Genetic Diversity and Association Mapping of Grain-Size Traits in Rice Landraces from the Honghe Hani Rice Terraces System in Yunnan Province
Abstract
:1. Introduction
2. Results
2.1. Genetic Diversity Analysis
2.2. Population Structure and Genetic Relationships
2.3. Phenotypic Distribution of Grain-Size Traits
2.4. Marker–Trait Associations for Grain-Size Traits
3. Discussion
3.1. Molecular Genetic Diversity
3.2. Population Structure and Genetic Relationships
3.3. Phenotypic Evaluation
3.4. Marker–Trait Associations
4. Materials and Methods
4.1. Rice Material and Phenotyping
4.2. DNA Extraction and Genotyping
4.3. Phenotypic Data Analysis
4.4. Genetic Diversity, Phylogenetic Analysis, and Population Structure
4.5. Association Mapping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, B.Y.; Yang, C.Y.; Xie, K.; Zhang, L.; Wu, T.; Li, L.F.; Liu, X.; Jiang, L.; Wan, J.M. Quantitative trait loci for grain-quality traits across a rice F2 population and backcross inbred lines. Euphytica 2013, 192, 25–35. [Google Scholar] [CrossRef]
- Zeng, Y.W.; Zhang, H.L.; Li, Z.C.; Shen, S.Q.; Sun, J.N.; Wang, M.X.; Liao, D.Q.; Liu, X.; Wang, X.K.; Xiao, F.H.; et al. Evaluation of genetic diversity of rice landraces (Oryza sativa L.) in Yunnan, China. Breed. Sci. 2007, 57, 91–99. [Google Scholar] [CrossRef]
- Ma, M.L.; Zhou, X.M.; Zheng, Y.; Zhang, T.T.; Zhang, X.Q.; Lu, B.Y. Genetic diversity and population structure analysis of red rice from Hani terraced fields based on SRAP markers. Mol. Plant Breed. 2019, 17, 2231–2237. [Google Scholar]
- Xu, F.R.; Tang, C.F.; Yu, T.Q.; Dai, L.Y.; Zhang, H.S. Diversity of paddy rice varieties from Yuanyang Hani’s terraced fields in Yunnan, China. Acta Ecol. Sin. 2010, 30, 3346–3357. [Google Scholar]
- Huang, R.Y.; Jiang, L.R.; Zheng, J.S.; Wang, T.S.; Wang, H.C.; Huang, Y.M.; Hong, Z.L. Genetic bases of rice grain shape: So many genes, so little known. Trends Plant Sci. 2013, 18, 218–226. [Google Scholar] [CrossRef]
- Kang, Y.W.; Chen, Y.Y.; Zhang, Y.X. Research progress and breeding prospects of grain size associated genes in rice. Chin. J. Rice Sci. 2020, 34, 479–490. [Google Scholar]
- Song, X.J.; Huang, W.; Shi, M.; Zhu, M.Z.; Lin, H.X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 2007, 39, 623–630. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.X.; Fang, Y.X.; Zeng, L.J.; Xu, J.; Yu, H.P.; Shi, Z.Y.; Pan, J.J.; Zhang, D.; Kang, S.J.; et al. A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 2015, 8, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Ruan, B.; Shang, L.; Zhang, B.; Hu, J.; Wang, Y.; Lin, H.; Zhang, A.; Liu, C.; Peng, Y.; Zhu, L.; et al. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol. 2020, 227, 629–640. [Google Scholar] [CrossRef]
- Yu, J.P.; Xiong, H.Y.; Zhu, X.Y.; Zhang, H.L.; Li, H.H.; Miao, J.L.; Wang, W.S.; Tang, Z.S.; Zhang, Z.Y.; Yao, G.X. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol. 2017, 15, 28. [Google Scholar] [CrossRef]
- Mao, H.L.; Sun, S.Y.; Yao, J.L.; Wang, C.R.; Yu, S.B.; Xu, C.G.; Li, X.H.; Zhang, Q.F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Nat. Acad. Sci. USA 2010, 107, 19579–19584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Wang, J.F.; Huang, J.; Lan, H.X.; Wang, C.L.; Yin, C.F.; Wu, Y.Y.; Tang, H.J.; Qian, Q.; Li, J.Y.; et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Nat. Acad. Sci. USA 2012, 109, 21534–21539. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.J.; Lu, S.J.; Wang, M.J.; He, H.H.; Sun, L.; Wang, H.R.; Liu, X.H.; Jiang, L.; Sun, J.L.; Xin, X.Y.; et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol. Plant 2018, 11, 736–749. [Google Scholar] [CrossRef]
- Wu, W.G.; Liu, X.Y.; Wang, M.H.; Meyer, R.S.; Luo, X.J.; Ndjiondjop, M.; Tan, L.B.; Zhang, J.W.; Wu, J.Z.; Cai, H.W.; et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat. Plants 2017, 3, 17064. [Google Scholar] [CrossRef]
- Li, Y.; Fan, C.; Xing, Y.; Jiang, Y.; Luo, L.; Sun, L.; Shao, D.; Xu, C.; Li, X.; Xiao, J. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 2011, 43, 1266–1269. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.F.; Gu, S.H.; Wan, X.Y.; Gao, H.; Guo, T.; Su, N.; Lei, C.L.; Zhang, X.; Cheng, Z.J.; Guo, X.P.; et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 2008, 18, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, X.; Fu, Y.; Zhu, Z.; Tan, L.; Liu, F.; Sun, X.; Sun, X.; Sun, C. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J. Integr. Plant Biol. 2013, 55, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.L.; Dong, N.Q.; Guo, T.; Ye, W.W.; Shan, J.X.; Lin, H.X. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J. 2020, 103, 1174–1188. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, K.; Hirotsu, N.; Madoka, Y.; Murakami, N.; Hara, N.; Onodera, H.; Kashiwagi, T.; Ujiie, K.; Shimizu, B.; Onishi, A. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 2013, 45, 707–711. [Google Scholar] [CrossRef]
- Wang, A.; Hou, Q.; Si, L.; Huang, X.; Luo, J.; Lu, D.; Zhu, J.; Shangguan, Y.; Miao, J.; Xie, Y. The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiol. 2019, 180, 2077–2090. [Google Scholar] [CrossRef]
- Si, L.; Chen, J.; Huang, X.; Gong, H.; Luo, J.; Hou, Q.; Zhou, T.; Lu, T.; Zhu, J.; Shangguan, Y.; et al. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 2016, 48, 447–456. [Google Scholar] [CrossRef]
- Wang, S.K.; Li, S.; Liu, Q.; Wu, K.; Zhang, J.Q.; Wang, S.S.; Wang, Y.; Chen, X.B.; Zhang, Y.; Gao, C.X.; et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 2015, 47, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, K.; Yuan, Q.; Liu, X.; Liu, Z.; Lin, X.; Zeng, R.; Zhu, H.; Dong, G.; Qian, Q. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 2012, 44, 950–954. [Google Scholar] [CrossRef]
- Zhao, D.S.; Li, Q.F.; Zhang, C.Q.; Zhang, C.; Yang, Q.Q.; Pan, L.X.; Ren, X.Y.; Lu, J.; Gu, M.H.; Liu, Q.Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 2018, 9, 1240. [Google Scholar] [CrossRef]
- Zhan, P.; Wei, X.; Xiao, Z.; Wang, X.; Ma, S.; Lin, S.; Li, F.; Bu, S.; Liu, Z.; Zhu, H. GW10, a member of P450 subfamily regulates grain size and grain number in rice. Theor. Appl. Genet. 2021, 134, 3941–3950. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Liang, J.; Huang, Y.; Chuan, T.; CHEN, Y.L.; BAO, J.S. Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.). J. Integr. Agr. 2016, 15, 2192–2202. [Google Scholar] [CrossRef]
- Qun, X.; Hong, C.; Wang, C.H.; Yu, H.H.; Yuan, X.P.; Wang, Y.P.; Yue, F.; Tang, S.X.; Wei, X.H. Genetic diversity and structure of new inbred rice cultivars in China. J. Integr. Agr. 2012, 11, 1567–1573. [Google Scholar]
- Ma, M.L.; Zheng, Y.; Zhou, X.M.; Zhang, T.T.; Zhang, X.Q.; Lu, B.Y. Genetic Diversity Analysis of Red Rice from Hani’s Terraced Fields in Yunnan Province. Crops 2018, 5, 21–26. [Google Scholar]
- Liu, C.C.; Zhao, F.W.; Wu, X.X.; Zhang, C.Q.; Zhu, K.Z.; Xue, D.Y.; Wu, J.Y.; Huang, S.W.; Xu, X.Y.; Jin, Y.G.; et al. Genetic diversity and population structure analysis of currently cultivated rice landraces from Hani’s terraced fields in Yunnan Province. Chin. J. Rice Sci. 2015, 29, 28–34. [Google Scholar]
- Xu, F.; Dong, C.; Yang, W.; Tang, C.; Zhang, E.; Yang, Y.; Zhang, F.; Zhang, H. Comparison of genetic diversity of rice landraces planted in two periods in Hani’s terraced fields in Yuanyang county, Yunnan Province, China using microsatellite markers. Chin. J. Rice Sci. 2011, 25, 381–386. [Google Scholar]
- Edzesi, W.M.; Dang, X.; Liang, L.; Liu, E.; Zaid, I.U.; Hong, D. Genetic diversity and elite allele mining for grain traits in rice (Oryza sativa L.) by association mapping. Front. Plant Sci. 2016, 7, 787. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, Q.; Zhai, R.; Zhang, M.; Xu, Q.; Yang, Y.; Wang, S.; Yuan, X.; Yu, H.; Wang, Y. Genome wide association mapping for grain shape traits in indica rice. Planta 2016, 244, 819–830. [Google Scholar] [CrossRef]
- Dang, X.; Giang Tran Thi, T.; Mawuli Edzesi, W.; Liang, L.; Liu, Q.; Liu, E.; Wang, Y.; Qiang, S.; Liu, L.; Hong, D. Population genetic structure of Oryza sativa in East and Southeast Asia and the discovery of elite alleles for grain traits. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.H.; Hong, X.Y.; Xu, C.G.; Li, X.H.; He, Y.Q. Identification of quantitative trait loci for grain appearance and milling quality using a doubled-haploid rice population. J. Integr. Plant Biol. 2005, 47, 1391–1403. [Google Scholar] [CrossRef]
- Nayak, A.K.; Anilkumar, C.; Behera, S.; Sah, R.P.; Lavanya, G.R.; Kumar, A.; Behera, L.; Tp, M.A. Genetic dissection of grain size traits through genome-wide association study based on genic markers in rice. Rice Sci. 2022, 29, 462–472. [Google Scholar] [CrossRef]
- Yan, B.; Liu, R.; Li, Y.; Wang, Y.; Gao, G.; Zhang, Q.; Liu, X.; Jiang, G.; He, Y. QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding. Breed. Sci. 2014, 64, 231–239. [Google Scholar] [CrossRef]
- Lin, S.; Liu, Z.; Zhang, K.; Yang, W.; Zhan, P.; Tan, Q.; Gou, Y.; Ma, S.; Luan, X.; Huang, C. GL9 from Oryza glumaepatula controls grain size and chalkiness in rice. Crop J. 2023, 11, 198–207. [Google Scholar] [CrossRef]
- Fujita, D.; Tagle, A.G.; Koide, Y.; Simon, E.V.; Fukuta, Y.; Ishimaru, T.; Kobayashi, N. Characterization of QTLs for grain weight from New Plant Type rice cultivars through the development of near-isogenic lines with an IR64 background. Euphytica 2022, 218, 50. [Google Scholar] [CrossRef]
- Bian, J.M.; Jiang, L.; Liu, L.L.; Wei, X.J.; Xiao, Y.H.; Zhang, L.J.; Zhao, Z.G.; Zhai, H.Q.; Wan, J.M. Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs. Breed. Sci. 2010, 60, 305–313. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Zhang, Y.H.; Dong, S.L.; Tao, C.; Zhao, Q.Y.; Zhen, Z.; Zhou, L.H.; Shu, Y.; Ling, Z.; Xing, Y. QTL mapping for grain size traits based on extra-large grain rice line TD70. Rice Sci. 2013, 20, 400–406. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, X.; Tong, H.; Lu, Y.; Li, J. Association mapping for important agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers. PLoS ONE 2014, 9, e111508. [Google Scholar] [CrossRef]
- Zhao, D.; Li, P.; Wang, L.; Sun, L.; Xia, D.; Luo, L.; Gao, G.; Zhang, Q.; He, Y. Genetic dissection of large grain shape in rice cultivar ‘Nanyangzhan’and validation of a grain thickness QTL (qGT3. 1) and a grain length QTL (qGL3. 4). Mol. Breed. 2017, 37, 42. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Z.; Chen, J.; Fan, Y.; Mou, T.; Tang, S.; Zhuang, J. Fine mapping of qTGW10-20.8, a QTL having important contribution to grain weight variation in rice. Crop J. 2019, 7, 587–597. [Google Scholar] [CrossRef]
- Yin, C.; Li, H.; Li, S.; Xu, L.; Zhao, Z.; Wang, J. Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica× indica population consisting of recombinant inbred lines. Theor. Appl. Genet. 2015, 128, 1969–1986. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yun, P.; Zhu, Y.; Wang, L.; Li, P.; Lou, G.; Xia, D.; Zhang, Q.; Xiao, J.; Li, X. Fine mapping of qTGW2b and qGL9, two minor QTL conferring grain size and weight in rice. Mol. Breed. 2022, 42, 68. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.J.; Zhu, A.D.; Fan, Y.Y.; Huang, T.X.; Zhang, J.F.; Xie, H.A.; Zhuang, J.Y. Fine-mapping of qTGW2, a quantitative trait locus for grain weight in rice (Oryza sativa L.). Peer J. 2020, 8, e8679. [Google Scholar] [CrossRef]
- Gao, F.Y.; Zeng, L.H.; Ling, Q.; Lu, X.J.; Ren, J.S.; Wu, X.T.; Su, X.W.; Gao, Y.M.; Ren, G.J. QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.). J. Integr. Agr. 2016, 15, 1693–1702. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Zhou, K.; Pan, X.; Li, Y.; Lu, T.; Sheng, X. Mapping of QTLs controlling grain shape and populations construction derived from related residual heterozygous lines in rice. J. Agric. Sci. 2016, 8, 104–113. [Google Scholar] [CrossRef]
- Qi, L.; Sun, Y.; Li, J.; Su, L.; Zheng, X.; Wang, X.; Li, K.; Yang, Q.; Qiao, W. Identify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments. Breed. Sci. 2017, 67, 472–482. [Google Scholar] [CrossRef]
- Ferdous, N.; Elias, S.M.; Howlader, Z.H.; Biswas, S.K.; Rahman, M.S.; Habiba, K.K.; Seraj, Z.I. Profiling Bangladeshi rice diversity based on grain size and amylose content using molecular markers. Curr. Plant Biol. 2018, 14, 56–65. [Google Scholar] [CrossRef]
- Sanguinetti, C.J.; Simpson, A. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 1994, 17, 914–921. [Google Scholar] [PubMed]
- Wang, L.; Liu, W.; Xu, Y.; He, Y.; Luo, L.; Xing, Y.; Xu, C.; Zhang, Q. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor. Appl. Genet. 2007, 115, 463–476. [Google Scholar] [CrossRef]
- Ma, M.; Meng, H.; Lei, E.; Wang, T.; Zhang, W.; Lu, B. De novo transcriptome assembly, gene annotation, and EST-SSR marker development of an important medicinal and edible crop, Amomum tsaoko (Zingiberaceae). BMC Plant Biol. 2022, 22, 467. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.C.; Yang, R.; Boyle, T.B.; Ye, Z.; Mao, J.X. Popgene Version 1.32, the User-Friendly Shareware for Population Genetic Analysis; Molecular Biology and Biotechnology Centre, University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Liu, K.; Muse, S.V. Powermarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.A.; VonHoldt, B.M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
Parameter | Mean ± SE | Minimum | Maximum |
---|---|---|---|
Na | 4.66 ± 0.15 | 2.00 | 13.00 |
Ne | 2.71 ± 0.09 | 1.19 | 6.73 |
I | 1.08 ± 0.03 | 0.31 | 2.05 |
H | 0.15 ± 0.02 | 0.00 | 1.00 |
PIC | 0.55 ± 0.01 | 0.20 | 0.86 |
Traits | Year | Mean ± SE | Minimum | Maximum | SD | Skewness | Kurtosis | CV (%) | (%) |
---|---|---|---|---|---|---|---|---|---|
GL (mm) | 2013 | 8.12 ± 0.06 | 6.63 | 9.76 | 0.63 | 0.11 | 0.13 | 7.80 | 92.63 |
2014 | 8.17 ± 0.07 | 6.54 | 9.94 | 0.67 | 0.34 | 0.42 | 8.20 | ||
2015 | 8.03 ± 0.07 | 6.28 | 9.89 | 0.70 | 0.10 | −0.04 | 8.74 | ||
2021 | 7.97 ± 0.06 | 6.40 | 9.39 | 0.59 | 0.14 | 0.31 | 7.39 | ||
GW (mm) | 2013 | 3.06 ± 0.03 | 2.29 | 4.40 | 0.33 | 0.69 | 1.84 | 10.91 | 87.85 |
2014 | 3.24 ± 0.03 | 2.58 | 4.05 | 0.28 | 0.95 | 1.94 | 8.51 | ||
2015 | 3.11 ± 0.03 | 2.50 | 3.97 | 0.28 | 0.25 | 0.32 | 8.89 | ||
2021 | 3.04 ± 0.03 | 2.54 | 3.92 | 0.30 | 0.85 | 0.58 | 9.72 | ||
GT (mm) | 2013 | 2.06 ± 0.02 | 1.65 | 2.43 | 0.17 | −0.23 | −0.49 | 8.21 | 92.64 |
2014 | 2.20 ± 0.02 | 1.83 | 2.57 | 0.15 | 0.30 | 0.07 | 6.80 | ||
2015 | 2.11 ± 0.02 | 1.55 | 2.60 | 0.17 | −0.01 | 1.11 | 7.88 | ||
2021 | 2.13 ± 0.02 | 1.60 | 2.54 | 0.17 | −0.28 | 0.72 | 7.73 | ||
LWR | 2013 | 2.71 ± 0.04 | 1.88 | 3.66 | 0.36 | 0.08 | 0.12 | 13.38 | 72.39 |
2014 | 2.56 ± 0.04 | 1.81 | 3.67 | 0.35 | 0.22 | 0.85 | 13.51 | ||
2015 | 2.62 ± 0.04 | 1.83 | 3.77 | 0.36 | 0.63 | 0.93 | 13.65 | ||
2021 | 2.65 ± 0.03 | 1.80 | 3.64 | 0.34 | −0.14 | 0.63 | 12.90 | ||
TGW (g) | 2013 | 24.06 ± 0.33 | 16.62 | 33.28 | 3.19 | 0.33 | 0.53 | 13.25 | 86.11 |
2014 | 27.16 ± 0.32 | 18.96 | 36.11 | 3.10 | 0.38 | 0.93 | 11.42 | ||
2015 | 24.42 ± 0.37 | 16.56 | 35.61 | 3.60 | 0.72 | 0.76 | 14.75 | ||
2021 | 26.64 ± 0.41 | 16.22 | 36.45 | 4.06 | 0.34 | −0.11 | 15.24 |
Traits | Year | Locus | Chr. | p-Value | R2 (%) |
---|---|---|---|---|---|
GL | 2013 | RM449 | 1 | 1.11 × 10−3 | 16.31 |
2021 | RM316 | 9 | 2.95 × 10−3 | 23.51 | |
GW | 2013 | RM6092 | 1 | 3.74 × 10−3 | 26.79 |
2013 | RM1 | 1 | 7.10 × 10−3 | 37.26 | |
2013 | RM452/RM550 | 2 | 7.77 × 10−4 | 19.04 | |
2013 | RM229 | 11 | 3.96 × 10−3 | 25.03 | |
2013 | RM519 | 12 | 6.11 × 10−3 | 26.57 | |
2014 | RM414 | 1 | 7.85 × 10−3 | 29.24 | |
2014 | RM425 | 2 | 3.26 × 10−3 | 12.86 | |
2014 | RM523 | 3 | 7.57 × 10−3 | 10.84 | |
2014 | RM7097 | 3 | 4.24 × 10−3 | 25.92 | |
2014 | RM570 | 3 | 5.60 × 10−3 | 28.92 | |
2014 | RM169 | 5 | 1.46 × 10−3 | 28.83 | |
2014 | RM161/RM305 | 5 | 2.72 × 10−3 | 13.31 | |
2014 | RM6313 | 5 | 7.32 × 10−3 | 10.92 | |
2014 | RM253 | 6 | 4.74 × 10−3 | 28.10 | |
2014 | RM3827 | 6 | 3.04 × 10−3 | 18.19 | |
2014 | RM4085 | 8 | 9.98 × 10−3 | 19.55 | |
2014 | RM596 | 10 | 1.01 × 10−3 | 16.31 | |
2014 | RM228 | 10 | 4.54 × 10−3 | 36.56 | |
2014 | RM6296 | 12 | 8.51 × 10−3 | 11.21 | |
2014 | RM277 | 12 | 1.45 × 10−3 | 15.88 | |
2014 | RM519 | 12 | 5.59 × 10−3 | 25.90 | |
2014 | RM235 | 12 | 8.83 × 10−3 | 42.32 | |
2015 | RM84 | 1 | 1.39 × 10−3 | 40.03 | |
2015 | RM5496 | 1 | 2.38 × 10−3 | 43.01 | |
2015 | RM246/RM237 | 1 | 4.95 × 10−3 | 25.54 | |
2015 | RM472 | 1 | 5.82 × 10−3 | 21.38 | |
2015 | RM563 | 3 | 3.70 × 10−3 | 18.1 | |
2015 | RM261 | 4 | 1.97 × 10−3 | 19.57 | |
2015 | RM252 | 4 | 6.47 × 10−3 | 26.12 | |
2015 | RM540 | 6 | 5.90 × 10−3 | 27.18 | |
2015 | RM432 | 7 | 2.86 × 10−3 | 21.85 | |
2015 | RM346 | 7 | 9.28 × 10−3 | 23.7 | |
2015 | RM316 | 9 | 3.15 × 10−3 | 22.8 | |
2015 | RM7557 | 11 | 2.22 × 10−3 | 19.43 | |
2015 | RM202 | 11 | 5.85 × 10−3 | 18.81 | |
2015 | RM144 | 11 | 3.92 × 10−3 | 30.78 | |
2015 | RM19 | 12 | 8.22 × 10−3 | 20.66 | |
2021 | RM6092 | 1 | 4.67 × 10−3 | 27.28 | |
2021 | RM452/RM550 | 2 | 4.26 × 10−3 | 15.57 | |
2021 | RM229 | 11 | 8.79 × 10−4 | 29.01 | |
GT | 2013 | RM138 | 2 | 9.95 × 10−3 | 12.73 |
2014 | RM4499 | 2 | 6.19 × 10−4 | 23.47 | |
2014 | RM161/RM305 | 5 | 4.79 × 10−3 | 11.98 | |
2014 | RM190 | 6 | 5.26 × 10−3 | 18.81 | |
2014 | RM432 | 7 | 6.65 × 10−3 | 19.21 | |
2014 | RM331 | 8 | 8.42 × 10−3 | 23.81 | |
2021 | RM275 | 6 | 4.10 × 10−3 | 24.72 | |
LWR | 2013 | RM449 | 1 | 3.81 × 10−3 | 13.18 |
2014 | RM202 | 11 | 9.19 × 10−3 | 19.02 | |
2014 | RM519 | 12 | 7.16 × 10−4 | 32.94 | |
2021 | RM5496 | 1 | 7.80 × 10−3 | 36.96 | |
2021 | RM471 | 4 | 5.82 × 10−3 | 24.54 | |
2021 | RM337 | 8 | 3.32 × 10−3 | 20.04 | |
2021 | RM126 | 8 | 3.33 × 10−3 | 12.68 | |
TGW | 2013 | RM25 | 8 | 7.09 × 10−3 | 26.32 |
2014 | RM316 | 9 | 6.57 × 10−3 | 20.52 | |
2015 | RM4499 | 2 | 4.56 × 10−3 | 17.65 | |
2015 | RM316 | 9 | 6.63 × 10−3 | 20.72 | |
2021 | RM190 | 6 | 7.62 × 10−3 | 17.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Lei, E.; Wang, T.; Meng, H.; Zhang, W.; Lu, B. Genetic Diversity and Association Mapping of Grain-Size Traits in Rice Landraces from the Honghe Hani Rice Terraces System in Yunnan Province. Plants 2023, 12, 1678. https://doi.org/10.3390/plants12081678
Ma M, Lei E, Wang T, Meng H, Zhang W, Lu B. Genetic Diversity and Association Mapping of Grain-Size Traits in Rice Landraces from the Honghe Hani Rice Terraces System in Yunnan Province. Plants. 2023; 12(8):1678. https://doi.org/10.3390/plants12081678
Chicago/Turabian StyleMa, Mengli, En Lei, Tiantao Wang, Hengling Meng, Wei Zhang, and Bingyue Lu. 2023. "Genetic Diversity and Association Mapping of Grain-Size Traits in Rice Landraces from the Honghe Hani Rice Terraces System in Yunnan Province" Plants 12, no. 8: 1678. https://doi.org/10.3390/plants12081678
APA StyleMa, M., Lei, E., Wang, T., Meng, H., Zhang, W., & Lu, B. (2023). Genetic Diversity and Association Mapping of Grain-Size Traits in Rice Landraces from the Honghe Hani Rice Terraces System in Yunnan Province. Plants, 12(8), 1678. https://doi.org/10.3390/plants12081678