Vernonia britteniana Root Phytochemical Studies, In Vitro Cercaricidal Activity on the Larval Stage of Schistosoma mansoni and Antioxidant Activities
Abstract
:1. Introduction
2. Results
2.1. Chemical Studies
2.1.1. Drug-Extract Ratio
2.1.2. LC-UV-ESI/MS-MS Chemical Profile
2.1.3. Secondary Metabolites Quantification
2.2. Biological Activity
2.2.1. Antioxidant Activity
2.2.2. In Vitro Cercaricidal Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Collection and Preparation of Plant Material
4.3. Extract Preparation
4.3.1. Aqueous Extract
4.3.2. 70% Hydroethanolic Extract
4.4. Phytochemical Studies
4.4.1. LC-UV-ESI/MS-MS Chemical Profile
4.4.2. Total Phenol Content
4.4.3. Total Triterpenoid Content
4.4.4. Saponins Index (SI)
4.5. DPPH Radical Scavenging Activity
4.6. Ferric-Reducing Antioxidant Power (FRAP) Activity
4.7. Statistical Analysis
4.8. In Vitro Cercaricidal Activity of V. britteniana Root
4.8.1. Sample Preparation
4.8.2. Obtaining Live S. mansoni Cercariae
4.8.3. Determination of Cercaricidal Activity
4.8.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Regional Committee for Africa. Promoting the Role of Traditional Medicine in Health Systems: A Strategy for the African Region. 2000. Available online: https://apps.who.int/iris/handle/10665/95467 (accessed on 15 November 2022).
- Gasparetto, J.C.; Martins, C.A.F.; Hayashi, S.S.; Otuky, M.F.; Pontarolo, R. Ethnobotanical and scientific aspects of Malva sylvestris L.: A millennial herbal medicine. J. Pharm. Pharmacol. 2012, 64, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: A historical overview of the drug discovery approaches. Nat. Prod. Res. 2018, 32, 1926–1950. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Ministério da Saúde. Angola—Despesas Públicas no Sector da Saúde 2000–2007; Estudos e Planeamento e Estatística do Ministério da Saúde de Angola: Luanda, Angola, 2007. [Google Scholar]
- Simoben, C.V.; Ntie-Kang, F.; Akone, S.H.; Sippl, W. Compounds from African medicinal plants with activities against selected parasitic diseases: Schistosomiasis, trypanosomiasis, and leishmaniasis. Nat. Prod. Bioprospect. 2018, 8, 151–169. [Google Scholar] [CrossRef]
- Albuquerque, R.D.D.G.; Mahomoodally, M.F.; Lobine, D.; Suroowan, S.; Rengasamy, K.R.R. Botanical products in the treatment and control of schistosomiasis: Recent studies and distribution of active plant resources according to affected regions. Biology 2020, 9, 223. [Google Scholar] [CrossRef]
- Neves, B.J.; Andrade, C.H.; Cravo, P.V.L. Natural products as leads in schistosome drug discovery. Molecules 2015, 20, 1872–1903. [Google Scholar] [CrossRef]
- World Health Organization. Fact Sheet Schistosomiasis. 2023. Available online: https://www.who.int/news-room/factsheets/detail/schistosomiasis (accessed on 30 March 2023).
- Mendes, E.P.; Okhai, H.; Cristóvão, R.E.; Almeida, M.C.; Katondi, N.; Thompson, R.; Lopes, S. Mapping of schistosomiasis and soil-transmitted helminthiases across 15 provinces of Angola. PLoS. Negl. Trop. Dis. 2022, 16, e0010458. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.E.C.; Mesquita, M.C.S.; Rehn, V.N.C.; Nascimento, W.R.C.; Loyo, R.; Barbosa, C.S. Transmissão urbana da esquistossomose: Novo cenário epidemiológico na zona da mata de Pernambuco. Rev. Bras. Epidemiol. 2016, 19, 822–834. [Google Scholar] [CrossRef] [PubMed]
- LoVerde, P.T. Schistosomasis. In Digenetic Trematodes; Toledo, R., Fried, B., Eds.; Springer: Cham, Switzerland, 2019; pp. 45–70. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Rehder, V.L.G.; Oliveira, A.S.S.; Jeraldo, V.D.L.S.; Linhares, A.X.; Allegretti, S.M. Anthelmintic activity in vitro and in vivo of Baccharis trimera (Less) DC against immature and adult worms of Schistosoma mansoni. Exp. Parasitol. 2014, 139, 63–72. [Google Scholar] [CrossRef]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. Praziquantel for schistosomiasis: Single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents. Chemother 2017, 61, 5. [Google Scholar] [CrossRef]
- Akoto, C.O.; Acheampong, A.; Boakye, Y.D.; Asante, B.; Ohene, S.; Amankwah, F. Anthelminthic, anti-inflammatory, antioxidant, and antimicrobial activities and FTIR analyses of Vernonia camporum stem-bark. J. Chem. 2021, 2021, 3328073. [Google Scholar] [CrossRef]
- Habtamu, A.; Melaku, Y. Antibacterial and antioxidant compounds from the flower extracts of Vernonia amygdalina. Adv. Pharmacol. Pharm. Sci. 2018, 2018, 4083736. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, J.O.; Oladipo, A.O.; Msagati, T.A.M.; Lebelo, S.L.; Meddows-Taylor, S.; More, G.K. Novel silver-platinum bimetallic nanoalloy synthesized from Vernonia mespilifolia extract: Antioxidant, antimicrobial, and cytotoxic activities. Arab. J. Chem. 2020, 13, 6639–6648. [Google Scholar] [CrossRef]
- Lowe, H.I.C.; Daley-Beckford, D.; Toyang, N.J.; Watson, C.; Hartley, S.; Bryant, J. The anticancer activity of Vernonia divaricata Sw against leukaemia, breast and prostate cancers in vitro. West Indian Med. J. 2014, 63, 285. [Google Scholar] [CrossRef]
- Dogra, N.K.; Kumar, S. A review on ethnomedicinal uses and pharmacology of Vernonia cinerea Less. Nat. Prod. Res. 2015, 29, 1102–1117. [Google Scholar] [CrossRef]
- Bihonegn, T.; Giday, M.; Yimer, G.; Animut, A.; Sisay, M. Antimalarial activity of hydromethanolic extract and its solvent fractions of Vernonia amygdalina leaves in mice infected with Plasmodium berghei. SAGE Open Med. 2019, 7, 2050312119849766. [Google Scholar] [CrossRef] [PubMed]
- Kahaliw, W.; Aseffa, A.; Abebe, M.; Teferi, M.; Engidawork, E. Evaluation of the antimycobacterial activity of crude extracts and solvent fractions of selected Ethiopian medicinal plants. BMC Complement. Altern. Med. 2017, 17, 143. [Google Scholar] [CrossRef]
- Panda, S.K.; Luyten, W. Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. Parasite 2018, 25, 10. [Google Scholar] [CrossRef]
- Rustamova, N.; Gao, Y.; Zhang, Y.; Yili, A. Biological activity of endophytic fungi from the roots of the medicinal plant Vernonia anthelmintica. Microorganisms 2020, 8, 586. [Google Scholar] [CrossRef]
- Gahamanyi, N.; Munyaneza, E.; Dukuzimana, E.; Tuyiringire, N.; Pan, C.H.; Komba, E.V.G. Ethnobotany, ethnopharmacology, and phytochemistry of medicinal plants used for treating human diarrheal cases in Rwanda: A review. Antibiotics 2021, 10, 1231. [Google Scholar] [CrossRef]
- Boadu, A.; Singh, S.; Karpoormath, R.; Nlooto, M. Review on ethnomedicinal uses, phytochemical constituents and pharmacological evidence on leaf extract of Persea americana and Vernonia amygdalina of the African continent—A Review. Indian Drugs 2019, 56, 7–24. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Azhari, N.H.; Kabbashi, N.A. Metabolic profiling of flavonoids, saponins, alkaloids, and terpenoids in the extract from Vernonia cinerea leaf using LC-Q-TOF-MS. J. Liq. Chromatog. Relat. Technol. 2018, 41, 722–731. [Google Scholar] [CrossRef]
- Dogra, N.K.; Kumar, S.; Kumar, D. Vernonia anthelmintica (L.) Willd.: An Ethnomedicinal, phytochemical, pharmacological, and toxicological review. J. Ethnopharmacol. 2020, 256, 112777. [Google Scholar] [CrossRef]
- Valente, M.; Ferreira, P.; Belo, S.; da Silva, I.M.; Nobre, P.; Lima, K.; Neto, I.; Pires, M.; Serrano, R.; Silva, O. In vitro cercaricidal activity and phytochemical profile of Vernonia britteniana root. Planta Med. 2022, 88, 1516. [Google Scholar] [CrossRef]
- National Institutes of Health (NIH), National Library of Medicine, PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 29 September 2022).
- Johnson, C.E.; Lin, L.Z.; Harnly, J.M.; Oladeinde, F.O.; Kinyua, A.M.; Michelin, R.; Bronner, Y. Identification of the phenolic components of Vernonia amygdalina and Russelia equisetiformis. J. Nat. Prod. 2011, 4, 57–64. [Google Scholar]
- Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. J. Appl. Res. Med. Aromat. Plants 2018, 11, 12–17. [Google Scholar] [CrossRef]
- Willems, J.L.; Khamis, M.M.; Saeid, W.M.; Purves, R.W.; Katselis, G.; Low, N.H.; El-Aneed, A. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal. Chim. Acta 2016, 933, 164–174. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, X.; Liu, P.; Li, M.; Dong, H.; Qiao, X. Semi-preparative separation of 10 caffeoylquinic acid derivatives using high speed countercurrent chromatogaphy combined with semi-preparative HPLC from the roots of burdock (Arctium lappa L.). Molecules 2018, 23, 429. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Meng, Y.; Zhai, C.; Wang, M.; Avula, B.; Yuk, J.; Khan, I.A. The Chemical Characterization of Eleutherococcus senticosus and Ci-wu-jia Tea using UHPLC-UV-QTOF/MS. Int. J. Mol. Sci. 2019, 20, 475. [Google Scholar] [CrossRef] [PubMed]
- Vasincu, A.; Luca, S.V.; Charalambous, C.; Neophytou, C.M.; Skalicka-Woźniak, K.; Miron, A. LC-HRMS/MS Phytochemical profiling of Vernonia kotschyana Sch. Bip. Ex Walp.: Potential involvement of highly-oxygenated stigmastane-type saponins in cancer cell viability, apoptosis and intracellular ROS production. S. Afr. J. Bot. 2022, 144, 83–91. [Google Scholar] [CrossRef]
- Zhao, M.L.; Shan, S.J.; Tao, R.; Cui, L.T.; Li, Q.R.; Luo, J.; Li, Y. Stigmastane-type steroid saponins from the leaves of Vernonia amygdalina Del. Fitoterapia 2021, 150, 104838. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, H.; Wu, X.; Zhang, S.; Gao, X.; Li, F.; Chen, Q. Steroidal saponins from Vernonia amygdalina Del. and their biological activity. Molecules 2018, 23, 579. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Quality Control and Evaluation of Herbal Drugs: Evaluating Natural Products and Traditional Medicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 26–741. [Google Scholar]
- World Health Organization. Ending the Neglect to Attain the Sustainable Development Goals: A Global Strategy on Water, Sanitation, and Hygiene to Combat Neglected Tropical Diseases, 2021–2030; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Organização Mundial da Saúde. Escritório Regional para a África. Estratégia de cooperação da OMS 2015-2019: Angola. Organização Mundial de Saúde. Escritório Regional Africano. 2016. 58p. Available online: https://apps.who.int/iris/handle/10665/2505162016 (accessed on 26 September 2022).
- Wang, W.; Wang, L.; Liang, Y.S. Susceptibility, or resistance of praziquantel in human schistosomiasis: A review. Parasitol. Res. 2012, 111, 1871–1877. [Google Scholar] [CrossRef]
- Bergquist, R.; Utzinger, J.; Keiser, J. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative? Infect. Dis. Poverty 2017, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Brun, R.; Schmidt, T.J. Sesquiterpene lactones from Vernonia cinerascens Sch. Bip. and their in vitro antitrypanosomal activity. Molecules 2018, 23, 248. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, D.O.; Owusu-Adzorah, N.; Armah, F.A.; Aninagyei, E.; Asiamah, E.A.; Thomford, A.K.; Anyan, W.K. Ethnopharmacological evaluation of schistosomicidal and cercaricidal activities of some selected medicinal plants from Ghana. Trop. Med. Health 2020, 48, 19. [Google Scholar] [CrossRef] [PubMed]
- Toyang, N.J.; Verpoorte, R. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J. Ethnopharmacol. 2013, 146, 681–723. [Google Scholar] [CrossRef] [PubMed]
- Oguche, O.; Olofintoye, L.K. Molluscicidal effect of Vernonia amygdalina (Del) and Momordica charantia Linn. on Bulinus (Phy) globosus. Int. J. Multidiscip. Sci. Eng. 2018, 9, 23–28. [Google Scholar]
- Oyeyemi, I.T.; Akinlabi, A.A.; Adewumi, A.; Aleshinloye, A.O.; Oyeyemi, O.T. Vernonia amygdalina: A folkloric herb with anthelminthic properties. Beni. Suef. Univ. J. Basic Appl. Sci. 2018, 7, 43–49. [Google Scholar] [CrossRef]
- Jisaka, M.; Ohigashi, H.; Takagaki, T.; Nozaki, H.; Tada, T.; Hirota, M.; Koshimizu, K. Bitter steroid glucosides, vernoniosides A1, A2, and A3, and related B1 from a possible medicinal plant, Vernonia amygdalina, used by wild chimpanzees. Tetrahedron 1992, 48, 625–632. [Google Scholar] [CrossRef]
- Taljaard, L.; Probst, A.; Tornow, R.; Keiser, J.; Haynes, R.K.; van der Kooy, F. In vitro antischistosomal activity of Artemisia annua and Artemisia afra extracts. Phytomed. Plus 2022, 2, 100279. [Google Scholar] [CrossRef]
- Bian, G.L.; Hu, Y.L.; Yan, K.; Cheng, X.J.; Li, D.Q. Characterization of constituents by UPLC-MS and the influence of extraction methods of the seeds of Vernonia anthelmintica Willd.: Extraction, characterization, antioxidant, and enzyme modulatory activities. Heliyon 2022, 8, e10332. [Google Scholar] [CrossRef]
- Lyzu, C.; Mitra, S.; Perveen, K.; Khan, Z.; Tareq, A.M.; Bukhari, N.A.; Dashti, M.G. Phytochemical profiling, antioxidant activity, and in silico analyses of Sterculia villosa and Vernonia patula. Evid. Based Complement. Altern. Med. 2022, 2022, 3190496. [Google Scholar] [CrossRef] [PubMed]
- Omede, A.; Suleiman, M.S.; Atanu, F.O.; Momoh, S.; Friday, E.T.; Sheneni, V.D.; Jegede, E.R. Evaluation of antioxidant and cytotoxic properties of Vernonia amygdalina. Int. J. Cell Sci. Mol. Biol. 2018, 4, 81–86. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Ethanolic extraction of bioactive compounds from Vernonia amygdalina leaf using response surface methodology as an optimization tool. J. Food Meas. Charact. 2018, 12, 1107–1122. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 2018, 107, 36–48. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines EDQM. European Pharmacopeia, 1st ed.; Directorate for the Quality of Medicines, Council of Europe: Strasbourg, France, 2019; Available online: https://www.edqm.eu/en/european-pharmacopoeia (accessed on 26 September 2022).
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Chang, C.L.; Lin, C.S. Phytochemical composition, antioxidant activity, and neuroprotective effect of Terminalia chebula Retzius extracts. Evid. Based Complement. Altern. Med. 2012, 2012, 125247. [Google Scholar] [CrossRef]
- Farmacopeia Portuguesa. Métodos Analíticos-Métodos de Doseamento, 9th ed.; INFARMED: Lisboa, Portugal, 2009. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous, measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Tekwu, E.M.; Bosompem, K.M.; Anyan, W.K.; Appiah-Opong, R.; Owusu, K.B.A.; Tettey, M.D.; Kissi, F.A.; Appiah, A.A.; Penla Beng, V.; Nyarko, A.K. In vitro assessment of anthelmintic activities of Rauwolfia vomitoria (Apocynaceae) stem bark and roots against parasitic stages of Schistosoma mansoni and cytotoxicity study. J. Parasitol. Res. 2017, 2017, 2583969. [Google Scholar] [CrossRef] [PubMed]
Peak N° | tr (min) | UVλmax· (nm) | [M-H]− or [M + H]+ (m/z) | MS-MS Fragment Ions (m/z) | Assignment |
---|---|---|---|---|---|
1 | 26.31 | 326, 332 | 353 [M-H]− | 191, 179 | chlorogenic acid |
2 | 29.64 | 324, 233 | 179 [M-H]− | 135, 89 | caffeic acid |
3 | 36.81 | 331, 230 | 515 [M-H]− | 191, 135 | 3,4-di-O-caffeoylquinic acid |
4 | 39.33 | 326, 237 | 515 [M-H]− | 353, 191, 179 | 3,5-di-O-caffeoylquinic acid |
5 | 41.96 | 328, 237 | 515 [M-H]− | 353, 191, 179 | 4,5-di-O-caffeoylquinic acid |
6 | 56.81 | 250 | 649[M + H]+ | 631[M + H-H2O]+ 487[M + H-H2O + Glc]+ 469[M + H-Glc]+ | vernoamyoside D * |
7 | 58.74 | 250 | 649 [M + H]+ | 631[M + H-H2O]+ 469[M + H-Glc]+ 451[M + H-H2O-Glc]+ | vernonioside D1 * |
8 | 61.59 | 244 | 649 [M + H]+ | 487[M + H+H2O-Glc]+ 469 [M + H-Glc]+ | vernoamyoside B * |
9 | 64.66 | 249 | 647 [M + H]+ | 485[M + H+H2O-Glc]+ 467 [M + H-Glc]+ | vernoniamyoside A * |
10 | 66.80 | 249 | 647[M + H]+ | 485[M + H+H2O-Glc]+ 467[M + H-Glc]+ | vernoniamyoside C * |
Class of Secondary Metabolites | Extract | |
---|---|---|
Water-Vbr | EtOH70%-Vbr | |
Total phenols (mg GAE/g extract) | 139.750 ± 3.704 * | 102.875 ± 1.347 |
Total triterpenoids (mg OAE/g extract) | 167.077 ± 2.643 * | 153.231 ± 16.667 |
Saponins Index (g extract) | 370.3 ± 24.450 | 296.0 ± 22.670 |
Extract | Essay | |
---|---|---|
DPPH IC50 ± SD (µg/mL Extract) | FRAP Mean ± SD (µg AAE/g Dried Extract) | |
Water-Vbr | 1.769 ± 0.049 | 320.800 ± 5.132 |
EtOH70%-Vbr | 2.928 ± 0.138 | 286.800 ± 4.780 |
Ascorbic acid-AAE | 67.446 ± 0.746 | 256.800 ± 5.706 |
Extract | LC50 (µg/mL) | Time (min) | Mean No. of Dead Cercariae (µg/mL) |
---|---|---|---|
Water-Vbr | 438 | 120 | 25.7 ± 1.16 |
EtOH70%-Vbr | 438 | 120 | 25.3 ± 0.58 |
PZQ | 10 | 120 | 50 |
Extract | Concentration (µg/mL) | Average Cercaria Killed | Structural Changes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observation Time (min) | Observation Time (min) | ||||||||||
30 | 60 | 90 | 120 | 150 | 30 | 60 | 90 | 120 | 150 | ||
Water-Vbr | 125 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - |
438 | 0 | 17.7 | 21.0 | 25.7 | 0 | - | - | - | - | - | |
500 | 50 | 0 | 0 | 0 | 0 | - | + | - | - | - | |
EtOH70%-Vbr | 125 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - |
438 | 0 | 15.0 | 20.7 | 25.3 | 0 | - | - | - | - | - | |
500 | 50 | 0 | 0 | 0 | 0 | 0 | + | - | - | - |
Time (min) | %A | %B |
---|---|---|
0.00 | 95 | 5 |
10.00 | 95 | 5 |
30.00 | 82 | 18 |
44.00 | 64 | 36 |
64.00 | 64 | 36 |
90.00 | 10 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente, M.d.A.; Ferreira, P.; Lima, K.; Moreira da Silva, I.B.; Nobre, P.; Neto, I.; Pires, M.; Braz, B.S.; Serrano, R.; Belo, S.; et al. Vernonia britteniana Root Phytochemical Studies, In Vitro Cercaricidal Activity on the Larval Stage of Schistosoma mansoni and Antioxidant Activities. Plants 2023, 12, 1788. https://doi.org/10.3390/plants12091788
Valente MdA, Ferreira P, Lima K, Moreira da Silva IB, Nobre P, Neto I, Pires M, Braz BS, Serrano R, Belo S, et al. Vernonia britteniana Root Phytochemical Studies, In Vitro Cercaricidal Activity on the Larval Stage of Schistosoma mansoni and Antioxidant Activities. Plants. 2023; 12(9):1788. https://doi.org/10.3390/plants12091788
Chicago/Turabian StyleValente, Maria dos Anjos, Pedro Ferreira, Katelene Lima, Isabel B. Moreira da Silva, Paula Nobre, Isabel Neto, Mavilde Pires, Berta São Braz, Rita Serrano, Silvana Belo, and et al. 2023. "Vernonia britteniana Root Phytochemical Studies, In Vitro Cercaricidal Activity on the Larval Stage of Schistosoma mansoni and Antioxidant Activities" Plants 12, no. 9: 1788. https://doi.org/10.3390/plants12091788
APA StyleValente, M. d. A., Ferreira, P., Lima, K., Moreira da Silva, I. B., Nobre, P., Neto, I., Pires, M., Braz, B. S., Serrano, R., Belo, S., & Silva, O. (2023). Vernonia britteniana Root Phytochemical Studies, In Vitro Cercaricidal Activity on the Larval Stage of Schistosoma mansoni and Antioxidant Activities. Plants, 12(9), 1788. https://doi.org/10.3390/plants12091788