Studying Parameters Affecting Accumulation of Chilling Units Required for Olive Winter Flower Induction
Abstract
:1. Introduction
2. Results
2.1. Does the Memory of Fruit Load in a Different Tree Sector Affect Flowering?
2.2. Forced Drought (FD) during Winter Does Not Affect Olive Flower Induction
2.3. Different WTRs, CU Calculations, and i Values in Five Cultivars
3. Discussion
4. Materials and Methods
4.1. Fruit Load Experiments
4.2. Winter Forced Drought (FD) Experiment
4.3. Measuring Flowering Response of Different Cultivars to Different Winters
4.4. Fruit Removal in Spring
4.5. Flowering Survey
4.6. Quantifying Stem Water Potential
4.7. Leaf Sampling for RNA Extraction, cDNA Preparation, and Relative Gene Expression Analysis
4.8. Cold Unit Calculation
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
n | number of buds per branch |
i | the percentage of buds that formed a visible inflorescence |
CU | chilling unit |
FD | forced drought |
WTR | winter temperature regime |
DMA | De Melo-Abreu |
References
- Zohary, D.; Spiegel-Roy, P. Beginnings of fruit growing in the old world. Science 1975, 187, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Lacatusu, C.M.; Grigorescu, E.D.; Floria, M.; Onofriescu, A.; Mihai, B.M. The Mediterranean diet: From an environment-driven food culture to an emerging medical prescription. Int. J. Environ. Res. Public Health 2019, 16, 942. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Lavee, S. Biennial bearing in olive (Olea europaea L.). Olea 2006, 25, 5–13. [Google Scholar]
- Nissim, Y.; Shloberg, M.; Biton, I.; Many, Y.; Doron-Faigenboim, A.; Zemach, H.; Hovav, R.; Kerem, Z.; Avidan, B.; Ben-Ari, G. High temperature environment reduces olive oil yield and quality. PLoS ONE 2020, 15, e0231956. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.C. Olive flower and fruit population dynamics. Acta Hort. 1990, 286, 141–153. [Google Scholar] [CrossRef]
- Lavee, S.; Rallo, L.; Rapoport, H.F.; Troncoso, A.J. The floral biology of the olive: Effect of flower number, type and distribution on fruitset. Sci. Hortic.-Amst. 1996, 66, 149–158. [Google Scholar] [CrossRef]
- Goldental-Cohen, S.; Biton, I.; Many, Y.; Tavrizov, K.; Dourou, A.M.; Zemach, H.; Tonutti, P.; Kerem, Z.; Avidan, B.; Sperling, O.; et al. Removal of flowers or inflorescences affects ‘Barnea’ olive fruitlet post-anthesis abscission. J. Hortic. Sci. Biotechnol. 2019, 94, 488–498. [Google Scholar] [CrossRef]
- Hartmann, H.; Porlingis, I. Effect of different amounts of winter chilling on fruitfulness of several olive varieties. Bot. Gaz. 1957, 119, 102–104. [Google Scholar] [CrossRef]
- Haberman, A.; Bakhshian, O.; Cerezo-Medina, S.; Paltiel, J.; Adler, C.; Ben Ari, G.; Mercado, J.A.; Pliego-Alfaro, F.; Lavee, S.; Samach, A. A possible role for FT-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant Cell Environ. 2017, 40, 1263–1280. [Google Scholar] [CrossRef]
- Wechsler, T.; Bakhshian, O.; Engelen, C.; Dag, A.; Ben-Ari, G.; Samach, A. Determining reproductive parameters, which contribute to variation in yield of olive trees from different cultivars, irrigation regimes, age and location. Plants 2022, 11, 2414. [Google Scholar] [CrossRef] [PubMed]
- Saumitou-Laprade, P.; Vernet, P.; Vekemans, X.; Billiard, S.; Gallina, S.; Essalouh, L.; Mhaïs, A.; Moukhli, A.; El Bakkali, A.; Barcaccia, G.; et al. Elucidation of the genetic architecture of self-incompatibility in olive: Evolutionary consequences and perspectives for orchard management. Evol. Appl. 2017, 10, 867–880. [Google Scholar] [CrossRef] [PubMed]
- Hackett, W.P.; Hartmann, H.T. The influence of temperature on floral initiation in the olive. Physiol. Plant. 1967, 20, 430–436. [Google Scholar] [CrossRef]
- Hartmann, H.; Porlingis, I. Effect of winter chilling on fruitfulness and vegetative growth in the olive. Proc. Am. Soc. Hortic. Sci. 1953, 62, 184–190. [Google Scholar]
- Ben-Ari, G.; Biton, I.; Many, Y.; Namdar, D.; Samach, A. Elevated temperatures negatively affect olive productive cycle and oil quality. Agronomy 2021, 11, 1492. [Google Scholar] [CrossRef]
- Badr, S.A.; Hartmann, H.T. Effect of diurnally fluctuating vs constant temperatures on flower induction and sex expression in olive (Olea europaea L.). Physiol. Plant. 1971, 24, 40–45. [Google Scholar] [CrossRef]
- Hartmann, H.T.; Whisler, J.E. Flower production in olive as influenced by various chilling temperature regimes. J. Am. Soc. Hortic. Sci. 1975, 100, 670–674. [Google Scholar] [CrossRef]
- Badr, S.A.; Hartmann, H.T. Flowering response of olive (Olea europaea L.) to certain growth-regulators applied under inductive and noninductive environments. Bot. Gaz. 1972, 133, 384–392. [Google Scholar] [CrossRef]
- Denney, J.O.; McEachern, G.R.; Griffiths, J.F. Modeling the thermal adaptability of the olive (Olea europaea L.) in texas. Agric. For. Meteorol. 1985, 35, 309–327. [Google Scholar] [CrossRef]
- Ayerza, R.; Steven Sibbett, G. Thermal adaptability of olive (Olea europaea L.) to the arid Chaco of Argentina. Agric. Ecosyst. Environ. 2001, 84, 277–285. [Google Scholar] [CrossRef]
- Andres, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Honsho, C.; Kanzaki, S.; Shimizu, K.; Utsunomiya, N. Isolation and expression analysis of FLOWERING LOCUS T-like and gibberellin metabolism genes in biennial-bearing mango trees. Sci. Hortic.-Amst. 2012, 139, 108–117. [Google Scholar] [CrossRef]
- Gafni, I.; Rai, A.C.; Halon, E.; Zviran, T.; Sisai, I.; Samach, A.; Irihimovitch, V. Expression profiling of four mango FT/TFL1-encoding genes under different fruit load conditions, and their involvement in flowering regulation. Plants 2022, 11, 2409. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, F. Regulation of floral induction in citrus. J. Jpn. Soc. Hortic. Sci. 2013, 82, 283–292. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, S.; Chen, H.; Su, Z.; Zhang, R.; Xiao, Q.; Li, H. Promoter difference of LCFT1 Is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis sonn.). Plant Sci. 2015, 241, 128–137. [Google Scholar] [CrossRef]
- Ziv, D.; Zviran, T.; Zezak, O.; Samach, A.; Irihimovitch, V. Expression profiling of FLOWERING LOCUS T-LIKE gene in alternate bearing ‘Hass’ avocado trees suggests a role for paft in avocado flower induction. PLoS ONE 2014, 9, e110613. [Google Scholar] [CrossRef] [PubMed]
- Fadón, E.; Fernandez, E.; Behn, H.; Luedeling, E. A conceptual framework for winter dormancy in deciduous trees. Agronomy 2020, 10, 241. [Google Scholar] [CrossRef]
- Weinberger, J.H. Chilling requirements of peach varieties. Proc. Am. Soc. Hortic. Sci. 1950, 56, 122–128. [Google Scholar]
- Anderson, J.L.; Seeley, S.D. Modelling Strategy in Pomology: Development of the Utah Models; International Society for Horticultural Science (ISHS): Leuven, Belgium, 1992; pp. 297–306. [Google Scholar]
- Richardson, E.A.; Seeley, S.D.; Walker, D.R. A model for estimating the completion of rest for “Redhaven” and “Elberta” peach trees. Hortscience 1974, 9, 331–332. [Google Scholar] [CrossRef]
- Navarro, C.; Fernandez-Escobar, R.; Benlloch, M. Flower bud induction in ‘Manzanillo’ olive. Acta Hortic. 1990, 286, 195–198. [Google Scholar] [CrossRef]
- Rallo, L.; Martin, G.C. The role of chilling in releasing olive floral buds from dormancy. J. Am. Soc. Hortic. Sci. 1991, 116, 1058–1062. [Google Scholar] [CrossRef]
- Aron, R.H. Availability of chilling temperatures in california. Agric. Meteorol. 1983, 28, 351–363. [Google Scholar] [CrossRef]
- Garrido, A.; Fernández-González, M.; Vázquez-Ruiz, R.A.; Rodríguez-Rajo, F.J.; Aira, M.J. Reproductive biology of olive trees (Arbequina cultivar) at the northern limit of their distribution areas. Forests 2021, 12, 204. [Google Scholar] [CrossRef]
- Martins, F.B.; Pereira, R.A.D.; Torres, R.R.; dos Santos, D.F. Climate projections of chill hours and implications for olive cultivation in Minas Gerais, Brazil. Pesqui. Agropecu. Bras. 2020, 55. [Google Scholar] [CrossRef]
- De Melo-Abreu, J.P.; Barranco, D.; Cordeiro, A.M.; Tous, J.; Rogado, B.M.; Villalobos, F.J. Modelling olive flowering date using chilling for dormancy release and thermal time. Agric. For. Meteorol. 2004, 125, 117–127. [Google Scholar] [CrossRef]
- Aybar, V.E.; De Melo-Abreu, J.P.; Searles, P.S.; Matias, A.C.; Del Rio, C.; Caballero, J.M.; Rousseaux, M.C. Evaluation of olive flowering at low latitude sites in Argentina using a chilling requirement model. Span. J. Agric. Res. 2015, 13, e0901. [Google Scholar] [CrossRef]
- Morales, A.; Leffelaar, P.A.; Testi, L.; Orgaz, F.; Villalobos, F.J. A dynamic model of potential growth of olive (Olea europaea L.) orchards. Eur. J. Agron. 2016, 74, 93–102. [Google Scholar] [CrossRef]
- López-Bernal, Á.; Morales, A.; García-Tejera, O.; Testi, L.; Orgaz, F.; De Melo-Abreu, J.P.; Villalobos, F.J. Olivecan: A process-based model of development, growth and yield of olive orchards. Front. Plant Sci. 2018, 9, 632. [Google Scholar] [CrossRef]
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Sustainability of olive growing in the Mediterranean area under future climate scenarios: Exploring the effects of intensification and deficit irrigation. Eur. J. Agron. 2021, 129, 126319. [Google Scholar] [CrossRef]
- Elloumi, O.; Ghrab, M.; Chatti, A.; Chaari, A.; Ben Mimoun, M. Phenological performance of olive tree in a warm production area of central tunisia. Sci. Hortic.-Amst. 2020, 259, 108759. [Google Scholar] [CrossRef]
- Abou-Saaid, O.; El Yaacoubi, A.; Moukhli, A.; El Bakkali, A.; Oulbi, S.; Delalande, M.; Farrera, I.; Kelner, J.-J.; Lochon-Menseau, S.; El Modafar, C.; et al. Statistical approach to assess chill and heat requirements of olive tree based on flowering date and temperatures data: Towards selection of adapted cultivars to global warming. Agronomy 2022, 12, 2975. [Google Scholar] [CrossRef]
- Fishman, S.; Erez, A.; Couvillon, G.A. The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 1987, 124, 473–483. [Google Scholar] [CrossRef]
- Fishman, S.; Erez, A.; Couvillon, G.A. The temperature dependence of dormancy breaking in plants: Computer simulation of processes studied under controlled temperatures. J. Theor. Biol. 1987, 126, 309–321. [Google Scholar] [CrossRef]
- Kozlowski, T.T.; Pallardy, S.G. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 2002, 68, 270–334. [Google Scholar] [CrossRef]
- Chaikiattiyos, S.; Menzel, C.M.; Rasmussen, T.S. Floral induction in tropical fruit-trees-effects of temperature and water-supply. J. Hortic. Sci. 1994, 69, 397–415. [Google Scholar] [CrossRef]
- Yeoh, S.H.; Satake, A.; Numata, S.; Ichie, T.; Lee, S.L.; Basherudin, N.; Muhammad, N.; Kondo, T.; Otani, T.; Hashim, M.; et al. Unravelling proximate cues of mass flowering in the tropical forests of south-east asia from gene expression analyses. Mol. Ecol. 2017, 26, 5074–5085. [Google Scholar] [CrossRef]
- Stern, R.A.; Adato, I.; Goren, M.; Eisenstein, D.; Gazit, S. Effects of autumnal water-stress on litchi flowering and yield in israel. Sci. Hortic.-Amst. 1993, 54, 295–302. [Google Scholar] [CrossRef]
- Wu, P.; Wu, C.; Zhou, B. Drought stress induces flowering and enhances carbohydrate accumulation in Averrhoa carambola. Hortic. Plant J. 2017, 3, 60–66. [Google Scholar] [CrossRef]
- Dag, A.; Bustan, A.; Avni, A.; Tzipori, I.; Lavee, S.; Riov, J. Timing of fruit removal affects concurrent vegetative growth and subsequent return bloom and yield in olive (Olea europaea L.). Sci. Hortic.-Amst. 2010, 123, 469–472. [Google Scholar] [CrossRef]
- Perez-Martin, A.; Michelazzo, C.; Torres-Ruiz, J.M.; Flexas, J.; Fernández, J.E.; Sebastiani, L.; Diaz-Espejo, A. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: Correlation with gene expression of carbonic anhydrase and aquaporins. J. Exp. Bot. 2014, 65, 3143–3156. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- Samach, A.; Smith, H.M. Constraints to obtaining consistent annual yields in perennials ii: Environment and fruit load affect flowering induction. Plant Sci. 2013, 207, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Nasim, Z.; Susila, H.; Ahn, J.H. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin. Cell Dev. Biol. 2021, 109, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Corbesier, L.; Vincent, C.; Jang, S.; Fornara, F.; Fan, Q.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C.; et al. FT protein movement contributes to long-distance signaling in floral induction of arabidopsis. Science 2007, 316, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y. Florigen and anti-florigen: Flowering regulation in horticultural crops. Breed. Sci. 2018, 68, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Lifschitz, E.; Eviatar, T.; Rozman, A.; Shalit, A.; Goldshmidt, A.; Amsellem, Z.; Alvarez, J.P.; Eshed, Y. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. PNAS 2006, 103, 6398–6403. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.E.; Wigge, P.A. FT protein acts as a long-range signal in arabidopsis. Curr. Biol. 2007, 17, 1050–1054. [Google Scholar] [CrossRef]
- Benlloch-González, M.; Sánchez-Lucas, R.; Benlloch, M.; Ricardo, F.-E. An approach to global warming effects on flowering and fruit set of olive trees growing under field conditions. Sci. Hortic.-Amst. 2018, 240, 405–410. [Google Scholar] [CrossRef]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic.-Amst. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Gattullo, C.E. Ripening indices and harvesting times of different olive cultivars for continuous harvest. Sci. Hortic.-Amst. 2013, 151, 1–10. [Google Scholar] [CrossRef]
- Lavee, S. Biennial bearing in olive (Olea europea L.). Ann. Ser. Hist. Nat. 2007, 17, 101–112. [Google Scholar]
- Turktas, M.; Inal, B.; Okay, S.; Erkilic, E.G.; Dundar, E.; Hernandez, P.; Dorado, G.; Unver, T. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europea L.). PLoS ONE 2013, 8, e59876. [Google Scholar] [CrossRef] [PubMed]
- Bustan, A.; Avni, A.; Lavee, S.; Zipori, I.; Yeselson, Y.; Schaffer, A.A.; Riov, J.; Dag, A. Role of carbohydrate reserves in yield production of intensively cultivated oil olive (Olea europea L.) trees. Tree Physiol. 2011, 31, 519–530. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Searles, P.; Rousseaux, M.C.; García-Inza, G.; Miserere, A.; Bodoira, R.; Contreras, C.; Maestri, D. Olive cultivation in the southern hemisphere: Flowering, water requirements and oil quality responses to new crop environments. Front. Plant Sci. 2017, 8, 1830. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, H.F.; Pérez-Priego, O.; Orgaz, F.; Martins, P. Water Deficit Effects during Olive Tree Inflorescence and Flower Development; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2011; pp. 157–162. [Google Scholar]
- Pierantozzi, P.; Torres, M.; Bodoira, R.; Maestri, D. Water relations, biochemical - physiological and yield responses of olive trees (Olea europea L. Cvs. Arbequina and Manzanilla) under drought stress during the pre-flowering and flowering period. Agric. Water Manag. 2013, 125, 13–25. [Google Scholar] [CrossRef]
- Beya-Marshall, V.; Herrera, J.; Fichet, T.; Trentacoste, E.; Kremer, C. The effect of water status on productive and flowering variables in young ‘Arbequina’ olive trees under limited irrigation water availability in a semiarid region of chile. Hortic. Environ. Biotechnol. 2018, 59. [Google Scholar] [CrossRef]
- Castillo-Llanque, F.; Rapoport, H. Relationship between reproductive behavior and new shoot development in 5-year-old branches of olive trees (Olea europea L.). Trees—Struct. Funct. 2011, 25, 823–832. [Google Scholar] [CrossRef]
- Gucci, R.; Lodolini, E.M.; Rapoport, H.F. Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree Physiol. 2009, 29, 1575–1585. [Google Scholar] [CrossRef]
- Gómez-del-Campo, M.; Pérez-Expósito, M.Á.; Hammami, S.B.M.; Centeno, A.; Rapoport, H.F. Effect of varied summer deficit irrigation on components of olive fruit growth and development. Agric. Water Manag. 2014, 137, 84–91. [Google Scholar] [CrossRef]
- Boussadia, O.; Mariem, F.B.; Mechri, B.; Boussetta, W.; Braham, M.; Hadj, S.B.E. Response to drought of two olive tree cultivars (cv Koroneki and Meski). Sci. Hortic.-Amst. 2008, 116, 388–393. [Google Scholar] [CrossRef]
- Edziri, H.; Chehab, H.; Aissaoui, F.; Boujnah, D.; Mastouri, M. Photosynthetic, anatomical and biochemical responses of olive tree (Olea europea L.) cultivars under water stress. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2021, 155, 740–746. [Google Scholar]
- Razouk, R.; Hssaini, L.; Alghoum, M.; Adiba, A.; Hamdani, A. Phenotyping olive cultivars for drought tolerance using leaf macro-characteristics. Horticulturae 2022, 8, 939. [Google Scholar] [CrossRef]
- Barzilai, O.; Avraham, M.; Sorek, Y.; Zemach, H.; Dag, A.; Hochberg, U. Productivity versus drought adaptation in olive leaves: Comparison of water relations in a modern versus a traditional cultivar. Physiol. Plant 2021, 173, 2298–2306. [Google Scholar] [CrossRef]
- Périlleux, C.; Bouché, F.; Randoux, M.; Orman-Ligeza, B. Turning meristems into fortresses. Trends Plant Sci. 2019, 24, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Kaneko-Suzuki, M.; Kurihara-Ishikawa, R.; Okushita-Terakawa, C.; Kojima, C.; Nagano-Fujiwara, M.; Ohki, I.; Tsuji, H.; Shimamoto, K.; Taoka, K.I. TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol. 2018, 59, 458–468. [Google Scholar] [CrossRef]
- Bradley, D.; Ratcliffe, O.; Vincent, C.; Carpenter, R.; Coen, E. Inflorescence commitment and architecture in arabidopsis. Science 1997, 275, 80–83. [Google Scholar] [CrossRef]
- Tsamir-Rimon, M.; Ben-Dor, S.; Feldmesser, E.; Oppenhimer-Shaanan, Y.; David-Schwartz, R.; Samach, A.; Klein, T. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 2021, 229, 1398–1414. [Google Scholar] [CrossRef]
Location | De Melo-Abreu (CU) | Gaus-Sian (CU) | Gaus-Sian and Neg (CU) | i Values of Different Cultivars | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Askal | Barnea | Coratina | Manzanillo | Nabali | |||||||||
AVG | SE | AVG | SE | AVG | SE | AVG | SE | AVG | SE | ||||
Rehovot | 447 | 1011 | 858 | 45.3 | 4.5 | 10.2 | 1.3 | 27.6 | 6.1 | 23.6 | 3 | 19.9 | 3.8 |
Matityahu | 1579 | 1581 | 1473 | 62 | 11.6 | 72.2 | 5.3 | 66.7 | 2.7 | 47.8 | 8.5 | 50.6 | 8.8 |
T. test between locations | NS | *** | ** | NS | * |
WTR | De Melo (CU) | Gaus-Sian (CU) | Gaus-Sian and Neg (CU) | Dyn-Amic (CP) | i Values of Different Cultivars | ||||
---|---|---|---|---|---|---|---|---|---|
‘Askal’ | ‘Barnea’ | t-Test between Cultivars | |||||||
AVG | SE | AVG | SE | ||||||
2015–2016 Rehovot | 493 | 999 | 866 | 20.3 | 97.2 | 2.4 | 39.9 | 7.7 | NS |
2016–2017 Rehovot | 284 | 912 | 747 | 13.1 | 92.7 | 1.2 | 38.8 | 5.2 | ** |
2016–2017 Gilat | 749 | 1011 | 909 | 33.8 | 82.1 | 1.9 | 62.5 | 7.3 | NS |
2016–2017 Hananya | 1097 | 1388 | 1095 | 55.9 | 95.1 | 0.8 | 71.3 | 4 | ** |
2017–2018 Rehovot | 197 | 743 | 488 | 8 | 25.4 | 4 | 11 | 4.2 | NS |
2018–2019 Rehovot | 491 | 1071 | 757 | 18.1 | 57.7 | 5.8 | 51.8 | 5.8 | NS |
2019–2020 Rehovot | 447 | 1011 | 858 | 20.1 | 45.3 | 4.5 | 10.2 | 1.3 | ** |
2019–2020 Matityahu | 1579 | 1581 | 1473 | 72.5 | 62 | 11.6 | 72.2 | 5.3 | NS |
2020–2021 Matityahu | 1229 | 1633 | 1546 | 55.8 | 83.4 | 6.5 | 87 | 5.4 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelen, C.; Wechsler, T.; Bakhshian, O.; Smoly, I.; Flaks, I.; Friedlander, T.; Ben-Ari, G.; Samach, A. Studying Parameters Affecting Accumulation of Chilling Units Required for Olive Winter Flower Induction. Plants 2023, 12, 1714. https://doi.org/10.3390/plants12081714
Engelen C, Wechsler T, Bakhshian O, Smoly I, Flaks I, Friedlander T, Ben-Ari G, Samach A. Studying Parameters Affecting Accumulation of Chilling Units Required for Olive Winter Flower Induction. Plants. 2023; 12(8):1714. https://doi.org/10.3390/plants12081714
Chicago/Turabian StyleEngelen, Chaim, Tahel Wechsler, Ortal Bakhshian, Ilan Smoly, Idan Flaks, Tamar Friedlander, Giora Ben-Ari, and Alon Samach. 2023. "Studying Parameters Affecting Accumulation of Chilling Units Required for Olive Winter Flower Induction" Plants 12, no. 8: 1714. https://doi.org/10.3390/plants12081714
APA StyleEngelen, C., Wechsler, T., Bakhshian, O., Smoly, I., Flaks, I., Friedlander, T., Ben-Ari, G., & Samach, A. (2023). Studying Parameters Affecting Accumulation of Chilling Units Required for Olive Winter Flower Induction. Plants, 12(8), 1714. https://doi.org/10.3390/plants12081714