on anxiety-like behaviour and spatial memory in Wistar albino rats. Phytopharmacology 2013, 4, 561–568. [Google Scholar]
  179. Afolayan, M.; Srivedavyasasri, R.; Asekun, O.T.; Familoni, O.B.; Orishadipe, A.; Zulfiqar, F.; Ibrahim, M.A.; Ross, S.A. Phytochemical study of Piliostigma thonningii, a medicinal plant grown in Nigeria. Med. Chem. Res. 2018, 27, 2325–2330. [Google Scholar] [CrossRef] [PubMed]
  180. Alagbe, J.O.; Sharma, D.; Xing, L. Effect of aqueous Piliostigma thonningii leaf extracts on the heamatological and serum biochemical indices of broiler chicken. Noble Int. J. Agric. Food Technol. 2019, 1, 62–69. [Google Scholar]
  181. Moriasi, G.A.; Ireri, A.M.; Ngugi, M.P. In vivo cognitive-enhancing, ex vivo malondialdehyde-lowering activities and phytochemical profiles of aqueous and methanolic stem bark extracts of Piliostigma thonningii (Schum.). Int. J. Alzheimer’s Dis. 2020, 6, 1367075. [Google Scholar] [CrossRef] [Green Version]
  182. Olela, B.; Mbaria, J.; Wachira, T.; Moriasi, G. Acute oral toxicity and anti-inflammatory and analgesic effects of aqueous and methanolic stem bark extracts of Piliostigma thonningii (Schumach.). Evid.-Based Complement. Alt. Med. 2020, 2020, 5651390. [Google Scholar]
  183. Dzoyem, J.P.; Tchamgoue, J.; Tchouankeu, J.C.; Kouam, S.F.; Choudhary, M.I.; Bakowsky, U. Antibacterial activity and cytotoxicity of flavonoids compounds isolated from Pseudarthria hookeri Wight & Arn. (Fabaceae). S. Afr. J. Bot. 2018, 114, 100–103. [Google Scholar]
  184. Chowdhury, S.R.; Haldar, S.; Bhar, R.; Das, S.; Saha, A.; Pal, K.; Bandyopadhyay, S.; Paul, J. Pterocarpus angolensis: Botanical, chemical and pharmacological review of an endangered medicinal plant of India. J. Exp. Biol. Agric. Sci. 2022, 10, 150–156. [Google Scholar] [CrossRef]
  185. Sigidi, M.T.; Anokwuru, C.P.; Zininga, T.; Tshisikhawe, M.P.; Shonhai, A.; Ramaite, I.D.I.; Traoré, A.N.; Potgieter, N. Comparative in vitro cytotoxic, anti-inflammatory and anti-microbiological activities of two indigenous Venda medicinal plants. Transl. Med. Commun. 2016, 1, 9. [Google Scholar] [CrossRef] [Green Version]
  186. Chipinga, J.V. Efficacy of Pterocarpus angolensis crude extracts against Candida krusei, Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli. Malawi Med. J. 2018, 30, 219–224. [Google Scholar] [CrossRef] [Green Version]
  187. Santos, E.S.; Luís, Â.; Gonçalves, J.; Rosado, T.; Pereira, L.; Gallardo, E.; Duarte, A.P. Julbernardia paniculata and Pterocarpus angolensis: From ethnobotanical surveys to phytochemical characterization and bioactivities evaluation. Molecules 2020, 25, 1828. [Google Scholar] [CrossRef] [PubMed]
  188. Arbain, D.; Saputri, G.A.; Syahputra, G.S.; Widiyastuti, Y.; Susanti, D.; Taher, M. Genus Pterocarpus: A review of ethnopharmacology, phytochemistry, biological activities, and clinical evidence. J. Ethnopharmacol. 2021, 278, 114316. [Google Scholar] [CrossRef] [PubMed]
  189. Lall, N.; Van Staden, A.B.; Rademan, S.; Lambrechts, I.; De Canha, M.N.; Mahore, J.; Winterboer, S.; Twilley, D. Antityrosinase and anti-acne potential of plants traditionally used in the Jongilanga community in Mpumalanga. S. Afr. J. Bot. 2019, 126, 241–249. [Google Scholar] [CrossRef]
  190. Kahaliw, W.; Aseffa, A.; Abebe, M.; Teferi, M.; Engidawork, E. Evaluation of the antimycobacterial activity of crude extracts and solvent fractions of selected Ethiopian medicinal plants. BMC Complement. Alt. Med. 2017, 17, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  191. Yohannes, T.; Teklay, S.; Bizualem, E.; Gebrehiwot, S. In-vitro antibacterial activity of Pterolobium stellatum leaves extract against selected standard bacteria. J. Microbiol. Antimicrob. 2020, 14, 1–8. [Google Scholar]
  192. Zulu, R.M.; Grayer, R.J.; Ingham, J.L.; Harbonne, J.B.; Eagles, J. Flavonoids from the roots of two Rhynchosia species used in the preparation of a Zambian beverage. J. Sci. Food Agric. 1994, 65, 347–354. [Google Scholar] [CrossRef]
  193. Mwale, M.M. Microbiological Quality and Safety of the Zambian Fermented Cereal Beverage: Chibwantu. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2014. [Google Scholar]
  194. Mothogoane, M.S. Studies on the Medicinally Important Rhynchosia (Phaseoleae, Fabaceae) Species: Taxonomy, Ethnobotany, Phytochemistry and Antimicrobial Activity. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2019. [Google Scholar]
  195. Haule, E.E.; Moshi, M.J.; Nondo, R.S.; Mwangomo, D.T.; Mahunnah, R.L. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model. BMC Res. Notes 2012, 5, 546. [Google Scholar] [CrossRef] [Green Version]
  196. Monzote, L.; Piñón, A.; Setzer, W.N. Antileishmanial potential of tropical rainforest plant extracts. Medicines 2014, 1, 32–55. [Google Scholar] [CrossRef] [Green Version]
  197. Du, K.; Marston, A.; Van Vuuren, S.F.; Van Zyl, R.L.; Coleman, C.; Zietsman, P.C.; Bonnet, S.L.; Ferreira, D.; Van der Westhuizen, J.H. Flavonolacyl glucosides from the aril of Schotia brachypetala Sond. and their antioxidant, antibacterial and antimalarial activities. Phytochem. Lett. 2014, 10, 123–128. [Google Scholar] [CrossRef]
  198. Sobeh, M.; El Hawary, E.; Peixoto, H.; Labib, R.M.; Handoussa, H.; Swilam, N.; El-Khatib, A.H.; Sharapov, F.; Mohamed, T.; Krstin, S.; et al. Identification of phenolic secondary metabolites from Schotia brachypetala Sond. (Fabaceae) and demonstration of their antioxidant activities in Caenorhabditis elegans. PeerJ 2016, 4, e2404. [Google Scholar] [CrossRef] [Green Version]
  199. Maroyi, A. Review of ethnopharmacology and phytochemistry of Acacia ataxacantha. Trop. J. Pharm. Res. 2018, 17, 2301–2308. [Google Scholar] [CrossRef] [Green Version]
  200. Mutai, C.; Abatis, D.; Vagias, C.; Moreau, D.; Roussakis, C.; Roussis, V. Cytotoxic lupane-type triterpenoids from Acacia mellifera. Phytochemistry 2004, 65, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
  201. Mutai, C.; Bii, C.; Vagias, C.; Abatis, D.; Roussis, V. Antimicrobial activity of Acacia mellifera extracts and lupane triterpenes. J. Ethnopharmacol. 2009, 123, 143–148. [Google Scholar] [CrossRef]
  202. Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Effect of soil type: Qualitative and quantitative analysis of phytochemicals in some browse species leaves found in savannah biome of South Africa. Molecules 2022, 27, 1462. [Google Scholar] [CrossRef] [PubMed]
  203. Bodede, O.S. Phytochemical Investigation and Tissue Culture Studies on the South African Knob Trees, Zanthoxylum capense and Senegalia nigrescens. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2017. [Google Scholar]
  204. Alemayehu, I.; Tadesse, S.; Mammo, F.; Kibret, B.; Endale, M. Phytochemical analysis of the roots of Senna didymobotrya. J. Med. Plants Res. 2015, 9, 900–907. [Google Scholar]
  205. Jeruto, P.; Arama, P.F.; Anyango, B.; Maroa, G. Phytochemical screening and antibacterial investigations of crude methanol extracts of Senna didymobotrya (Fresen.) H.S. Irwin & Barneby. J. Appl. Biosci. 2017, 114, 11357–11367. [Google Scholar]
  206. Dabai, Y.U.; Kawo, A.H.; Aliyu, R.M. Phytochemical screening and antibacterial activity of the leaf and root extracts of Senna italica. Afr. J. Pharm. Pharmacol. 2012, 6, 914–918. [Google Scholar] [CrossRef] [Green Version]
  207. Adjou, E.S.; Koudoro, A.Y.; Nonviho, G.; Ahoussi, E.D.; Sohounhloue, D.C.K. Phytochemical profile and potential pharmacological properties of leaves extract of Senna italica Mill. Am. J. Pharmacol. Sci. 2021, 9, 36–39. [Google Scholar]
  208. Alshehri, M.M.; Quispe, C.; Herrera-Bravo, J.; Sharifi-Rad, J.; Tutuncu, S.; Aydar, E.F.; Topkaya, C.; Mertdinc, Z.; Ozcelik, B.; Aital, M.; et al. A review of recent studies on the antioxidant and anti-infectious properties of Senna plants. Oxidative Med. Cell. Longev. 2022, 2022, 6025900. [Google Scholar] [CrossRef]
  209. Yadav, J.P.; Arya, V.; Yadav, S.; Panghal, M.; Kumar, S.; Dhankhar, S. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia 2010, 81, 223–230. [Google Scholar] [CrossRef]
  210. Arana-Argaez, V.E.; Domínguez, F.; Moreno, D.A.; Isiordia-Espinoza, M.A.; Lara-Riegos, J.C.; Ceballos-Gongora, E.; Zapata-Morales, J.R.; Franco-de la Torre, L.; Sanchez-Enriquez, S.; Alonso-Castro, A.J. Anti-inflammatory and antinociceptive effects of an ethanol extract from Senna septemtrionalis. Inflammopharmacology 2020, 28, 541–549. [Google Scholar] [CrossRef] [PubMed]
  211. Oladeji, O.S.; Adelowo, F.E.; Oluyori, A.P. The genus Senna (Fabaceae): A review on its traditional uses, botany, phytochemistry, pharmacology and toxicology. S. Afr. J. Bot. 2021, 138, 1–32. [Google Scholar] [CrossRef]
  212. Li, J. Bioactive Constituents of Aronia melanocarpa and Sphenostylis marginata ssp. erecta. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2014. [Google Scholar]
  213. De Caluwe, E.; Halamoua, K.; Van Damme, P. Tamarindus indica L.: A review of traditional uses, phytochemistry and pharmacology. Afr. Focus 2010, 23, 53–83. [Google Scholar] [CrossRef]
  214. Mapesa, W.A.; Waweru, M.P.; Bukachi, F.; Wafula, K.D. Aqueous tuber extracts of Tylosema fassoglense (Kotschy ex Schweinf.) Torre and Hillc. (Fabaceae) possess significant in-vivo antidiarrheal activity and ex-vivo spasmolytic effect possibly mediated by modulation of nitrous oxide system, voltage-gated calcium channels, and muscarinic receptors. Front. Pharmacol. 2021, 12, 636879. [Google Scholar]
  215. Kudamba, A.; Lubowa, M.; Kafeero, H.M.; Okurut, S.A.; Nsubuga, H.; Abiti, T.; Walusansa, A.; Kayendeke, J.; Nanyingi, H.; Mubajje, M.S.; et al. Phytochemical profiles of Albizia coriaria, Azadirachta indica, and Tylosema fassoglensis used in the management of cancers in Elgon sub-region. Fortune J. Health Sci. 2022, 5, 461–471. [Google Scholar] [CrossRef]
  216. Maroyi, A. Acacia karroo Hayne: Ethnomedicinal uses, phytochemistry and pharmacology of an important medicinal plant in southern Africa. Asian Pac. J. Trop. Med. 2017, 10, 351–360. [Google Scholar] [CrossRef] [PubMed]
  217. Rather, L.J.; Shahid-ul, I.; Mohammad, F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sust. Chem. Pharm. 2015, 2, 12–30. [Google Scholar] [CrossRef]
  218. McGaw, L.J.; Jäger, A.K.; Van Staden, J. Prostaglandin synthesis inhibitory activity in Zulu, Xhosa and Sotho medicinal plants. Phytother. Res. 1997, 11, 113–117. [Google Scholar] [CrossRef]
  219. Kirabo, I. Antimicrobial and Phytochemical Properties of Plant Extracts from Sterculia africana, Acacia sieberiana and Cassia abbreviata ssp. abbreviata. Master’s Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2017. [Google Scholar]
  220. Ngaffo, C.M.N.; Tchangna, R.S.V.; Mbaveng, A.T.; Kamga, J.; Harvey, F.M.; Ngadjui, B.T.; Bochet, C.G.; Kuete, V. Botanicals from the leaves of Acacia sieberiana had better cytotoxic effects than isolated phytochemicals towards MDR cancer cells lines. Heliyon 2020, 6, e05412. [Google Scholar] [CrossRef]
  221. Dinore, J.M.; Patil, H.S.; Farooqui, S.; Pradhan, V.; Farooqui, M. GC/MS and LC/MS phytochemical analysis of Vigna unguiculata L. Walp pod. Chem. Biodivers. 2023, 20, e202200048. [Google Scholar]
  222. Sayeed, V.K.I.; Satish, S.; Kumar, A.; Hegde, K. Pharmacological activities of Vigna unguiculata (L) Walp: A review. Int. J. Pharm. Chem. Res. 2017, 3, 44–49. [Google Scholar]
  223. Hus, S.; Mazbah Udd, A.H.M.; Azmerin, M.; Tohidul Am, M.; Hasan, M.; Das Aka, T.; Mazumder, T. An in vivo and in vitro evaluation of anti-inflammatory action of seeds of Vigna unguiculata available in Bangladeshi region. J. Appl. Sci. 2019, 19, 62–67. [Google Scholar]
  224. Zaheer, M.; Ahmed, S.; Hassan, M.M. Vigna unguiculata (L.) Walp. (Papilionaceae): A review of medicinal uses, phytochemistry and pharmacology. J. Pharmacogn. Phytochem. 2020, 9, 1149–1152. [Google Scholar]
  225. Avanza, M.V.; Álvarez-Rivera, G.; Cifuentes, A.; Mendiola, J.A.; Ibáñez, E. Phytochemical and functional characterization of phenolic compounds from cowpea (Vigna unguiculata (L.) Walp.) obtained by green extraction technologies. Agronomy 2021, 11, 162. [Google Scholar] [CrossRef]
  226. Mukanganyama, S.; Dumbura, S.C.; Mampuru, L. Anti-proliferative effects of plant extracts from Zimbabwean medicinal plants against human Leukaemic cell lines. Afr. J. Plant Sci. Biotech. 2012, 6, 14–20. [Google Scholar]
  227. Mangoyi, R.; Chitemerere, T.A.; Chimponda, T.; Chirisa, E. Multiple anti-infective properties of selected plant species from Zimbabwe. In Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics; Tiwari, B.K., Norton, T., Holden, N.M., Eds.; John Wiley & Sons Ltd.: London, UK, 2014; pp. 179–190. [Google Scholar]
  228. Selemani, M.A.; Kazingizi, L.F.; Manzombe, E.; Bishi, L.Y.; Mureya, C.; Gwata, T.T.; Rwere, F. Phytochemical characterization and in vitro antibacterial activity of Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa bark extracts. S. Afr. J. Bot. 2021, 142, 344–351. [Google Scholar]
Figure 1. Flow diagram showing the identification and screening of the articles used in this review.
Figure 1. Flow diagram showing the identification and screening of the articles used in this review.
Plants 12 01255 g001
Figure 2. Numbers of species and reports of the use of Fabaceae genera with medicinal uses in Zimbabwe.
Figure 2. Numbers of species and reports of the use of Fabaceae genera with medicinal uses in Zimbabwe.
Plants 12 01255 g002
Figure 3. Characteristics of Fabaceae species used as traditional medicines in Zimbabwe. (A): Growth habit as a pie diagram and (B): Plant parts used presented as a bar chart.
Figure 3. Characteristics of Fabaceae species used as traditional medicines in Zimbabwe. (A): Growth habit as a pie diagram and (B): Plant parts used presented as a bar chart.
Plants 12 01255 g003
Figure 4. Fabaceae species with eight or more usage reports cited in at least four references.
Figure 4. Fabaceae species with eight or more usage reports cited in at least four references.
Plants 12 01255 g004
Table 1. Medicinal Fabaceae plants of Zimbabwe.
Table 1. Medicinal Fabaceae plants of Zimbabwe.
Plant TaxaHabitParts UsedMedicinal UsesLiterature RecordsReferences
Abrus precatorius L. subsp. africanus Verdc. +1ClimberLeaves, roots and seedsBilharzia (schistosomiasis), sexually transmitted infections (STIs) and lucky charms4[25,26,27,28]
Aeschynomene mimosifolia Vatke 1ShrubRootsChest pains and headache1[25]
Afzelia quanzensis Welw. 2TreeBark, fruits and root barkBloated stomach, blood pressure, depressed fontanelle, haemorrhoids and stomach problems, lucky charms and painful udders in cattle2[25,28]
Albizia amara (Roxb.) Boivin 2TreeBark, leaves and rootsAphrodisiac, constipation, diarrhoea, dilating the birth canal, dysentery, oedema, painful placenta, palpitations, pneumonia, purgative, stomach problems, tuberculosis (TB), warts, and protection against witchcraft5[25,28,29,30,31]
Albizia adianthifolia (Schumach.) W.Wight 2TreeRootsEthnoveterinary medicine2[32,33]
Albizia anthelmintica (A.Rich.) Brongn. 2ShrubBarkWounds1[25]
Albizia antunesiana Harms 2TreeBark, bark sap, leaves and rootsAbdominal pains, aphrodisiac, bilharzia, constipation, depressed fontanelle, diarrhoea, gonorrhoea, infertility in women, menstrual problems, painful legs, painful uterus, preventing abortion, purgative, sexually transmitted diseases (STDs), sore eyes, sore throat and swollen legs8[25,26,27,28,34,35,36,37]
Albizia tanganyicensis Baker 2TreeBark and rootsCough and swollen legs1[25]
Albizia versicolor Welw. ex Oliv. 2TreeRootsErectile dysfunction, infertility in men and sexual impotence3[25,28,29]
*Arachis hypogaea L. 1HerbLeavesCataracts, infertility in women and sore eyes1[25]
Baikiaea plurijuga Harms 2TreeBarkBloated stomach and haemorrhoids1[28]
Bauhinia galpinii N.E.Br. 3ShrubRoots and seedsInfertility and menstrual problems2[25,28]
Bauhinia petersiana Bolle 3TreeRootsDepressed fontanelle, infertility in women, menstrual problems and preventing witchcraft2[25,28]
Bobgunnia madagascariensis (Desv.) J.H. Kirkbr. & Wiersema 1TreeFruits, pods and rootsAbdominal pains, convulsions, diarrhoea, emetic, earache, headache, infertility in men and women, oedema, stomach problems, syphilis and wounds3[25,28,34]
Bolusanthus speciosus (Bolus) Harms 1TreeLeavesBile emesis and emetic1[25]
Brachystegia boehmii Taub. 2TreeBark, leaves, roots and twigsAbdominal pains, antivenom, back pain, cataracts, heart problems, mental problems, sore eyes, STIs, toothache, constipation and lumbago in ruminants5[25,28,34,36,37]
Brachystegia spiciformis Benth. 2TreeBark, fibre and rootsConstipation, diarrhoea, mental problems, pain, sore eyes and wounds3[25,28,38]
Burkea africana Hook. 2TreeBark, leaves and rootsAbdominal pains, anti-inflammatory, bilharzia, cancer, diarrhoea, fever, immune system booster, infections, oedema and ulcers3[25,26,39]
* Cajanus cajan (L.) Huth. 1ShrubLeavesEarache1[25]
Cassia abbreviata Oliv. 2TreeBark, fruits, roots and twigsAbdominal pains, abortifacient, aphrodisiac, backache, bilharzia, cancer, constipation, diarrhoea, gonorrhoea, hydrocele, lucky charms, malaria, menstrual problems, stomach pains, STDs and venereal diseases11[25,26,27,28,34,35,36,37,38,40,41,42]
Colophospermum mopane (J.Kirk ex Benth.) J.Léonard 2TreeBark, charcoal, leavesConstipation, diarrhoea, snake bite and diarrhoea in cattle3[25,28,38]
Crotalaria laburnifolia L. 1HerbRootsCough1[25]
Crotalaria rogersii Bak.f. 1HerbRootsInfertility in women and lucky charms1[25]
Dalbergia melanoxylon Guill. & Perr. 1ShrubBarkAsthma and wounds3[37,38,43]
Dalbergia nitidula Welw. ex Bak. 1ShrubBark and rootsAphrodisiac, driving away bad spirits, preventing witchcraft and ulcers1[25]
Dalbergiella nyasae Bak.f. 1TreeLeaves and rootsTetanic contractions and driving away maggots from wounds1[25]
Dichrostachys cinerea (L.) Wight & Arn. 2TreeLeaves, fruits or rootsAbdominal pains, antivenom, backache, cancer, colic, contraceptive, cough, depressed fontanelle, diarrhoea, dilating the birth canal, epistaxis, infertility in women, influenza, inducing labour, mental problems, oedema, postpartum, scabies, scorpion stings, STDs, stomach problems, syphilis, urticaria (skin swellings) and wounds8[25,28,29,31,34,35,38,40]
Dolichos kilimandscharicus Taub. 1HerbTubersAbdominal pains, antiemetic, constipation, diarrhoea and measles1[25]
Elephantorrhiza burkei Benth. 2ShrubRootsAntiemetic, constipation, increasing blood in the body and postpartum conditions1[25]
Elephantorrhiza elephantina (Burch.) Skeels 2ShrubRootsAbdominal pains, aphrodisiac, infertility in women, postpartum conditions and reducing the size of the vagina3[25,34,44]
Elephantorrhiza goetzei (Harms) Harms 2ShrubBark, rhizomes or rootsAbdominal pains, anthelmintic, backache, bilharzia, bloating, blood pressure, boosting appetite, constipation, cough, depressed fontanelle, diarrhoea, dilating the birth canal, erectile function, fever, gonorrhoea, heart pains, human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) opportunistic infections, increasing blood in the body, infertility, influenza, malaria, painful uterus, postpartum conditions, rash, STIs and stomach problems11[25,26,27,28,31,34,35,36,37,38,41]
Elephantorrhiza suffruticosa Schinz 2ShrubRootsConstipation and diarrhoea1[25]
Eriosema englerianum Harms 1ShrubLeaves and rootsAphrodisiac, backache, bilharzia, blood pressure, infertility in women, menstrual problems, painful uterus, venereal disease and wasting in infants3[25,27,31]
Eriosema rhynchosioides Bak. 1ShrubRootsTonic1[25]
Erythrina abyssinica Lam. ex DC. 1TreeBark, leaves and rootsAbdominal pains, backache, bilharzia, blood pressure, cough, cracked heels, diarrhoea, gonorrhoea, lucky charms, mental problems, STDs, stop bad dreams, wasting in infants, wounds and wounds in the mouth9[25,26,27,28,29,31,36,37,40]
Erythrina livingstoniana Bak. 1TreeRootsHaematuria1[25]
Erythrina spp. 1 RootsBackache and manic disorders1[29]
Erythrophleum africanum (Benth.) Harms 2TreeBarkStomach pains1[25]
Erythrophleum suaveolens (Guill. & Perr.) Brenan 2TreeBarkPreventing witchcraft1[25]
Flemingia grahamiana Wight & Arry 1HerbRootsDiarrhoea1[25]
Grona barbata (L.) H.Ohashi & K.Ohashi 1HerbRootsAbortifacient, dilating the birth canal, epilepsy, preventing abortion, postpartum conditions, sore eyes and wasting in infants1[25]
Indigofera antunesiana Harms 1ShrubRootsMenstrual problems1[25]
Indigofera arrecta Hochst. ex A.Rich. 1ShrubLeaves and rootsAbdominal pains, abortifacient, convulsions, diuretic, gonorrhoea, infertility, purgative, sore eyes, stomach pains and de-ticking dogs2[25,35]
Indigofera astragalina DC. 1HerbRootsDizziness1[25]
Indigofera demissa Taub. 1HerbRootsAbortifacient1[25]
Indigofera hilaris Eckl. & Zeyh. 1HerbRootsPainful legs1[25]
Indigofera hirsuta L. 1ShrubRootsDizziness1[34]
Indigofera rhynchocarpa Bak. 1ShrubRootsAbdominal pains and menstrual problems1[25,34]
Indigofera setiflora Baker 1HerbRootsDiarrhoea and stomach problems3[28,37,43]
Indigofera spicata Forssk. 1HerbRootsPanacea1[25]
Indigofera vicioides Jaub. & Spach. ssp. rogersii (R.E.Fr.) Schrire 1ShrubRootsDepressed fontanelle1[25]
Indigofera wildiana J.B.Gillett 1ShrubRootsPreventing abortion1[25]
Indigofera spp. 1ShrubLeaves and rootsAbdominal pains, antenatal conditions, chest pains, coughs, driving away bad spirits and infertility in women 2[25,34]
Julbernardia globiflora (Benth.) Troupin 2TreeBark, bark fibre, leaves and rootsConstipation, diarrhoea, reducing the size of the vagina, snakebite, sore eyes, stomach problems and diarrhoea in cattle3[25,28,38]
* Lessertia frutescens (L.) Goldblatt & J.C.Manning 1 (Syn. Sutherlandia frutescens (L.) W.T,Aiton)ShrubRootsAnalgesia, cancer, colds, diabetes, fever, influenza and haemorrhoids1[39]
* Leucaena leucocephala (Lam.) DeWit 2ShrubBark, leaves and seedsColds, influenza and TB1[45]
Macrotyloma densiflorum (Welw. ex Bak.) Verdc. 1ShrubLeavesAbdominal pains1[25]
Mucuna coriacea Baker 1ClimberRootsBilharzia1[26]
Mundulea sericea (Willd.) A.Chev. 1ShrubRootsInfertility and sexual impotence2[25,29]
Neorautanenia mitis (A.Rich.) Verdc. 1ClimberBulbsFever and de-ticking dogs2[25,28]
Ormocarpum kirkii S.Moore 1TreeLeavesDepressed fontanelle, dilating the birth canal and stomach pains3[28,31,34]
Ormocarpum trichocarpum (Taub.) Engl. 1ShrubLeaves and rootsAllergies, depressed fontanelle, prolonged labour and stomach problems2[25,29]
Peltophorum africanum Sond. 2TreeBark, leaves and rootsAbdominal pains, bilharzia, blood purification, chest pains, diaphoretic, diarrhoea, diuretic, driving away evil spirits, dropsy, eye problems, headache, infertility in women, laxative, mental problems, nausea, oedema, panacea, preventing abortion, sore eyes, sore throat, STDs, STIs, syphilis, toothache and venereal diseases10[25,26,27,29,34,35,36,37,38,46]
Pericopsis angolensis (Baker) Meeuwen 1TreeBark or rootsAbdominal pains, antiemetic, backache, cancer, cough, diarrhoea, dyspnoea, oedema, sore throats and wounds3[25,28,38]
* Phaseolus vulgaris L. 2ShrubRootsBilharzia and postpartum conditions2[26,34]
Philenoptera violacea (Klotzch) Schrire 1TreeRootsDiarrhoea1[38]
Piliostigma thonningii (Schumach.) Milne-Redh. 2 (Syn. Bauhinia thonningii Schumach.)TreeBark, fruits, leaves and rootsAbdominal pains, antivenom, bilharzia, constipation, convulsions, cough, diarrhoea, dropsy, emetic, immune booster, influenza, menstrual problems, painful legs, painful uterus, postpartum conditions, stomach problems and ketosis in cattle7[25,26,28,29,36,37,38]
Pseudarthria hookeri Wight & Arn. 1HerbLeaves and rootsBilharzia and diarrhoea1[25]
Pterocarpus angolensis DC. 1TreeBark, flowers, fruits, leaves, roots and sapAbdominal pains, anaemia, aphrodisiac, asthma, backache, bilharzia, body pains, cataract, cough, depressed fontanelle, diarrhoea, earache, haematuria, infertility in women, kwashiorkor, lameness, menstrual problems, pelvic inflammation, ringworm, sore eyes, stomach problems, TB, ulcers and venereal diseases and sore eyes in animals11[25,26,27,28,29,31,35,36,37,38,46]
Pterocarpus rotundifolius (Sond.) Druce 1TreeRoot sapSore eyes1[25]
Pterolobium stellatum (Forssk.) Brenan 2ClimberRootsAugmenting labour and depressed fontanelle2[31,38]
Rhynchosia insignis (O.Hoffm.) R.E.Fr. 1HerbRootsAbdominal pains, depressed fontanelle and dropsy 1[25]
Rhynchosia minima (L.) DC. 1HerbRootsBoils and skin infections1[47]
Rhynchosia monophylla Schltr. 1HerbRootsPostpartum conditions1[25]
Rhynchosia resinosa (Hochst. ex A.Rich.) Bak. 1ClimberLeaves and roots and twigsAbdominal pains, diabetes mellitus, dilating the birth canal, expel maggots from wounds, high blood pressure, infertility and menstrual problems3[25,31,34]
Rhynchosia spp. 1HerbRootsDiarrhoea1[38]
Schotia brachypetala Sond. 2TreeBark, leaves and rootsDepressed fontanelle, diarrhoea, dysentery, epistaxis, oedema, stomach problems, swellings and ulcers4[25,28,34,38]
Senegalia ataxacantha (DC.) Kyal. & Boatwr. 2 (Syn. Acacia ataxacantha DC.)ShrubRootsAbdominal pains, constipation and preventing witchcraft1[25]
Senegalia chariessa (Milne-Redh.) Kyal. & Boatwr. 2 (Syn. Acacia chariessa Milne-Redh.)ShrubRootsAntenatal, blood purification and postpartum2[25,29]
Senegalia mellifera (Benth.) Seigler & Ebinger 2 (Syn. Acacia mellifera Benth.)ShrubBarkAphrodisiac2[25,28]
Senegalia nigrescens (Oliv.) P.J.H.Hurter 2 (Syn. Acacia nigrescens Oliv.)TreeRootsConvulsions1[25]
Senna didymobotrya (Fresen.) H.S.Irwin & Barneby 2 (Syn. Cassia didymobotrya Fresen.)ShrubRootsConvulsions and mental problems1[25]
Senna italica Mill. 2 (Syn. Cassia italica (Mill.) F.W.Andr.)ShrubRootsAbdominal pains, bilharzia, bronchitis, colic, haemorrhoids and sore eyes3[25,26,29]
* Senna occidentalis (L.) Link 2 (Syn. Cassia occidentalis L.)HerbRootsSore throats and tonsillitis1[28]
Senna petersiana (Bolle) Lock 2 (Syn. Cassia petersiana Bolle)TreeRootsBilharzia1[26]
Senna singueana (Delile) Lock 2 (Syn. Cassia singueana Delile)ShrubBark, leaves and roots Abdominal pains, antiemetic, bilharzia, constipation, dropsy, herpes, infertility in women, malaria, menstrual problems, painful uterus, postpartum, preventing still birth, preventing bad luck, sores, sore eyes, STDs, syphilis and venereal diseases7[25,26,27,28,34,38,40]
* Senna septemtrionalis (Viv.) H.S.Irwin & Barneby 2 (Syn. Cassia septemtrionalis Viv.)ShrubRootsMalaria1[41]
Sesbania spp. 1ShrubSeedsFever1[34]
Sphenostylis erecta (Baker f.) Hutch. ex Baker f. 1 (Syn. Sphenostylis marginata E.Mey. ssp. erecta (Baker f.) Verdc.)ShrubRootsAbdominal pains, bile emesis, constipation, diarrhoea, fever, oedema and wasting away in infants2[25,38]
* Tamarindus indica L. 2TreeFruits and rootsSore throat and venereal diseases1[25]
Tephrosia radicans Welw. 1ShrubRootsSore eyes and toothache1[25]
Tylosema fassoglense (Kotschy ex Schweinf.) Torre & Hillc. 2ClimberBark, roots and tubersAbdominal pains, diarrhoea, pneumonia, retained placenta, stomach problems and venereal diseases2[25,28]
Vachellia amythethophylla (Steud. ex A.Rich.) Kyal. & Boatwr. 2 (Syn. Acacia amythethophylla Steud. ex A.Rich.)ShrubRootsAntidote for snakebites, convulsions, driving away evil spirits, excessive sweating, infertility in women, mental problems and painful uterus 1[25]
Vachellia karroo (Hayne) Banfi & Galasso 2 (Syn. Acacia karroo Hayne)TreeFruits and rootsAphrodisiac, bilharzia, body pains, convulsions, dizziness, gonorrhoea, syphilis and killing parasites in fowl runs6[25,26,27,36,37,43]
Vachellia nilotica (L.) P.J.H.Hurter & Mabb. 2 (Syn. Acacia nilotica L.)ShrubFruits and rootsSTDs1[40]
Vachellia rehmanniana (Schinz) Kyal. & Boatwr. 2 (Syn. Acacia rehmanniana Schinz)TreeBark and rootsBloated stomach, headaches and pneumonia1[25,28]
Vachellia sieberiana (DC.) Kyal. & Boatwr. 2 (Syn. Acacia sieberiana DC.)ShrubRootsAntiseptic1[25]
Vigna nuda N.E.Br. 1HerbRootsChest pains and cough1[34]
# Vigna unguiculata (L.) Walp.1ShrubRoots and seedsAnaemia, antivenom, bilharzia, chest pains, constipation, epilepsy, menstrual problems and antidote for snakebites 4[25,26,27,28]
Xeroderris stuhlmannii (Taub.) Mendonça & E.P.Sousa 1TreeBark, leaves or rootsAbdominal pains, anaemia, antiabortifacient, back pains, cancer, diarrhoea, headache, infertility in men, malaria, menstrual problems, pneumonia, stomach problems, toothache, venereal diseases, wounds and ethnoveterinary medicine4[25,28,38,48]
Zornia glochidiata Rchb. ex DC. 1HerbRootsDilating the birth canal, preventing abortion and venereal diseases1[25]
* = Exotic; # = cultivated or collected from semi-natural landscapes; + = Fabaceae subfamilies: 1 = Faboideae, 2 = Caesalpinoideae, 3 = Cercidoideae.
Table 2. Major disease categorises and Fabaceae species used as traditional medicines in Zimbabwe.
Table 2. Major disease categorises and Fabaceae species used as traditional medicines in Zimbabwe.
Disease CategorySpeciesUsage Records
Antenatal and postpartum conditions1523
Antivenom811
Back pain1014
Bilharzia1927
Charms and ritual objects1526
Convulsions and epilepsy918
Depressed fontanelle1224
Ethnoveterinary medicine1020
Fever and malaria1119
Gastrointestinal problems4592
Mental problems1016
Oedema1119
Reproductive problems in men1836
Reproductive problems in women2758
Respiratory problems2639
Sexually transmitted infections2031
Skin problems816
Sore eyes1527
Sores and wounds1124
Table 3. Phytochemistry and pharmacological properties of Fabaceae species used as traditional medicines in Zimbabwe.
Table 3. Phytochemistry and pharmacological properties of Fabaceae species used as traditional medicines in Zimbabwe.
SpeciesPhytochemistryPharmacological ActivitiesReferences
Abrus precatoriusAlkaloids, esters, flavonoids, organic acids, phenolics, steroids and terpenoidsAntidiabetic, antifertility, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, antiprotozoal, antitumor, immunomodulatory and insecticidal[82]
Aeschynomene mimosifoliaFlavonoidsCytotoxicity[83]
Afzelia quanzensisFatty acidsAntifungal[84]
Albizia amaraAlkaloids, glycosides, flavonoids, phenols, quinones, saponins, sterols, tannins and terpenoidsAnalgesic, antiarthritic, antibacterial, antifungal, antiviral, anticancer, antihyperlipidemic, anti-inflammatory, antioxidant and hepatoprotective[85,86,87]
Albizia adianthifoliaApocarotenoids, chalcone, dipeptide, elliptocytes, fatty acids, flavonoids, histamine, imidazolyl carboxylic acid, prosapogenins, saponins, steroids, triterpenoids and volatile oilsAcetylcholinesterase enzyme inhibitory, anthelmintic, antiamoebic, antibacterial, antifungal, anti-inflammatory, antioxidant, cytotoxic, hypoglycaemic and immunomodulatory[88,89]
Albizia anthelminticaAlkaloids, diterpenes, flavonoids, gallic acid, phenolics, saponins and tanninsAnalgesic, antibacterial, anti-inflammatory and antioxidant[90,91]
Albizia antunesianaCoumarins, phenolics and triterpenoidsAnthelmintic and antioxidant[92]
Albizia tanganyicensisSaponinsAnthelmintic, anticonvulsant, anti-inflammatory, antimicrobial, antioxidant and wound healing[93,94,95]
Albizia versicolorGlycosides, saponins and triterpenesAnthelmintic and antifungal[84,96,97]
Arachis hypogaeaAlkaloids, phenolics, phytic acid and saponinsAntioxidant[98]
Baikiaea plurijugaAlkaloids, anthraquinones, flavonoids, phenolics and tanninsAntibacterial and antioxidant[99,100,101]
Bauhinia galpiniiFatty acids, flavonoids, phenols, proanthocyanidin, tannins and terpenoidsAntibacterial, antifungal, anti-inflammatory, antioxidant and cytotoxic[102,103,104,105,106]
Bauhinia petersianaAnthraquinones, alkaloids, cardenolides, flavonoids, saponins, tannins and terpenoidsAntibacterial, antifungal, anti-inflammatory, antioxidative and cytotoxic[102,104]
Bobgunnia madagascariensisFlavonoids, saponins and tanninsAntibacterial[107]
Bolusanthus speciosusAlkaloids, flavonoids, phenolics, saponins, tannins and volatile oilsAnti-arthritic, antibacterial, antigonococcal, antimycobacterial, antifungal, anti-HIV, anti-inflammatory and antioxidant[108]
Brachystegia boehmiiTanninsAntibacterial, anti-inflammatory and antioxidant[109,110,111]
Brachystegia spiciformisProanthocyanadin and tannins* None found[112,113]
Burkea africanaFlavonoids, glycosides, saponins, steroids, tannins and triterpenesAnalgesic, antibacterial, antiviral, anticholinesterase, anti-inflammatory and antioxidant[68,114,115,116]
Cajanus cajanCoumarins, flavonoids, phenolics and stilbenesAntioxidant and anti-inflammatory[117]
Cassia abbreviataAnthocyanins, anthranoids, anthraquinones, polyphenols and tanninsAbortifacient, anti-diabetic, anti-inflammatory, antimicrobial, antiviral, antioxidant and hepatoprotective[118,119,120]
Colophospermum mopaneAlkaloids, coumarins, diterpenes, flavonoids, polyphenols, proanthocyanidins, saponins, sterols and triterpenesAntibacterial, antiproliferation, antiprotease, antioxidant and cytotoxic[121]
Crotalaria laburnifoliaAlkaloidsAnalgesic, anthelmintic and antimicrobial[122]
Dalbergia melanoxylonAlkaloids, flavonoids, glycosides and tanninsAnalgesic, anti-inflammatory, antimicrobial, antiviral, antioxidant and antipyretic[123,124,125]
Dalbergia nitidulaFlavonoidsAntibacterial, antioxidant and cytotoxic[126,127]
Dalbergiella nyasaeAlkaloids, flavonoids, saponins and terpenoidsAntifungal and antibacterial[128]
Dichrostachys cinereaFlavonoids, phenolics, sterols, tannins and triterpenesAnalgesic, antibacterial, anti-fungal, antiviral, anticonvulsant, anti-inflammatory, antimalarial, antioxidant, hepatoprotective and neuropharmacological[129,130,131,132]
Dolichos kilimandscharicusFlavonoids and saponinsAntibacterial, anticancer, antiproliferative and cytotoxic[133,134]
Elephantorrhiza burkeiAlkaloids, flavonoids, glycosides, phenolics, saponins, tannins and triterpenoidsAntibacterial, antifungal, anti-HIV, antidiabetic, anti-inflammatory, antioxidant, cytotoxic and mutagenic[135,136]
Elephantorrhiza elephantinaAnthocyanidins, anthraquinones, esters, fatty acids, flavonoids, glycosides, phenolics, saponins, sterols, tannins and triterpenoidsAnthelmintic, antibacterial, antifungal, anti-inflammatory, antinociceptive, antiplasmodial and antioxidant[137]
Elephantorrhiza goetzeiCoumarins, flavonoids, phenolic, saponins, stilbenoids, tannins and triterpenoidsAnthelmintic, antibacterial, antifungal, antiviral, antioxidant and cytotoxic[138]
Eriosema englerianumVolatile oilsAntibacterial and antifungal[139]
Erythrina abyssinicaAlkaloids, flavonoids and terpenoidsAntibacterial, antifungal, antiviral, antidiabetic, anti-inflammatory, antioxidant, antiplasmodial, antiproliferative and hepatoprotective[140,141,142,143,144]
Erythrina livingstonianaFlavonoidsAntibacterial and antioxidant[145,146,147]
Erythrophleum africanumAlkaloids, flavonoids, glycosides, saponins, steroids, tannins and terpenoidsAntibacterial, antifungal, antidote, antioxidant and toxic[148]
Erythrophleum suaveolensAlkaloids, flavonoids, sterols, stilbenoids and terpenoidsAntibacterial, antifungal, anticancer, anti-inflammatory and antioxidant[149]
Flemingia grahamianaAlkaloids, flavonoids, glycosides, phenolics, saponins, steroids, tannins and volatile oilsAntibacterial and anticancer[150,151]
Indigofera arrectaAlkaloids, flavonoids, glycosides, phenols, saponins, tannins and terpenoidsAntibacterial, antiviral and anticancer[152,153]
Indigofera astragalinaSaponins and tanninsAntioxidant and cytotoxic[154]
Indigofera hirsutaAlkaloids, flavonoids and phenolicsAntidiabetic, anti-inflammatory and antioxidant[153]
Indigofera spicataBenzofuran, fatty acids, flavonoids, phthalate, rotenoids, saponins, steroids and triterpenesAnticancer, antidiabetic, antidiarrhoeal, antiplasmodial and cytotoxicity[153,155]
Julbernardia globifloraFatty acids, lignin, proanthocyanidins and tanninsAnticancer[112,156]
Lessertia frutescensAmino acids, flavonoids, pinitol and triterpenesAnalgesic, antibacterial, anticonvulsant, antidiabetic, anti-HIV, anti-inflammatory, antiproliferative, antistress and antithrombotic[157]
Leucaena leucocephalaCoumarins, flavonoids, phytol, sterols and triterpenesAntimicrobial, diuretic, antiviral, cytotoxic, antioxidant and anti-inflammatory[158,159,160,161]
Mucuna coriaceaNone foundBacterial and antiviral[162,163]
Mundulea sericeaCoumarins, flavonoids, phenolic, saponins, steroids, tannins and volatile oilsAnalgesic, antibacterial, antifungal, antioxidant and insecticidal[164,165]
Neorautanenia mitisAlkaloids, flavonoids, glycosides, saponins and tanninsAntibacterial, antifungal and antinociceptive[166,167]
Ormocarpum kirkiiCoumarins, flavonoids and triterpenoidsAntibacterial, antifungal, antimalarial, antiplasmodial and cytotoxicity[168]
Ormocarpum trichocarpumAliphatic hydrocarbons, coumarins, diterpenoids, steroids and triterpenesAntimicrobial, antiplasmodial, antioxidant and antimutagenic[169,170,171]
Peltophorum africanumBenzenoids, coumarins, flavonoids, glycosides, phenolics, steroids, tannins and terpenesAnthelmintic, antibacterial, antifungal, antiviral, anti-inflammatory and antioxidant[141,162,163,172,173,174]
Pericopsis angolensisFlavonoids, saponins and tanninsAntimicrobial[107]
Phaseolus vulgarisAlkaloids, anthocyanins, esters, flavonoids, iridoids, lignans, phenolics, saponins, steroids, tannins and terpenoidsAnalgesic, antibacterial, antidiabetic, anti-inflammatory, antioxidant and hypocholesterolaemic[175,176]
Philenoptera violaceaAlkaloids, flavonoids, glycosides, steroids, tannins and terpenoidsAnticancer and antioxidant[177]
Piliostigma thonningiiAlkaloids, flavonoids, saponins, tannins, terpenes and volatile oilsAnalgesic, anthelminthic, antibacterial, antiviral, antimalarial, anti-inflammatory, antileishmanial, antioxidant, antipyretic and immunomodulatory[178,179,180,181,182]
Pseudarthria hookeriFlavonoidsAntibacterial and anticancer[183]
Pterocarpus angolensisChalcones, deoxybenzoin, fatty acids, phenolics and terpenoidsAntibacterial, antifungal, antiviral, anticancer, anti-inflammatory, antioxidant and wound healing[184,185,186,187,188]
Pterocarpus rotundifoliusFatty acidsAntiacne, antityrosinase, antioxidant and cytotoxic[189]
Pterolobium stellatumSaponins, tannins and terpenoidsAntibacterial and antimycobacterial[190,191]
Rhynchosia insignisFlavonoidsAntibacterial and antifungal[192,193,194]
Rhynchosia minimaCoumarins, flavonoids, steroids, tannins, triterpenes and volatile oilsAntibacterial, antifungal and antioxidant[47,192,194]
Rhynchosia resinosaSaponins, steroids and terpenoidsAntibacterial, antileishmanial, cytoprotective and cytotoxic[195,196]
Schotia brachypetalaAnthocyanins, flavonoids, glycosides, phenols and tanninsAnti-acne, antibacterial, antimalarial, antioxidant, antityrosinase and cytotoxic[189,197,198]
Senegalia ataxacanthaAlkaloids, coumarins, flavonoids, lignan, phenols, quinone, saponins, steroids, tannins and triterpenoidsAntibacterial, antifungal, antidiabetic, anti-inflammatory, antioxidant, laxative and ulceroprotective[199]
Senegalia melliferaFlavonoids, glycosides, phenols, saponins, tannins and terpenoidsAntibacterial, antifungal and cytotoxicity[200,201,202]
Senegalia nigrescensFlavonoids and triterpenoidsAntimicrobial, antioxidant and cytotoxicity[203]
Senna didymobotryaAlkaloids, flavonoids, phenolics, quinones, saponins, steroids, tannins and terpenoidsAntibacterial[204,205]
Senna italicaAlkaloids, anthocyanins, flavonoids, steroids and tanninsAntibacterial, antifungal, anticancer and antioxidant[206,207,208]
Senna occidentalisAlkaloids, anthraquinones, anthrones, flavonoids, saponins, sterols and volatile oilsAntibacterial, antifungal, anticancer, antidiabetic, anti-inflammatory, antimutagenic, antiprotozoal and hepatoprotective[208,209]
Senna petersianaFlavonoidsAntibacterial and cytotoxic[135]
Senna singueanaAlkaloids, anthraquinones, proanthocyanidins, phenols, saponins, sterols, tannins, terpenes and volatile oilsAntimalarial, antinociceptive, antioxidant, hepatoprotective and trypanocidal[198,208]
Senna septemtrionalisAnthraquinones, benzoic acids, carboxylic acids and flavonoidsAnticonvulsant, anti-inflammatory, diuretic and antinociceptive[208,210,211]
Sphenostylis erectaFlavonoids and sphenostylinsAntifungal, antioxidant and cytotoxicity[212]
Tamarindus indicaAmino acids, fatty acids and tanninsAntibacterial, antifungal, antiviral, antidiabetic, anti-inflammatory, antinematodal, antioxidant, cytotoxic and molluscicidal[213]
Tylosema fassoglenseAlkaloids, flavonoids, glycosides, phenolics, quinones, saponins, steroids, tannins and terpenoidsAntibacterial and anticancer[214,215]
Vachellia karrooFlavonoids, phenols, proanthocyanidin, sterols, tannins and terpenoidsAnalgesic, antibacterial, antifungal, antiviral, antihelmintic, anti-inflammatory, antimalarial and antioxidant[216]
Vachellia niloticaAlkaloids, fatty acids, flavonoids and tanninsInhibition of acetylcholinesterase, anthelmintic, antibacterial, anticancer, antihypertensive, anti-inflammatory, antioxidant and antiplatelet[217]
Vachellia rehmannianaNone foundAnti-inflammatory[218]
Vachellia sieberianaFlavonoids, glycosides, phenolics, quinones, saponins and tanninsAntibacterial and anticancer[219,220]
Vigna unguiculataFlavonoids and phenolicsAcetylcholinesterase inhibition, anthelmintic, antibacterial, antifungal, antiviral, antidiabetic, anti-inflammatory, antioxidant, antinociceptive and hypocholesterolaemic[221,222,223,224,225]
Xeroderris stuhlmanniiAlkaloids, flavonoids, phenols, steroids and terpenoidsAntibacterial, antiviral, anticancer, anti-inflammatory, antioxidant and antiproliferative[226,227,228]
* “No report found” means that no record of the phytochemical or pharmacological properties were found in the literature.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Maroyi, A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. Plants 2023, 12, 1255. https://doi.org/10.3390/plants12061255

AMA Style

Maroyi A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. Plants. 2023; 12(6):1255. https://doi.org/10.3390/plants12061255

Chicago/Turabian Style

Maroyi, Alfred. 2023. "Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review" Plants 12, no. 6: 1255. https://doi.org/10.3390/plants12061255

APA Style

Maroyi, A. (2023). Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. Plants, 12(6), 1255. https://doi.org/10.3390/plants12061255

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop