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Abstract: Drought is a significant constraint in bean production. In this study, we used high-
throughput phenotyping methods (chlorophyll fluorescence imaging, multispectral imaging, 3D
multispectral scanning) to monitor the development of drought-induced morphological and physio-
logical symptoms at an early stage of development of the common bean. This study aimed to select
the plant phenotypic traits which were most sensitive to drought. Plants were grown in an irrigated
control (C) and under three drought treatments: D70, D50, and D30 (irrigated with 70, 50, and 30 mL
distilled water, respectively). Measurements were performed on five consecutive days, starting on
the first day after the onset of treatments (1 DAT–5 DAT), with an additional measurement taken on
the eighth day (8 DAT) after the onset of treatments. Earliest detected changes were found at 3 DAT
when compared to the control. D30 caused a decrease in leaf area index (of 40%), total leaf area (28%),
reflectance in specific green (13%), saturation (9%), and green leaf index (9%), and an increase in the
anthocyanin index (23%) and reflectance in blue (7%). The selected phenotypic traits could be used to
monitor drought stress and to screen for tolerant genotypes in breeding programs.

Keywords: high-throughput phenotyping; morphological changes; spectral reflectance; vegetation
indices

1. Introduction

Drought is found in all environments and it is considered as the most damaging
environmental stress [1–5]. Even a brief water deficit leads to significant losses in crop
yields [6,7] and hinders sustainable agricultural production worldwide [8–10]. Due to
rapid climate changes, the frequency and duration of drought periods will increase [11,12].
Drought affects all essential physiological and developmental plant processes, such as
photosynthesis, respiration, nutrient uptake, and the disproportionate relationship between
roots and shoots [13]. It disrupts the normal function of the stomata, inhibits gas exchange
and carbon assimilation, and leads to the overproduction of reactive oxygen species (ROS)
and the development of oxidative stress [14]. The water deficit strongly inhibits cell
division, the enlargement of the leaf surface, stem growth, and the multiplication of root
cells [10]. All these factors lead to a decline in the productivity of photosynthesis (the basis
for forming organic matter) and, ultimately, to a decline in yield [15].

Drought is one of the major disruptors of common bean (Phaseolus vulgaris L.) produc-
tion, as about 60% of bean crops are grown in regions that suffer from water shortages [16].
The common bean is one of the most important grain legumes for human consumption [17].
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In addition to its nutritional value, it also has a high economic value [18]. Developing
drought-tolerant cultivars is needed to achieve sustainable common bean production in
drought-prone environments and to provide economic benefits for producers and buy-
ers. Traditional breeding programs are labor-intensive and require significant effort to
isolate desirable from undesirable traits. The development of modern technologies such as
high-throughput phenotyping (HTP), which combines different techniques to monitor the
physiological response of plants to drought stress, accelerates and facilitates this type of
research [19].

When starting a drought experiment, it is important to determine the timing to induce
the water deficit and the stress intensity and duration [20]. There are many experimental
setups to induce and monitor drought stress. The most commonly used are soil-based
drought models [20,21], which are based on the gradual decline or immediate interruption
of plant watering, and agar-based models (widely used in plant biology) [22,23]. Drought
stress can be monitored by relative water content, osmotic adjustment, various physiological
responses (efficiency of photosynthesis and stomatal conductance), and, increasingly, by
chlorophyll fluorescence and multispectral imaging [24,25]. Because drought affects many
plant traits on a whole plant scale, the utilization of HTP, which enables the simultaneous
analysis of different plant traits, is of great value. Today, there are many HTP methods for
drought stress detection, monitoring, and quantification [26]. The most widely used HTP
methods are chlorophyll fluorescence analysis [27–30], multispectral analysis [31,32], 3D
multispectral scanning [33,34], and thermal imaging [35,36]. These methods have many
advantages, such as rapid data acquisition and processing, non-destructiveness, accurate
insights into plant performance under different drought intensities and durations, excellent
morphological and biochemical characterization of plants, etc. [26,37].

Many authors have successfully used different vegetation indices such as the normal-
ized difference vegetation index (NDVI) [38] and chlorophyll fluorescence traits such as
photochemical quenching (qP), non-photochemical quenching (NPQ) [39] and maximum
quantum yield of PSII (Fv/Fm) [40] to assess drought stress in the common bean. Strong
correlations were also found between growth (biomass) and vegetation indices (green
normalized difference vegetation index (GNDVI)) when monitoring drought stress in the
common bean [41]. In the case of the pinto bean, the GNDVI was also a good predictor
of water stress [42]. Various multispectral analyses and vegetation indices have been
successfully used to detect water stress in other crops. In the case of detecting drought
stress in turfgrass, Hong et al. [43] concluded that weekly measurements with the NDVI,
GNDVI, and blue normalized difference vegetation index (BNDVI) could improve irriga-
tion management. However, experiments that combine several HTP techniques and enable
simultaneous monitoring and comparison of different drought-induced morphological and
physiological changes in the same experimental conditions are scarce. There is a necessity
to use simple and reliable plant traits to screen large populations for drought tolerance.

In this study, we used HTP methods (chlorophyll fluorescence imaging, multispectral
imaging, 3D multispectral scanning) to continuously monitor the occurrence of drought
morphological and physiological symptoms during early and prolonged drought in the
common bean. This experiment aimed to select the most drought-sensitive plant phenotypic
traits which could be used for the early detection of drought stress and in screening for
drought tolerance among common bean germplasms.

2. Results

HTP techniques, including chlorophyll fluorescence imaging, multispectral imaging,
and 3D multispectral scanning were used in this experiment to determine the occurrence of
drought stress and its effects on the common bean over time. The results of the repeated
measures of ANOVA and tests of differences between treatments within each measurement
time are presented in Table S1. The least-square means and the pairwise differences
comparison (Tukey’s HSD test) are shown in Table S2.
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2.1. Effect of Drought Stress on Morphological Traits

A significant effect of treatment × measurement time interaction (T ×MT) was found
for all measured morphological traits (Table S1). Examination of the difference among
treatments within measurement time revealed that the earliest differences among treatments
(already at 2 DAT) were found for leaf angle (LANG) and leaf inclination (LINC) (Table S1).
However, these two traits were not consistently affected by drought treatments throughout
the measurements; therefore, drought treatments had no distinct effect on these two traits.
On the other hand, from 3 DAT, significantly lower digital volume (DV), total leaf area
(TLA), and leaf area index (LAI) were found in D30 compared to D70 and the control
treatments. From 7 DAT, these traits were also significantly lower for plants from D50
compared to D70 and the control (Table S2, Figure 1a–c). A significant difference in all
morphological traits (except PH and LPD) between D70 and control plants was found at
the last measurement (8 DAT) (Table S2, Figure 1a–c).
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Figure 1. Mean ± double standard error (S.E.) for morphological traits: (a) digital volume (DV),
(b) total leaf area (TLA), and (c) leaf area index (LAI) for plants grown under control and drought
treatments (D30, D50, and D70) measured from the first to the eighth day after the beginning of
treatments (1 DAT–8 DAT).
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2.2. Effect of Drought Stress on Multispectral traits

The evaluated multispectral parameters included reflectance in the visible (RRed,
RGreen, RBlue, RSpcGrn, RChl), the far-red (RFarRed), and near-infrared (RNIR) spectrum. In
addition, these spectral reflections were used for the calculation of the vegetation indices
(hue (HUE), saturation (SAT), value (VAL), chlorophyll index (CHI), anthocyanin index
(ARI), green leaf index (GLI), normalized differential vegetation index (NDVI), and plant
senescence reflectance index (PSRI)) (Table S4). For all measured and calculated multispec-
tral traits, a significant effect of the T ×MT interaction was found (Table S1). The earliest
differences among drought treatments were found at 5 DAT for ARI and RNIR. At 2 DAT,
a higher ARI was found in D30 compared to the control, and from 3 DAT, ARI was also
higher for D50 compared to the control (Tables S1 and S2, Figure 2c). In contrast, RNIR was
not consistently affected by drought treatments during measurements (Tables S1 and S2).
In addition, from 3 DAT, significantly higher GLI, SAT, and RSpcGrn values were found
in the control compared to D30, and significantly lower RBlue was found in the control
compared to D50 (Table S2, Figure 2a,b). After a prolonged drought, on the 8 DAT, the
control significantly differed from the drought treatments in all multispectral traits except
RNIR and PSRI (Tables S1 and S2).
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Figure 2. Mean ± double standard error (S.E.) for multispectral traits: (a) saturation (SAT), (b) re-
flectance in blue (RBlue), and (c) anthocyanin index (ARI) for plants grown under control and drought
treatments (D30, D50, and D70) measured from the first to the eighth day after the beginning of
treatments (1 DAT–8 DAT).
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2.3. Effect of Drought Stress on Chlorophyll Fluorescence Traits

A significant interaction between drought treatments and measurement time (T ×MT)
was found for all measured chlorophyll fluorescence traits except the Fv/Fm, which was
affected by both of the main effects of T and MT (Table S1). The earliest differences in chloro-
phyll fluorescence traits among drought treatments were found at 1 DAT (Fq′/Fm′and
qP) (Tables S1 and S2). In addition, during subsequent measurements, there were sig-
nificant differences among treatments for all measured chlorophyll fluorescence traits.
However, these differences were inconsistent among drought treatments, which indicated
that they were not solely affected by drought treatments. First, significant drought-induced
differences, which showed consistency in the subsequent measurements, were found at
4 DAT when the NPQ increased, and φno decreases were found in D30 compared to other
treatments (Tables S1 and S2, Figure 3a,b). A clear effect of drought treatments on traits
showing photochemistry (Fq′/Fm′, qP and ETR) and an estimation of open PSII centers
(qL) decreased significantly in all drought treatments compared to the control only after
prolonged drought (8 DAT) (Table S2).
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Figure 3. Mean ± double standard error (S.E.) for chlorophyll fluorescence traits: (a) non-
photochemical quenching (NPQ), and (b) Quantum yield of non-regulated non-photochemical
energy loss in PSII (φno) for plants grown under control and drought treatments (D30, D50, and D70)
measured from the first to the eighth day after the beginning of treatments (1 DAT–8 DAT).

3. Discussion

When studying drought tolerance in plants, monitoring and controlling the level and
onset of a water deficit is challenging. It is a complex process that takes into account both
the plant’s water status and the available water in the soil [44]. Therefore, the design of the
experiment and continuous measurements are of paramount importance to determine the
occurrence of drought stress and the magnitude of its effect on the physiological changes
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that occur with the experimental plants [44,45]. For this experiment, we used washed
river sand because of its low matrix potential, which allows for easy control of the water
availability for plants. In addition, tall, narrow pots (in this case, tubes) and closely spaced
plants were used to create a closed canopy that prevented excessive water evaporation
from the sand surface [20]. Sand volumetric water content was continuously monitored
throughout the experiment (Table S3). In addition, continuous HTP measurements were
carried out throughout the experiment to detect the earliest drought-induced morphological
and physiological symptoms.

The earliest observed morphological changes caused by drought treatments were
related to decreased leaf area (LAI and TLA) and DV. The reduced biomass and leaf area
represent the adaptation of the plants to drought stress conditions [7,10]. Similar results
were found in [46], where morphological traits of basil (digital volume and leaf area)
were more reduced under drought than salinity stress. Moreover, a significant reduction
in biomass after seven days of the drought was found in Arabidopsis (wild-type) and
already after five days of drought (in mutant osca1) [30]. In this study with different
irrigation treatments of the common bean, the LAI varied significantly. This suggests
that water availability is one of the most important factors for crop development [47].
Because DV is calculated from total leaf area and plant height (which was not affected
by drought treatments), it can be stated that the earliest and most pronounced effect of
drought on the common bean morphology is reduced leaf area and LAI. Except for the
TLA, LAI, and DV, we observed significant differences in the LANG and LINC among
drought treatments. It is well known that drought causes plant wilting and, thus, changes
in leaf angle [21]. However, these traits showed inconsistent results through different
measurement times, which suggested that drought does not solely affect these traits.
The possible cause of changing the LANG and LINC during different measurements
could lie in the plant’s circadian rhythm, which changes the plant’s leaf position during
the day [48]. Like morphological changes, drought treatments caused changes in leaf
absorption/reflection properties. The earliest affected trait was the ARI which increased
in treatment D30 compared to the control at 2 DAT. In addition, from 3 DAT, drought
treatments caused a decrease in the GLI, SAT, and RSpcGrn and an increase in RBlue compared
to the control. Although the increased reflection of visible light indicates a decrease in
chlorophyll content and light absorption, our results showed no decrease in the CHI under
drought treatments. Similarly, the NDVI, which is often considered as one of the best
indices for monitoring plant water deficits [26,47], decreased only after prolonged drought
in our study. Thus, the drought-induced increase in RBlue is probably more related to
an increased ARI (anthocyanin content) and less related to the decrease in chlorophyll
content. Anthocyanins are dark blue pigments with a photoprotective role that increases
biosynthesis, and concentrations are often reported under stressful conditions [6]. Other
authors have reported similar results with different bean cultivars where reflectance values
(visible spectrum, far red, and near infrared) were higher in treatments under full irrigation
compared to treatments exposed to water stress [49]. An increase in anthocyanin content,
reduced leaf area, and other structural and morphological changes probably play a role
in protecting the light-harvesting apparatus and the photochemistry of the plants grown
under drought treatments. The results of chlorophyll fluorescence imaging support this.
Namely, chlorophyll fluorescence traits were found to be less affected by drought than
morphological and multispectral traits, and significant changes caused by drought were
only found after prolonged stress. Early differences in Fq′/Fm′ and qP, which were found
at 1 DAT, and other differences were found in subsequent measurements, were inconsistent
and were probably more affected by the above mentioned protective mechanisms in D30
and D50 and the continuation of young leaf growth and development in the control
and D70 plants. It is well established that young developing leaves do not yet have
developed photosystems, which are reflected as lower qL and, thus, lower photochemistry
(qP, ETR, Fq′/Fm′) and higher non-photochemical energy dissipation (NPQ, qN) [50]. In
our experiment, the earliest (4 DAT) affected chlorophyll fluorescence traits by drought
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treatments were increased NPQ and decreased φno, which indicated the activation of the
photoprotective processes in the chloroplast [24]. Similar results of increased NPQ under
drought were observed in lettuce seedlings [51], maize seedlings [52], common beans [39],
rice, and wheat [53].

The result of this research shows that HTP methods can be used to detect and monitor
early plant responses to drought. Our research enabled the extraction of the most responsive
phenotypic traits under drought conditions. Namely, the earliest detected changes under
drought stress were a decrease in the LAI and TLA, an increase in the ARI and RBlue, and
a decrease in the GLI, SAT and RSpcGrn. In contrast, chlorophyll fluorescence traits were
affected only after prolonged time and in severe drought conditions. Because drought
can occur in different growth stages, can differ in duration and severity [8], and because
this experiment was conducted under a controlled environment, these results should be
confirmed under field conditions, at different growth stages, and using a higher number of
genotypes to prove their agronomic relevance.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Seeds of Phaseolus vulgaris cv. ‘Ferguson’, belonging to the ‘Cranberry’ type, were used
for the experiment. Cultivar Ferguson is early harvest and bush growth (dwarf) bean variety.
The seeds were sown in germination trays (containers) to obtain sufficient plant material for
the experiment. Twelve days after germination, the uniformly developed seedlings were
transplanted into 40 PVC tubes with a diameter of 5 cm, a height of 29 cm, and a volume
of 569.4 cm3. Each PVC tube contained one plant and was filled with 785 g of washed
and dried river sand (0.05–2.0 mm diameter size). During the germination phase and the
experiment, the plants were kept in a growth chamber (2 m × 2.5 m = 5 m2) at 25/22 ◦C, a
photoperiod of 16/8 h day/night, 60% relative air humidity, and a photosynthetic photon
flux density (PPFD) of 250 µmol m−2 s−1, which was provided by Valoya L35, NS12
spectrum LED lights (Valoya Oy, Helsinki, Finland).

4.2. Experimental Setup and Treatments

The experiment consisted of 4 treatments with 10 plants per treatment (40 plants in
total) and was set up as a completely randomized block design (RBD) (the treatments were
randomly allocated inside each block, and each block contained one plant per treatment).
At the beginning of the experiment, all plants (treatments) were irrigated with 25 mL of
a 1/2 -strength Hoagland nutrient solution [54]. An additional 5, 25, or 45 mL of distilled
water was added to the tubes giving D30 (30 mL), D50 (50 mL), and D70 (70 mL) drought
treatments, respectively. The control tubes (with plants) were irrigated with 25 mL of a 1/2

-strength Hoagland nutrient solution and with 25 mL of distilled water and were constantly
supplied with water by immersing the base of the tubes (2 cm) in the distilled water during
the experiment. This setup enabled evapotranspiration-driven capillary water to rise within
the tubes.

The experiment lasted eight days, and there was no additional irrigation of the plants
in the drought treatments. The volumetric water content (VWC) of the sand was measured
using a moisture meter with sand calibration, a HH2 Moisture Meter equipped with a
WET sensor (type: WET-2) (Delta-T Devices Ltd., Cambridge, UK), and data are shown in
Table S3.

4.3. HTP Measurements

A total of six measurements were performed, starting on the first day after the onset of
treatments (1 DAT). Five consecutive measurements were performed during the next five
days (1 DAT–5 DAT), and the last measurement was on the eighth day of the experiment
(8 DAT). All measured plant traits, abbreviations, and devices used for the measurement
are listed in Table S4. A detailed description of the measurement protocols and devices can
be found in [46] and is briefly explained in the following sections.
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4.3.1. Chlorophyll Fluorescence Imaging

Chlorophyll fluorescence imaging was performed using CropReporterTM (PhenoVa-
tion B.V., Wageningen, The Netherlands). The plants were adapted to darkness for 30 min
before the measurements, and plants were imaged from a distance of 70 cm. For the excita-
tion of photosynthesis, 4000 µmol m−2s−1 red LED light was used. The integration time
for acquiring the chlorophyll fluorescence image was 200 µs. The minimum chlorophyll
fluorescence (F0) was measured after ten µs, and the maximum chlorophyll fluorescence
(Fm) was measured after saturation. After measuring the dark-adapted plants, the plants
were relaxed in the dark for 15 s, and then actinic light (250 µmol m−2 s−1) was switched
on to allow the plants to adapt to the light for 5 min. The steady-state fluorescence yield
(Fs
′) was measured at the beginning of the saturation pulse, and the maximum chlorophyll

fluorescence (Fm
′) of the plants adapted to the light was measured at saturation, using the

intensity of the saturation pulse (4000 µmol m−2s−1). After the measurement, the actinic
light was switched off, and the minimum fluorescence yield of the illuminated plant (F0

′)
was estimated in the presence of far-red light.

The measured F0, Fm, Fm
′, and Fs

′ were used to calculate the following fluorescence
parameters [55–59]:

The maximum quantum yield of PSII (Fv/Fm): Fv/Fm = (Fm − F0)/Fm.

The effective quantum yield of PSII (Fq
′/Fm

′): Fq
′/Fm

′ = (Fm
′ − Fs

′)/Fm
′.

Electron transport rate (ETR) = Fq
′/Fm

′ × PPFD × (0.5) × 0.83.

Non-photochemical quenching (NPQ) = (Fm − Fm
′)/Fm

′.

Coefficient of photochemical quenching (qP) = (Fm
′ − Fs

′)/Fv.

Coefficient of non-photochemical quenching (qN) = 1 − (Fm
′ − F0

′)/(Fm − F0).

Estimation of “open” reaction centers based on a lake model (qL) = ((Fm
′ − Fs

′) × F0
′))/((Fm

′ − F0
′) × Fs

′)).

Quantum yield of non-regulated non-photochemical energy loss in PSII (φno) = 1/(NPQ + 1 + qL(Fm/F0 − 1))

4.3.2. Multispectral Imaging

After chlorophyll fluorescence imaging, reflectance (R) images were acquired at
250 µmol m−2 s−1 illumination. Multispectral images were taken at red (RRed—640 nm),
green (RGreen—550 nm), blue (RBlue—475 nm), specific green (RSpcGrn—510–590 nm), chloro-
phyll reflectance (RChl—730 nm), near-infrared (RNIR—769 nm), and far-red reflectance
(RFarRed—710 nm). The chlorophyll index (CHI), anthocyanin index (ARI), hue (0–360◦),
saturation (SAT), and value (VAL) were calculated from the measured reflectance [60,61]:

Chlorophyll index (CHI) = (RChl)
−1 − (RNIR)−1.

Anthocyanin index ARI = (RGreen)−1 − (RFarRed)−1.

Hue (0–360◦) was calculated as follows:

HUE = 60 × [0 + (RGreen − RBlue)/(max −min)], if max = RRed;

HUE = 60 × [2 + (RBlue − RRed)/(max −min)], if max = RGreen;

HUE = 60 × [4 + (RRed − RGreen)/(max −min)], if max = RBlue.

360 was added in case of HUE < 0
Value (0–1) was calculated as:
VAL = (max + min)/2, while max and min were selected from the RRed, RGreen, and

RBlue, respectively.
Saturation (0–1) was calculated as follows:
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SAT = (max − min)/(max + min) if VAL > 0.5, or SAT = (max − min)/(2.0 − max
− min) if VAL < 0.5, while max and min were selected from the RRed, RGreen, and RBlue,
respectively.

Examples of generated chlorophyll fluorescence and multispectral images are shown
in Figure 4.
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Figure 4. Common bean color and pseudo-color images showing the maximum quantum yield of
PSII (Fv/Fm), the effective quantum yield of PSII (Fq′/Fm′), non-photochemical quenching (NPQ),
the anthocyanin index (ARI), and the chlorophyll index (CHI) captured by CropReporter on the first
(1 DAT), fourth (4 DAT) and eighth (8 DAT) day of the experiment in control and under drought
treatment (D50).

4.3.3. Multispectral 3D Scanning

The plants were scanned with a multispectral 3D scanner PlantEye F500 (Phenospex,
Heerlen, Netherlands) from a distance of 70 cm. PlantEye measures spectral reflectance in
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red (620–645 nm), green (530–540 nm), blue (peak wavelength 460–485 nm), near-infrared
(820–850 nm), and the 3D laser (940 nm). Morphological parameters and vegetation indices
were calculated with the software HortControl (Phenospex, Heerlen, The Netherlands).

The vegetation indices calculated are [62,63]:

Green Leaf Index (GLI) = (2 × RGreen − RRed − RBlue)/(2 × RGreen + RRed + RBlue).

Normalized Differential Vegetation Index (NDVI) = (RNIR − RRed)/(RNIR + RRed)

Plant Senescence Reflectance Index (PSRI) = (RRed − RGreen)/(RNIR).

The morphological parameters calculated from the 3D plant model were: Plant height
(P.H.; mm)—calculated as the distribution of elementary triangles along the z-axis; leaf area
projected (LAP; cm2)—calculated as the area of the projection of all elementary triangles
onto the X-Y plane; total leaf area (TLA; cm2)—calculated as the sum of all triangle do-
mains, where each domain represents a group of triangles forming a unitary area; digital
volume (DV; cm3)—calculated as the product of the height and 3D leaf area; leaf area
index (LAI, mm2 mm−2)—calculated as TLA/sector size; leaf inclination (LINC; mm2

mm−2)—describing how erect the leaves of the plant are and calculated as TLA/LAP;
leaf angle [LANG; degree (◦)]; and light penetration depth (LPD; mm)—measured by the
deepest point at which the laser can penetrate the canopy along the z-axis.

4.4. Statistical Analyses

The normality of the collected data was tested by checking the residual plots and
homogeneity of variance (homoscedasticity) by plotting residuals against fitted values. The
analysis of variance (ANOVA) with repeated measures was performed as described by [64],
using the MIXED procedure in JMP® Pro 16 (SAS Institute Inc., Cary, NC, USA). The model
included the fixed effects of treatment (control and drought treatments D30, D50, and D70),
measurement time (1 DAT–5 DAT, and 8 DAT used for repeated measures), and treatment
× measurement time interaction. Individual plants (subjects) were treated as a random
factor and were nested within the treatments. The autoregressive (AR) covariance structure
model was chosen among AR, compound symmetry, and unstructured model, based on
the Akaike information criterion (AICc) that smaller is better. Tukey’s Honest Significant
Difference post hoc test was performed for partitioned F-tests (SLICE option) to examine
the significance of treatment differences within measurement times.

5. Conclusions

As drought becomes more frequent in severe forms, it is recognized as one of the major
threats to global food security. The improvement of crop germplasm through breeding can
address this problem, but it needs to be supported by reliable phenotyping data. In this
study, using non-destructive phenotyping, we have quantified and extracted phenotypic
traits important for the early detection of drought stress in the common bean. Most
sensitive phenotypic traits under drought stress were related to leaf area changes and
spectral characteristics. Namely, the earliest detected changes under drought stress were
a decrease in the LAI and TLA, an increase in the anthocyanin index (ARI) and RBlue,
and a decrease in the GLI, SAT, and RSpcGrn. These early changes probably protected leaf
photochemistry, as chlorophyll fluorescence traits were found to be affected by drought only
after prolonged drought stress. The selected phenotypic traits could be used to monitor
drought stress and could be used for screening for drought-tolerant genotypes in breeding
programs.
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