Phytochemical Investigation and Biofilm-Inhibitory Activity of Bachtiari Savory (Satureja bachtiarica Bunge) Aerial Parts
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS and NMR Analysis of Specialized Metabolites Occurring in S. bachtiarica n-BuOH Extract
2.2. Evaluation of the Flavonoid Content and Antioxidant Activity of S. bachtiarica Extract
2.3. Evaluation of the Antimicrobial Activity of Isolated Compounds
3. Experimental Setup
3.1. General Methods
3.2. Reagents
3.3. Plant Material
3.4. Extraction
3.5. HR-LC-ESI-Orbitrap-MS and HR-LC-ESI-Orbitrap-MS/MS Analysis
3.6. Extraction and Isolation Procedure
3.7. Total Flavonoid Content
3.8. DPPH• Radical Scavenging Activity
3.9. Antimicrobial Activity
3.9.1. Microorganisms and Culture Conditions
3.9.2. Minimal Inhibitory Concentration (MIC)
3.9.3. Inhibition of Mature Biofilm
3.9.4. Inhibitory Activity of Metabolism of Sessile Bacterial Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahimmalek, M.; Afshari, M.; Sarfaraz, D.; Miroliaei, M. Using HPLC and multivariate analyses to investigate variations in the polyphenolic compounds as well as antioxidant and antiglycative activities of some Lamiaceae species native to Iran. Ind. Crops Prod. 2020, 154, 112640. [Google Scholar] [CrossRef]
- Hlebová, M.; Hleba, L.; Tancinová, D.; Florková, M.; Foltinová, D.; CHarousová, I.; Vrbová, K.; Božik, M.; Kloucek, P. Inhibitory Effect of Essential Oils from Some Lamiaceae Species on Growth of Eurotium spp. Isolated from Bread. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 857–862. [Google Scholar]
- Tepe, B.; Cilkiz, M. A pharmacological and phytochemical overview on Satureja. Pharm. Biol. 2016, 54, 375–412. [Google Scholar] [CrossRef] [PubMed]
- Malmir, M.; Gohari, A.R.; Saeidnia, S.; Silva, O. A new bioactive monoterpene–flavonoid from Satureja khuzistanica. Fitoterapia 2015, 105, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Memarzadeh, S.M.; Ghasemi Pirbalouti, A.; AdibNejad, M. Chemical composition and yield of essential oils from Bakhtiari savory (Satureja bachtiarica Bunge.) under different extraction methods. Ind. Crops Prod. 2015, 76, 809–816. [Google Scholar] [CrossRef]
- Skendi, A.; Katsantonis, D.; Chatzopoulou, P.; Irakli, M.; Papageorgiou, M. Antifungal Activity of Aromatic Plants of the Lamiaceae Family in Bread. Foods 2020, 9, 1642. [Google Scholar] [CrossRef] [PubMed]
- Alghooneh, A.; Alizadeh Behbahani, B.; Taghdir, M.; Sepandi, M.; Abbaszadeh, S. Understanding the Relationship between Microstructure and Physicochemical Properties of Ultrafiltered Feta-Type Cheese Containing Satureja bachtiarica Leaf Extract. Foods 2022, 11, 1728. [Google Scholar] [CrossRef] [PubMed]
- Salehi-Arjmand, H.; Mazaheri, D.; Hadian, J.; Majnoon Hosseini, N.; Ghorbanpour, M. Essential Oils Composition, Antioxidant Activities and Phenolics Content of Wild and Cultivated Satureja bachtiarica Bunge Plants of Yazd Origin. J. Med. Plants 2014, 13, 6–14. [Google Scholar]
- Memarzadeh, S.M.; Gholami, A.; Pirbalouti, A.G.; Masoum, S. Bakhtiari savory (Satureja bachtiarica Bunge.) essential oil and its chemical profile, antioxidant activities, and leaf micromorphology under green and conventional extraction techniques. Ind. Crops Prod. 2020, 154, 112719. [Google Scholar] [CrossRef]
- Dehkordi, H.S.; Dehkordi, M.J.; Chaleshtori, M.R.; Khamesipour, F.; Katsande, S. Effect of Alcohol Extract of Zataria multiflora (Boiss), Satureja bachtiarica (Bunge) and Zaravschanica membranacea (Boiss) on Immuno-Hematologic Factors in Rats. Trop. J. Pharm. Res. 2015, 14, 1999–2004. [Google Scholar] [CrossRef]
- Piacente, S.; Masullo, M.; De Neve, N.; Dewelle, J.; Hamed, A.; Kiss, R.; Mijatovic, T. Cardenolides from Pergularia tomentosa display cytotoxic activity resulting from their potent inhibition of Na+/K+-ATPase. J. Nat. Prod. 2009, 72, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Luo, Y.; Lai, C.-J.-S.; Zhang, J.; Feng, Y.; Wen, Q.; Tan, T. Comprehensive metabolic profile of phenolic acids and flavonoids in Glechomae Herba using ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry with diagnostic ion filtering strategy. J. Pharm. Biomed. Anal. 2019, 164, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Lu, Z.-G.; Fujita, T. New Monoterpene Glucoside from the Aerial Parts of Thyme (Thymus vulgaris L.). Biosci. Biotechnol. Biochem. 2004, 68, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, G.; Masullo, M.; Seigner, J.; Holper-Schichl, Y.M.; de Martin, R.; Plaza, A.; Piacente, S. LC-ESI-FT-MS(n) Metabolite Profiling of Symphytum officinale L. Roots Leads to Isolation of Comfreyn A, an Unusual Arylnaphthalene Lignan. Int. J. Mol. Sci. 2020, 21, 4671. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Foo, L.Y.; Wong, H. Sagecoumarin, a novel caffeic acid trimer from Salvia officinalis. Phytochemistry 1999, 52, 1149–1152. [Google Scholar] [CrossRef]
- Gulluce, M.; Karadayi, M.; Guvenalp, Z.; Ozbek, H.; Arasoglu, T.; Baris, O. Isolation of some active compounds from Origanum vulgare L. ssp. vulgare and determination of their genotoxic potentials. Food Chem. 2012, 130, 248–253. [Google Scholar] [CrossRef]
- Miura, K.; Nakatani, N. Antioxidative Activity of Flavonoids from Thyme (Thymus vulgaris L.). Agric. Biol. Chem. 1989, 53, 3043–3045. [Google Scholar] [CrossRef]
- Rainis, G.; Ternes, W. Identification and characterization of dimeric oxidation products of p-cymene-2,3-diol isolated from Thymus vulgaris L. J. Agric. Food Chem. 2014, 62, 235–243. [Google Scholar] [CrossRef]
- Paloukopoulou, C.; Govari, S.; Soulioti, A.; Stefanis, I.; Angeli, A.; Matheeussen, A.; Capasso, C.; Cos, P.; Supuran, C.T.; Karioti, A. Phenols from Origanum dictamnus L. and Thymus vulgaris L. and their activity against Malassezia globosa carbonic anhydrase. Nat. Prod. Res. 2022, 36, 1558–1564. [Google Scholar] [CrossRef]
- Mehta, D.; Saini, V.; Aggarwal, B.; Khan, A.; Bajaj, A. Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol. Asp. Med. 2021, 81, 100999. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fu, H.-Y.; He, W.; Xiang, Y.-T.; Yang, Z.-C.; Kuang, Y.; Yang, S.-X. Synthesis and Antibacterial Activity Evaluation of Biphenyl and Dibenzofuran Derivatives as Potential Antimicrobial Agents against Antibiotic-Resistant Bacteria. Curr. Issues Mol. Biol. 2022, 44, 4087–4099. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, N.M.; Hamed, A.N.E.; Khalil, H.E.; Samy, M.N.; Wanas, A.S.; Fouad, M.A.; Kamel, M.S. Phenolic acid glycosides from Parmentiera cereifera Seem. (Candle tree). Phytochem. Lett. 2014, 9, 74–77. [Google Scholar] [CrossRef]
- Reyad-ul-Ferdous, M.; Rashid, R.B.; Sikder, M.A.A.; Aktar, F.; Rashid, M.A. Preliminary in vitro biological and phytochemical screenings of Parmentiera cereifera Seem. Bangladesh J. Pharmacol. 2012, 15, 103–106. [Google Scholar] [CrossRef]
- Ghosh, C.; Sarkar, P.; Samaddar, S.; Uppu, D.; Haldar, J. l-Lysine based lipidated biphenyls as agents with anti-biofilm and anti-inflammatory properties that also inhibit intracellular bacteria. Chem. Commun. 2017, 53, 8427–8430. [Google Scholar] [CrossRef] [PubMed]
- Malani, A.; Makwana, A.; Monapara, J.; Ahmad, I.; Patel, H.; Desai, N. Synthesis, molecular docking, DFT study, and in vitro antimicrobial activity of some 4-(biphenyl-4-yl)-1,4-dihydropyridine and 4-(biphenyl-4-yl)pyridine derivatives. J. Biochem. Mol. Toxicol. 2021, 35, e22903. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Parai, D.; Banerjee, M.; Hossain, S.T.; Mukherjee, S.K. Naringin sensitizes the antibiofilm effect of ciprofloxacin and tetracycline against Pseudomonas aeruginosa biofilm. Int. J. Med. Microbiol. 2020, 310, 151410. [Google Scholar] [CrossRef] [PubMed]
- Paloukopoulou, C.; Tsadila, C.; Govari, S.; Soulioti, A.; Mossialos, D.; Karioti, A. Extensive analysis of the cultivated medicinal herbal drug Origanum dictamnus L. and antimicrobial activity of its constituents. Phytochemistry 2023, 208, 113591. [Google Scholar] [CrossRef]
- Cerulli, A.; Napolitano, A.; Hošek, J.; Masullo, M.; Pizza, C.; Piacente, S. Antioxidant and In Vitro Preliminary Anti-Inflammatory Activity of Castanea sativa (Italian Cultivar “Marrone di Roccadaspide” PGI) Burs, Leaves, and Chestnuts Extracts and Their Metabolite Profiles by LC-ESI/LTQOrbitrap/MS/MS. Antioxidants 2021, 10, 278. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Montoro, P.; Hošek, J.; Pizza, C.; Piacente, S. Metabolite profiling of “green” extracts of Corylus avellana leaves by 1H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2018, 160, 168–178. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Caputo, L.; Amato, G.; Fratianni, F.; Coppola, R.; Candido, V.; De Feo, V.; Nazzaro, F. Chemical Characterization and Antibiofilm Activities of Bulbs and Leaves of Two Aglione (Allium ampeloprasum var. holmense Asch. et Graebn.) Landraces Grown in Southern Italy. Molecules 2020, 25, 5486. [Google Scholar] [CrossRef] [PubMed]
No. | Rt | [M-H]− | Molecular Formula | Δ ppm | MS/MS | Identity |
---|---|---|---|---|---|---|
1 | 8.95 | 593.1500 | C27H30O15 | −0.129 | 473.11/503.12/383.08/353.07 | vicenin 2 |
2 | 10.12 | 327.1442 | C16H24O7 | 1.133 | 165.09/229.14/291.20/211.13/171.10/309.21 | thymoquinol 5-O-β-D-glucopyranoside |
3 | 10.24 | 327.1444 | C16H24O7 | 1.774 | 165.09/229.14/291.20/211.13/171.10/309.21 | thanol 3-O-β-D-glucopyranoside |
4 | 10.33 | 322.0925 | C15H16O7N | 1.24 | 262.07/160.04/202.05 | 1-(1H-indole-3-carboxylate)-β-D-glucopyranoside |
5 | 10.73 | 435.0920 | C20H20O11 | −0.271 | 271.06/273.11/198.54/299.09 | parmetin B |
6 | 10.85 | 593.1500 | C27H30O15 | −0.011 | 285.04 | luteolin 7-O-rutinoside |
7 | 11.08 | 431.0970 | C21H20O10 | −0.587 | 311.06/269.05 | apigenin 7-O-β-D-glucopyranoside |
8 | 11.60 | 447.0922 | C21H20O11 | 0.072 | 285.04 | kaempferol 3-O-β-D-glucopyranoside |
9 | 11.72 | 463.0871 | C21H20O12 | −0.610 | 301.03 | quercetin-3-O-β-D-glucopyranoside |
10 | 11.77 | 461.0714 | C21H18O12 | −0.027 | 285.05 | luteolin 7-O-β-D-glucuronopyranoside |
11 | 12.19 | 607.1661 | C28H32O15 | 0.648 | 299.06/284.03 | diosmin |
12 | 12.47 | 609.1820 | C28H34O15 | 1.105 | 301.07/310.05 | hesperidin |
13 | 12.94 | 417.0818 | C20H18O10 | 0.616 | 285.04 | luteolin 7-O-xyloside |
14 | 13.01 | 445.0762 | C22H22O10 | −0.557 | 281.07 | apigenin 4′-O-methyl 7-O-β-D-glucopyranoside |
15 | 13.06 | 549.1963 | C27H34O12 | −0.551 | 387.17 | 12-hydroxyjasmonic acid (6′-O-caffeoyl)-β-D-glucopyranoside |
16 | 13.74 | 359.0766 | C18H16O8 | 1.437 | 161.02/179.03/197.05/223.02/133.03 | rosmarinic acid |
17 | 13.86 | 163.0401 | C9H8O3 | −1.0 | 145.02/119.05 | p-coumaric acid |
18 | 14.33 | 563.2123 | C28H36O12 | 0.066 | 387.16/531.19/489.18 | tuberonic acid-12-O-[6′-O-(E)-feruloyl]-β-D-glucopyranoside |
19 | 14.80 | 287.0554 | C15H12O6 | 1.622 | 259.06/243.07 | dihydrokaempferol |
20 | 14.88 | 593.1868 | C28H34O14 | 0.58 | 285.08 | isosakuranetin 7-O-rutinoside |
21 | 15.03 | 491.0971 | C26H20O10 | −0.210 | 311.06 | globoidnan A |
22 | 15.26 | 343.0813 | C18H16O7 | 0.46 | 328.25/313.20/285.08 | eupatilin |
23 | 15.50 | 373.0918 | C19H18O8 | 0.17 | 327.14 | hymenoxin |
24 | 15.73 | 535.0872 | C27H20O12 | 0.220 | 359.08/355.04/177.02/313.07/161.02 | sagecoumarin |
25 | 16.19 | 285.0398 | C15H10O6 | 1.633 | 151.00/175.04/199.04/217.05/241.05/243.03/257.05 | luteolin |
26 | 16.44 | 287.0556 | C15H12O6 | 2.249 | 151.00 | eriodictyol |
27 | 16.68 | 329.0661 | C17H14O7 | 1.67 | 286.12/314.04/330.18 | 3′,4′-dimethoxyquercetin |
28 | 16.92 | 373.0919 | C19H18O8 | 0.49 | 327.14 | methylrosmarinic acid |
29 | 17.28 | 207.0658 | C11H12O4 | 3.1 | 179.03 | caffeic acid ethyl ester |
30 | 17.99 | 359.0766 | C18H16O8 | 1.521 | 344.05/339.98 | 2-(3,4-dimethoxyphenyl)-5,7,8-trihydroxy-6-methoxy-4H-1-benzopyran-4-one |
31 | 18.23 | 269.0446 | C15H10O5 | 0.632 | 255.06/149.02/201.06/227.03/183.04 | apigenin |
32 | 18.47 | 271.0604 | C15H12O5 | 1.328 | 151.00/177.02 | naringenin |
33 | 22.29 | 165.0918 | C10H14O2 | 4.869 | 150.07/138.03 | thanol |
34 | 23.07 | 285.0757 | C16H14O5 | −0.035 | 151.00/175.04/199.04/217.05/241.05/243.03/257.05 | 7-O-methoxy naringenin |
35 | 24.31 | 329.1754 | C20H26O4 | 2.079 | 286.12/330.18 | 3,4,3′,4′-tetrahydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl |
36 | 25.48 | 313.1802 | C20H26O3 | 1.433 | 283.13/297.15/269.12/313.18 | 3,4,4′-trihydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl |
37 | 26.44 | 343.1541 | C20H24O5 | 0.320 | 325.14/315.16/300.10 | 6,3′,4′-trihydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl-3,4-dione |
38 | 26.92 | 327.1593 | C20H24O4 | −0.838 | 284.10/299.16/312.14/291.97/269.08 | 3′,4′-dihydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl-3,4-dione |
39 | 37.38 | 455.3511 | C30H48O3 | 1.761 | 411.33/409.34/343.29 | oleanolic acid |
37 | ||
---|---|---|
δC | δH (J in Hz) | |
1 | 146.0 | - |
2 | 137.0 | - |
3 | 185.0 | - |
4 | 186.7 | - |
5 | 124.0 | - |
6 | 147.0 | - |
7 | 12.5 | 1.80, s |
8 | 25.0 | 3.25, m |
9 | 19.9 | 1.26, d (7.20) |
10 | 19.9 | 1.26, d (7.20) |
1′ | 126.0 | - |
2′ | 120.8 | - |
3′ | 142.0 | - |
4′ | 142.0 | - |
5′ | 132.5 | - |
6′ | 118.3 | 6.37, s |
7′ | 13.2 | 1.91, s |
8′ | 27.6 | 3.29, m |
9′ | 22.7 | 1.22, d (7.20) |
10′ | 22.7 | 1.22, d (7.20) |
Material | Total Flavonoids [mg/g Plant Extract (in RE) ± SD a] b | DPPH• IC50 c ± SD |
---|---|---|
n-BuOH extract | 162.33 ± 0.43 | 85.31 ± 1.84 |
Vitamin C d | - | 1.35 ± 0.21 |
Compound | A. baumannii | E. coli | L. monocytogenes | P. aeruginosa | S. aureus |
---|---|---|---|---|---|
1_40 | 0 (0) | 28.80 (1.13) b | 24.31 (1.17) a | 0 (0) | 0 (0) |
1_80 | 13.09 (1.14) a | 54.46 (2.73) b | 61.68 (3.69) c | 20.34 (3.05) a | 26.73 (3.92) b |
2_40 | 45.71 (1.65) b | 0 (0) | 11.32 (1.88) a | 22.05 (1.34) a | 33.41 (1.22) b |
2_80 | 58.71 (1.44) c | 38.47 (1.17) b | 41.82 (1.64) b | 34.86 (3.37) b | 52.85 (1.13) b |
4_40 | 6.43 (0.63) a | 16.36 (2.60) a | 28.51 (1.59) b | 21.59 (1.29) a | 16.13 (1.72) a |
4_80 | 11.07 (0.12) a | 78.49 (1.03) c | 37.02 (2.05) b | 31.61 (2.68) b | 19.49 (2.18) a |
5_40 | 3.60 (0.52) | 77.59 (1.11) c | 50.41 (1.90) b | 24.61(1.90) a | 13.81 (1.25) a |
5_80 | 17.26 (1.73) a | 79.29 (1.08) c | 54,99 (2.50) b | 32.51(3.37) b | 29.44 (1.41) b |
16_40 | 0 (0) | 9.83 (3.20) a | 0 (0) | 0 (0) | 0 (0) |
16_80 | 0 (0) | 19.09 (0.97) a | 3.70 | 4.66 (0.54) | 6.74 (0.18) |
19_40 | 0 (0) | 16.39 (0.45) a | 0 (0) | 0 (0) | 0 (0) |
19_80 | 0 (0) | 29.94 b | 0 (0) | 20.27 (2.28) a | 0 (0) |
21_40 | 0 (0) | 15.67 (3.28) a | 53.69 (0.94) b | 45.48 (1.09) b | 30.54 (0.93) b |
21_80 | 59.04 (0.60) c | 50.20 (1.72) b | 57.39 (0.99) c | 51.65 (0.81) b | 45.44 (1.13) b |
23_40 | 0 (0) | 6.15 (1.25) b | 17.52 (1.70) a | 3.12 (011) | 20.69 (2.80) a |
23_80 | 39.84 (4.73) b | 30.33 (3.56) b | 19.09(1.30) a | 29.94 (0.21) b | 48.65 (3.85) b |
26_40 | 1.40 (1.70) | 6.51 (2.42) a | 0 (0) | 3.62 (0.24) | 12.90 (2.19) a |
26_80 | 24.45 (2.10) b | 20.24 (2.37) a | 14.17 (1.84) a | 9.57 (0.17) a | 44.07 (3.62) b |
27_40 | 0 (0) | 11.33 (2.50) a | 0 (0) | 0 (0) | 16.96 (2.00) a |
27_80 | 0 (0) | 12.51 (1.28) a | 0 (0) | 20.97 (2.51) a | 23.35 (2.22) a |
28_40 | 0 (0) | 0 (0) | 4.95 (0.18) | 13.06 (1.09) a | 9.12 (0.40) a |
28_80 | 0 (0) | 5.17 (0.31) a | 12.64 (1.12) a | 27.05 (1.41) b | 27.31 (1.90) b |
32_40 | 20.80 (1.21) a | 31.28 (0.82) b | 27.90 (2.11) b | 35.05 (1.22) b | 51.44 (0.65) b |
32_80 | 47.18 (1.23) b | 45.93 (0.12) b | 47.68 (1.46) b | 48.87 (2.26) b | 75.49 (2.49) c |
33_40 | 7.25 (0.50) a | 56.07 (1.33) c | 19.52 (0.63) a | 17.58 (1.77) a | 8.17 (1.35) a |
33_80 | 18.59 (2.12) a | 60.96 (1.08) c | 50.47 (1.99) b | 30.81 (2.98) b | 26.44 (1.35) b |
35_40 | 48.16 (1.33) b | 53.01 (1.21) b | 60.23 (0.63) c | 51.61 (1.12) b | 37.10 (1.03) b |
35_80 | 52.76 (2.06) c | 60.26 (1.34) c | 62.13 (2.04) c | 68.94 (1.06) c | 46.78 (0.51) b |
36_40 | 20.80 (1.81) a | 43.86 (1.38) b | 64.50 (0.85) c | 45.80 (1.24) b | 45.48 (1.83) b |
36_80 | 61.27 (1.57) c | 69.28 (1.29) c | 75.02 (0.74) c | 81.08 (0.89) d | 82.94 (1.14) d |
37_40 | 53.20 (1.35) b | 45.66 (1.22) b | 61.17 (0.26) c | 54.31 (1.25) c | 44.62 (1.01) c |
37_80 | 68.53 (1.24) c | 45.16 (1.65) b | 68.55 (0.81) c | 59.38 (1.33) c | 53.25 (1.12) c |
38_40 | 49.07 (1.18) b | 49.84 (1.12) b | 65.09 (0.26) c | 59.11 (1.17) c | 60.62 (0.99) c |
38_80 | 74.21 (0.9) c | 53.04 (1.65) b | 72.36 (0.81) c | 64.54 (1.70) c | 63.04 (0.68) c |
EXT_40 | 18.98 (0.77) a | 19.74 (0.58) a | 30.26 (2.01) b | 20.96 (1.69) a | 0 (0) |
EXT_80 | 47.99 (1.10) b | 40.69 (2.45) b | 64.33 (4.57) c | 22.49 (1.63) a | 0 (0) |
Compound | A. baumannii | E. coli | L. monocytogenes | P. aeruginosa | S. aureus |
---|---|---|---|---|---|
1_40 | 11.2 (0.31) a | 1.12 (0.025) | 43.18 (6.99) b | 0 (0) | 29,21(2.51) b |
1_80 | 52.54 (1.37) c | 23.63 (2.18) a | 64.80 (2.72) c | 0 (0) | 55.41 (1.78) c |
2_40 | 53.36 (2.83) c | 0 (0) | 8.36 (2.22) a | 8.61 (0.01) a | 0 (0) |
2_80 | 77.03 (2.77) c | 18.26 (1.89) a | 40.62 (3.74) b | 23.11 (0.49) a | 9.97 (1.78) a |
4_40 | 62.70 (2.54) c | 16.04 (1.31) a | 68.81 (2.21) c | 0 (0) | 44.65 (1.10) b |
4_80 | 66.25 (5.80) c | 28.55 (2.47) b | 70.67 (2.61) c | 21.53 (3.80) a | 46.49 (0.96) b |
5_40 | 54.68 (2.29) c | 21.16 (2.22) a | 63.48 (1.68) c | 0 (0) | 50.34 (2.73) b |
5_80 | 75.91 (2.08) c | 28.14 (2.21) b | 64.57 (1.41) c | 39.49 (1.19) b | 53.47 (2.97) b |
16_40 | 44.41 (4.13) b | 0 (0) | 0 (0) | 0 (0) | 29.55 (1.43) b |
16_80 | 49.92 (3.12) b | 15.93 (3.84) a | 2.49 (0.19) | 23.12 (2.66) a | 32.60(1.51) b |
19_40 | 50.14 (3.07) b | 10.34 (1.75) a | 11.21 (0.12) a | 0 (0) | 0 (0) |
19_80 | 55.03 (3.44) c | 55.56 (4.42) c | 58.64(3.46) c | 70.92 (1.78) c | 42.99 (3.89) b |
21_40 | 53.89 (1.85) b | 0 (0) | 5.64 (0.43) a | 22.11 (2.86) a | 9.53 (2.14) a |
21_80 | 64.47 (2.39) c | 7.97 (1.50) a | 32.23 (3.42) b | 25.66 (1.89) b | 17.71 (2.01) a |
23_40 | 55.81 (4.69) c | 0 (0) | 0 (0) | 0 (0) | 22.24 (2.37) a |
23_80 | 58.06 (4.34) c | 0 (0) | 22.94 (3.79) a | 42.39 (2.27) b | 26.88 (1.10) b |
26_40 | 26.05 (2.05) b | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
26_80 | 36.27 (2.56) b | 0 (0) | 32.55 (3.12) b | 12.15 (1.77) a | 14.34 (1.23) a |
27_40 | 26.48 (2.25) b | 29.73 (1.47) b | 0 (0) | 23.70 (2.37) a | 19.95 (2.11) a |
27_80 | 59.05 (4.45) c | 52.60 81.07) b | 0 (0) | 35.41 (3.05) b | 31.59 (1.28) b |
28_40 | 52.74 (2.55) b | 33.03 (0.96) b | 0 (0) | 9.32 (1.98) a | 0 (0) |
28_80 | 56.59 (3.34) c | 57.03(1.73) c | 0.49 (0.01) | 11.98 (0.30) a | 0 (0) |
32_40 | 35.62 (2.81) b | 62.46 (1.29) c | 27.44 (2.30) b | 34.52 (2.02) b | 14.33 (1.90) a |
32_80 | 70.71 (3.33) c | 72.93 (2.34) c | 38.51(1.55) b | 50.37 (1.59) b | 36.47 (2.18) b |
33_40 | 45.22 (0.87) b | 22.01(2.61) a | 60.41 (1.56) c | 0 (0) | 49.90 (2.31) b |
33_80 | 53.94 (2.57) b | 27.03 (1.56) b | 67.49 (1.99) c | 0 (0) | 59.18 (2.13) c |
35_40 | 32.22 (2.99) b | 0 (0) | 0 (0) | 27.80 (0.42) b | 13.39 (0.42) a |
35_80 | 59.65 (1.41) c | 37.11 (2.37) b | 1.56 (0.02) | 38.99 (3.05) b | 48.49 (2.12) b |
36_40 | 34.78 (2.90) b | 43.14 (1.64) b | 30.26 (2.41) b | 34.72 (4.42) b | 39.41 (3.88) b |
36_80 | 50.46 (2.55) b | 61.83 (2.95) c | 53.51 (4.66) b | 58.92 (4.34) c | 63.68 (2.24) c |
37_40 | 33.24 (1.07) b | 26.41 (0.77) b | 26.42 (1.51) c | 24.53 (1.41) b | 22.48 (2.01) b |
37_80 | 45.27 (0.98) b | 48.22 (1.85) c | 38.58 (1.85) c | 47.22 (1.13) c | 52.37 (1.02) c |
38_40 | 31.14 (3.05) b | 39.11 (0.55) b | 56.54 (1.57) c | 54.89 (1.91) b | 45.68 (3.34) b |
38_80 | 47.89 (0.74) b | 61.47 (1.85) c | 70.69 (2.35) c | 57.62 (1.93) c | 68.93 (0.91) c |
EXT_40 | 61.95 (2.68) c | 7.27 (2.22) a | 53.28 (2.16) b | 0 (0) | 33.66 (2.48) b |
EXT_80 | 67.35 (2.09) c | 28.72 (1.97) b | 55.32 (2.65) c | 7.86 (0.25) a | 47.49 (1.07) b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani Samani, M.; D’Urso, G.; Nazzaro, F.; Fratianni, F.; Masullo, M.; Piacente, S. Phytochemical Investigation and Biofilm-Inhibitory Activity of Bachtiari Savory (Satureja bachtiarica Bunge) Aerial Parts. Plants 2024, 13, 67. https://doi.org/10.3390/plants13010067
Rahmani Samani M, D’Urso G, Nazzaro F, Fratianni F, Masullo M, Piacente S. Phytochemical Investigation and Biofilm-Inhibitory Activity of Bachtiari Savory (Satureja bachtiarica Bunge) Aerial Parts. Plants. 2024; 13(1):67. https://doi.org/10.3390/plants13010067
Chicago/Turabian StyleRahmani Samani, Marzieh, Gilda D’Urso, Filomena Nazzaro, Florinda Fratianni, Milena Masullo, and Sonia Piacente. 2024. "Phytochemical Investigation and Biofilm-Inhibitory Activity of Bachtiari Savory (Satureja bachtiarica Bunge) Aerial Parts" Plants 13, no. 1: 67. https://doi.org/10.3390/plants13010067
APA StyleRahmani Samani, M., D’Urso, G., Nazzaro, F., Fratianni, F., Masullo, M., & Piacente, S. (2024). Phytochemical Investigation and Biofilm-Inhibitory Activity of Bachtiari Savory (Satureja bachtiarica Bunge) Aerial Parts. Plants, 13(1), 67. https://doi.org/10.3390/plants13010067