Silicon Differently Affects Apoplastic Binding of Excess Boron in Wheat and Sunflower Leaves
Abstract
:1. Introduction
2. Results
2.1. Plant Growth and Accumulation of B
2.2. Compartmentation of B in Leaves
2.3. Effect of Pulsed Supply of Si on the B Binding Ability of Leaf Cell Walls
3. Discussion
4. Materials and Methods
4.1. Plant Material, Growth Conditions and Experimental Design
4.2. Fractionation of B
4.3. Determination of B and Ca
4.4. Determination of Si
4.5. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cakmak, I.; Brown, P.; Colmenero-Flores, J.M.; Husted, S.; Kutman, B.Y.; Nikolic, M.; Rengel, Z.; Schmidt, S.B.; Zhao, F.-J. Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P., Eds.; Academic Press: London, UK, 2023; pp. 283–385. [Google Scholar]
- Cartwright, B.; Zarcinas, B.A.; Mayfield, A.H. Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia. Aust. J. Soil Res. 1984, 22, 261–272. [Google Scholar] [CrossRef]
- Hua, T.; Zhang, R.; Sun, H.; Liu, C. Alleviation of boron toxicity in plants: Mechanisms and approaches. Crit. Rev. Environ. Sci. Technol. 2020, 51, 2975–3015. [Google Scholar] [CrossRef]
- Alpaslan, M.; Gunes, A. Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 2001, 236, 123–128. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Bagci, E.G.; Pilbeam, D.J. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 2007, 290, 103–114. [Google Scholar] [CrossRef]
- Soylemezoglu, G.; Demir, K.; Inal, A.; Gunes, A. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci. Hortic. 2009, 123, 240–246. [Google Scholar] [CrossRef]
- Stangoulis, J.C.R.; Reid, R.J. Boron toxicity in plants and animals. In Boron in Plant and Animal Nutrition; Goldbach, H., Rerkasem, B., Wimmer, M., Brown, P.H., Thelier, M., Bell, R., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 227–240. [Google Scholar]
- Pavlovic, J.; Kostic, L.; Bosnic, P.; Kirkby, E.A.; Nikolic, M. Interactions of silicon with essential and beneficial elements in plants. Front. Plant Sci. 2021, 12, 697592. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, S.; Sato, T.; Otake, T. Effect of dissolved silica on immobilization of boron by magnesium oxide. Minerals 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, M.A.; Warrenfeltz, D.; Kates, K.; Pellerin, P.; Doco, T.; Darvill, A.G.; Albersheim, P. Rhamnogalacturonan-ii, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. In vitro conditions for the formation and hydrolysis of the dimer. J. Biol. Chem. 1996, 271, 22923–22930. [Google Scholar] [CrossRef] [Green Version]
- He, C.W.; Ma, J.; Wang, L.J. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytol. 2015, 206, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, W.; Ma, Q.; Ma, C. Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. J. Plant. Nutr. 2017, 40, 2458–2467. [Google Scholar] [CrossRef]
- Farooq, M.A.; Saqib, Z.A.; Akhtar, J. Silicon-mediated oxidative stress tolerance and genetic variability in rice (Oryza sativa L.) grown under combined stress of salinity and boron toxicity. Turk. J. Agric. For. 2015, 39, 718–729. [Google Scholar] [CrossRef]
- Inal, A.; Pilbeam, D.; Gunes, A. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. Turk. J. Agric. For. 2009, 32, 112–128. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Al-Huqail, A.A.; Alqahtani, M.A.; Ahmad, P. Silicon is dependent on hydrogen sulphide improve boron toxicity tolerance in pepper plants by regulating the AsA-GSH cycle and glyoxalase system. Chemosphere 2020, 257, 127241. [Google Scholar] [CrossRef]
- Kaya, C.; Tuna, L.; Guneri, M.; Ashraf, M. Mitigation effects of silicon on tomato plants bearing fruit grown at high boron levels. J. Plant. Nutr. 2011, 34, 1985–1994. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Bagci, E.G.; Coban, S.; Pilbeam, D.J. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci. Hortic. 2007, 113, 113–119. [Google Scholar] [CrossRef]
- Liang, Y.; Shen, Z. Interaction on silicon and boron on oilseed rape plants. J. Plant Nutr. 1994, 17, 415–425. [Google Scholar] [CrossRef]
- Pereira de Souza Junior, J.; de Mello Prado, R.; Machado dos Santos Sarah, M.; Felisberto, G. Silicon mitigates boron deficiency and toxicity in cotton cultivated in nutrient solution. J. Plant. Nutr. Soil. Sci. 2019, 182, 805–814. [Google Scholar] [CrossRef]
- Rogalla, H.; Römhled, W. Effect of silicon on the availability of boron: Possible effects on the phenol pathway and on the redox status in Cucumis sativus L. In Boron in Plant and Animal Nutrition; Goldbach, H., Rerkasem, B., Wimmer, M., Brown, P.H., Thelier, M., Bell, R., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 205–211. [Google Scholar]
- Celikkol Akcay, U.; Erkan, I. Silicon induced antioxidative responses and expres- sion of BOR2 and two PIP family aquaporin genes in barley grown under boron toxicity. Front. Plant. Mol. Biol. Rep. 2016, 34, 318–326. [Google Scholar] [CrossRef]
- Karabal, E.; Yücel, M.; Öktem, H.A. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant. Sci. 2003, 164, 925–933. [Google Scholar] [CrossRef]
- Oliveira, K.R.; Junior, J.P.S.; Bennett, S.J.; Checchio, M.V.; de Cássia Alves, R.; Felisberto, G.; Prado, R.D.M.; Gratão, P.L. Exogenous silicon and salicylic acid applications improve tolerance to boron toxicity in field pea cultivars by intensifying antioxidant defence systems. Ecotoxicol. Environ. Saf. 2020, 201, 110778. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Nikolic, M.; Bélanger, R.; Gong, H.; Song, A. Silicon in Agriculture: From Theory to Practice; Springer: Dordrecht, The Netherlands, 2015; pp. 161–179. [Google Scholar]
- Nable, R.O.; Lance, R.C.M.; Cartwright, B. Uptake of boron and silicon by barley genotypes with differing susceptibilities to boron toxicity. Ann. Bot. 1990, 66, 83–90. [Google Scholar] [CrossRef]
- Miwa, K.; Fujiwara, T. Role of overexpressed BOR4, a boron exporter, in tolerance to high level of boron in shoots. Soil. Sci. Plant. Nutr. 2011, 57, 558–565. [Google Scholar] [CrossRef]
- Asad, A.; Bell, R.W.; Dell, B. A critical comparison of the external and internal boron requirements for contrasting species in boron-buffered solution culture. Plant Soil 2001, 233, 31–45. [Google Scholar] [CrossRef]
- Wimmer, M.A.; Bassil, E.S.; Brown, P.H.; Läuchli, A. Boron response in wheat is genotype dependent and related to boron uptake, translocation, allocation, plant phenological development and growth rate. Funct. Plant Biol. 2005, 32, 507–515. [Google Scholar] [CrossRef]
- Dannel, F.; Pfeffer, H.; Römheld, V. Distribution within the plant or compartmentation does not contribute substantially to the detoxification of excess boron in sunflower (Helianthus annuus). Aust. J. Plant Physiol. 1999, 26, 95–99. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Hayes, J.; Hrmova, M.; Baumann, U.; Ramesh, S.A.; Tyerman, S.D.; Langridge, P.; Sutton, T. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 2010, 153, 1706–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitani-Ueno, N.; Yamaji, N.; Zhao, F.J.; Ma, J.F. The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J. Exp. Bot. 2011, 62, 4391–4398. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, G.; Hausman, J.F.; Legay, S. Silicon and the plant extracellular matrix. Front. Plant Sci. 2016, 7, 463. [Google Scholar] [CrossRef] [Green Version]
- Miwa, K.; Kamiya, T.; Fujiwara, T. Homeostasis of the structurally important micronutrients, B and Si. Curr. Opin. Plant Biol. 2009, 12, 307–311. [Google Scholar] [CrossRef]
- He, C.W.; Wang, L.J.; Liu, J.; Liu, X.; Li, X.L.; Ma, J.; Lin, Y.J.; Xu, F.S. Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells. New Phytol. 2013, 200, 700–709. [Google Scholar] [CrossRef]
- Tanaka, H. Boron adsorption by plant roots. Plant Soil 1967, 27, 300–302. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Gigli-Bisceglia, N.; Engelsdorf, T.; Hamann, T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell. Mol. Life Sci. 2020, 77, 2049–2077. [Google Scholar] [CrossRef] [Green Version]
- Głazowska, S.; Baldwin, L.; Mravec, J.; Bukh, C.; Hansen, T.H.; Jensen, M.M.; Fangel, J.U.; Willats, W.G.T.; Glasius, M.; Felby, C.; et al. The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon. Biotechnol. Biofuels 2018, 11, 171. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, J.; Samardzic, J.; Masimovic, V.; Timotijevic, G.; Stevic, N.; Laursen, K.H.; Hansen, T.H.; Husted, S.; Schjoerring, J.K.; Liang, Y.; et al. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol. 2013, 198, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, M.; Nikolic, N.; Liang, Y.; Kirkby, E.A.; Römheld, V. Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol. 2007, 143, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savic, J.; Nikolic, M.; Prodanovic, S.; Römheld, V. Boron uptake by the root cortex symplast of tomato and pea plants: Evidence for low-boron-induced active transport. Funct. Plant Biol. 2007, 34, 1130–1136. [Google Scholar] [CrossRef]
Treatments 1 | B Concentration (µg g−1 DW) | Relative Share of Apoplastic B (%) | |
---|---|---|---|
Apoplastic | Symplastic | ||
C | 8.2 ± 1.5 b | 1.8 ± 0.2 c | 82 |
B | 10 ± 1 b | 264 ± 22 a | 4 |
B + Si | 32 ± 4 a | 144 ± 31 b | 18 |
Treatments 1 | B Concentration (µg g−1 DW) | Relative Share of Apoplastic B (%) | |
---|---|---|---|
Apoplastic | Symplastic | ||
C | 33.2 ± 4.1 b | 41.6 ± 5.0 b | 44 |
B | 129 ± 13 a | 361 ± 7 a | 28 |
B + Si | 131 ± 12 a | 367 ± 14 a | 28 |
B Supply | Si:B Ratio | |
---|---|---|
Wheat | Sunflower | |
Optimal | 12.38 a | 0.29 a |
High | 1.27 b | 0.03 b |
Si Supply | Ca:B Ratio | |||
---|---|---|---|---|
Wheat | Sunflower | |||
Optimal B | High B | Optimal B | High B | |
− | 10.0 a | 1.3 a | 17.5 a | 0.5 a |
+ | 10.2 a | 1.5 a | 17.4 a | 0.5 a |
Exposure Time (d) | B Isotope | Treatments | δ11B (‰) | |
---|---|---|---|---|
Wheat | Sunflower | |||
14 | 10B/11B (natural) | −Si | 5 | 9 |
+Si | 17 | 11 | ||
3 | 10B (enriched) | +Si ← −Si | −705 | −646 |
−Si ← +Si | −310 | −625 | ||
3 | 11B (enriched) | −Si ← +Si | −711 | −573 |
+Si ← −Si | −322 | −591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savic, J.; Pavlovic, J.; Stanojevic, M.; Bosnic, P.; Kostic Kravljanac, L.; Nikolic, N.; Nikolic, M. Silicon Differently Affects Apoplastic Binding of Excess Boron in Wheat and Sunflower Leaves. Plants 2023, 12, 1660. https://doi.org/10.3390/plants12081660
Savic J, Pavlovic J, Stanojevic M, Bosnic P, Kostic Kravljanac L, Nikolic N, Nikolic M. Silicon Differently Affects Apoplastic Binding of Excess Boron in Wheat and Sunflower Leaves. Plants. 2023; 12(8):1660. https://doi.org/10.3390/plants12081660
Chicago/Turabian StyleSavic, Jasna, Jelena Pavlovic, Milos Stanojevic, Predrag Bosnic, Ljiljana Kostic Kravljanac, Nina Nikolic, and Miroslav Nikolic. 2023. "Silicon Differently Affects Apoplastic Binding of Excess Boron in Wheat and Sunflower Leaves" Plants 12, no. 8: 1660. https://doi.org/10.3390/plants12081660
APA StyleSavic, J., Pavlovic, J., Stanojevic, M., Bosnic, P., Kostic Kravljanac, L., Nikolic, N., & Nikolic, M. (2023). Silicon Differently Affects Apoplastic Binding of Excess Boron in Wheat and Sunflower Leaves. Plants, 12(8), 1660. https://doi.org/10.3390/plants12081660