The Wild Carrot (Daucus carota): A Phytochemical and Pharmacological Review
Abstract
:1. Introduction
2. Methodology
3. Plant Description and Distribution
4. Ethnopharmacological Use of Daucus carota
5. Phytochemistry and Bioactive Compounds/Chemical Composition
6. Pharmacological Activities
6.1. Anticancer Activity
6.2. Antibacterial Activity
6.3. Antifungal Activity
6.4. Antioxidant Activity
6.5. Anti-Inflammatory Activity
6.6. Miscellaneous
7. Safety/Toxicological Evaluation
8. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chizzola, R. Composition of the essential oil from Daucus carota ssp. carota growing wild in Vienna. J. Essent. Oil-Bear. Plants 2010, 13, 12–19. [Google Scholar] [CrossRef]
- Saad, H.A.; El-Sharkawy, S.; Halim, A. Essential oils of Daucus carota ssp. maximus. Pharm. Acta Helv. 1995, 70, 79–84. [Google Scholar] [CrossRef]
- Thellung, M. L’origine de la Carotte et du Radis cultivés. J. Agric. Tradit. Bot. Appl. 1927, 7, 666–671. [Google Scholar] [CrossRef]
- Iorizzo, M.; Senalik, D.A.; Ellison, S.L.; Grzebelus, D.; Cavagnaro, P.F.; Allender, C.; Brunet, J.; Spooner, D.M.; Van Deynze, A.; Simon, P.W. Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am. J. Bot. 2013, 100, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.-G.; Bao, L.; Luciani, A.; Panighi, J.; Desjobert, J.-M.; Costa, J.; Casanova, J.; Bolla, J.-M.; Berti, L. (E)-Methylisoeugenol and elemicin: Antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J. Agric. Food Chem. 2007, 55, 7332–7336. [Google Scholar] [CrossRef] [PubMed]
- Maxia, A.; Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Goncalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical characterization and biological activity of essential oils from Daucus carota L. subsp. carota growing wild on the Mediterranean coast and on the Atlantic coast. Fitoterapia 2009, 80, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Gonny, M.; Bradesi, P.; Casanova, J. Identification of the components of the essential oil from wild Corsican Daucus carota L. using 13C-NMR spectroscopy. Flavour. Fragr. J. 2004, 19, 424–433. [Google Scholar] [CrossRef]
- Staniszewska, M.; Kula, J.; Wieczorkiewicz, M.; Kusewicz, D. Essential oils of wild and cultivated carrots—The chemical composition and antimicrobial activity. J. Essent. Oil Res. 2005, 17, 579–583. [Google Scholar] [CrossRef]
- Marzouki, H.; Khaldi, A.; Falconieri, D.; Piras, A.; Marongiu, B.; Molicotti, P.; Zanetti, S. Essential oils of Daucus carota subsp. carota of Tunisia obtained by supercritical carbon dioxide extraction. Nat. Prod. Commun. 2010, 5, 1955–1958. [Google Scholar] [CrossRef]
- Gunther, R.T. The Greek Herbal of Dioscorides; Hafner: New York, NY, USA, 1959. [Google Scholar]
- Barnes, J. Herbal medicine. Pharm. J. 1998, 260, 344–348. [Google Scholar]
- Hoffman, D. The New Holistic Herbal, 3rd ed.; Element Shaftesbury Dorset: Shaftesbury, UK, 1990. [Google Scholar]
- Thomas, K.J.; Nicholl, J.P.; Coleman, P. Use and expenditure on complementary medicine in England: A population based survey. Complement. Ther. Med. 2001, 9, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Quintans-Júnior, L.; Moreira, J.C.; Pasquali, M.A.; Rabie, S.; Pires, A.S.; Schröder, R.; Rabelo, T.K.; Santos, J.; Lima, P.S.; Cavalcanti, S.C. Antinociceptive activity and redox profile of the monoterpenes. Int. Sch. Res. Not. 2013, 2013, 459530. [Google Scholar]
- Mitich, L. Intriguing world of weeds: Wild carrot (Daucus carota L.). Weed Technol. 1996, 10, 455–457. [Google Scholar] [CrossRef]
- McGuffin, M.; Hobbs, C.; Upton, R.; Goldberg, A. Botanical Safety Handbook; American Herbal Products Association: Silver Spring, MD, USA; CRC Press LLC: Boca Raton, FL, USA, 1997. [Google Scholar]
- Duke, J. Handbook of Edible Weeds; CRC Press: Boca Raton, FL, USA, 1992; 246p. [Google Scholar]
- Hotti, H.; Rischer, H. The killer of Socrates: Coniine and related alkaloids in the plant kingdom. Molecules 2017, 22, 1962. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.; Brasntrom, I.; Hill, E. Poison Hemlock Identification and Control. Available online: https://www.canr.msu.edu/news/poison-hemlock-identification-and-control (accessed on 10 March 2022).
- Holm, L.; Pancho, J.V.; Herberger, J.P.; Plucknett, D.L. A Geographical Atlas of World Weeds; John Wiley and Sons: Hoboken, NJ, USA, 1979. [Google Scholar]
- Willcox, M.L.; Bodeker, G. Traditional herbal medicines for malaria. Br. Med. J. 2004, 329, 1156–1159. [Google Scholar] [CrossRef]
- World Health Organization. Programme on Traditional, M. WHO Traditional Medicine Strategy 2002–2005; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- International Expert Meeting on the Treatment of SbTCM, the Integration of Traditional Chinese Medicine with Western M. In SARS: Clinical Trials on Treatment Using a Combination of Traditional Chinese Medicine and Western Medicine: Report of the WHO International Expert Meeting to Review and Analyse Clinical Reports on Combination Treatment for SARS, Beijing, China, 8–10 October 2003; World Health Organization: Geneva, Switzerland, 2004.
- Valente, J.; Zuzarte, M.; Resende, R.; Gonçalves, M.; Cavaleiro, C.; Pereira, C.; Cruz, M.; Salgueiro, L. Daucus carota subsp. gummifer essential oil as a natural source of antifungal and anti-inflammatory drugs. Ind. Crops Prod. 2015, 65, 361–366. [Google Scholar] [CrossRef]
- Tawil, M.; Bekdash, A.; Mroueh, M.; Daher, C.F.; Abi-Habib, R.J. Wild carrot oil extract is selectively cytotoxic to human acute myeloid leukemia cells. Asian Pac. J. Cancer Prev. 2015, 16, 761–767. [Google Scholar] [CrossRef]
- Elzebroek, T.; Wind, K. Edible fruits and nuts. In Guide to Cultivated Plants; CAB International: Wallingford, UK, 2008; pp. 25–131. [Google Scholar]
- Tobyn, G.; Denham, A.; Whitelegg, M. Daucus Carota, Wild Carrot. In Medical Herbs; Churchill Livingstone: London, UK, 2011; pp. 145–154. [Google Scholar] [CrossRef]
- Chevallier, A. The Encyclopedia of Medicinal Plants; DK Adult: New York, NY, USA, 1996. [Google Scholar]
- Launert, E. Edible and Medicinal Plants. In Covera Plants in Europe a Drawing of Each Plant, Quite a Bit of Interesting Information; Hamlyn: London, UK, 1981. [Google Scholar]
- Triska, D. Hamlyn Encyclopaedia of Plants; Hamlyn: London, UK, 1975; ISBN 0-600-33545-3. [Google Scholar]
- Lust, J. The Herb Book: The Most Complete Catalog of Herbs Ever Published; Courier Corporation: Chelmsford, MA, USA, 2014. [Google Scholar]
- Mills, S. The Dictionary of Modern Herbalism: A Comprehensive Guide to Practical Herbal Therapy; Inner Traditions/Bear & Co: Rochester, VT, USA, 1988. [Google Scholar]
- Jansen, G.C.; Wohlmuth, H. Carrot seed for contraception: A review. Aust. J. Herb. Med. 2014, 26, 10–17. [Google Scholar]
- Riddle, J.M. Oral contraceptives and early-term abortifacients during classical antiquity and the Middle Ages. Past Present 1991, 132, 3–32. [Google Scholar] [CrossRef]
- Duke, J.A.; Ayensu, E.S. Medicinal Plants of China; Reference Publications: Algonac, MI, USA, 1985. [Google Scholar]
- Bown, D. The Royal Horticultural Society Encyclopedia of Herbs & Their Uses; Dorling Kindersley Limited: London, UK, 1995. [Google Scholar]
- Shebaby, W.N.; El-Sibai, M.; Smith, K.B.; Karam, M.C.; Mroueh, M.; Daher, C.F. The antioxidant and anticancer effects of wild carrot oil extract. Phytother. Res. 2013, 27, 737–744. [Google Scholar] [CrossRef]
- Nehir El, S.; Karakaya, S. Radical scavenging and iron-chelating activities of some greens used as traditional dishes in Mediterranean diet. Int. J. Food Sci. Nutr. 2004, 55, 67–74. [Google Scholar] [CrossRef]
- Leung, A.Y. Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Nehmeh, M. Wild Flowers of Lebanon; National Council for Scientific Research: Beirut, Lebanon, 1978. [Google Scholar]
- Bennett, R. Wild Carrot Seeds for Herbal Contraception–Summary of Findings from a 1992 Study; Wise Woman Healing Ways: New York, NJ, USA, 2012. [Google Scholar]
- Moerman, D.E. Native American Ethnobotany; Timber Press: Portland, OR, USA, 1998. [Google Scholar]
- Ibn-e-Sina, A. Al-Qanun Fit-Tib [The Canon of Medicine]; Alaalami Beirut Lib Press: Beirut, Lebanon, 2005. [Google Scholar]
- Sharma, M.; Sharma, R. Coriander. In Handbook of Herbs and Spices; Elsevier: Amsterdam, The Netherlands, 2012; pp. 216–249. [Google Scholar]
- Maurya, R.; Srivastava, S.; Kulshreshta, D.; Gupta, C. Traditional remedies for fertility regulation. Curr. Med. Chem. 2004, 11, 1431–1450. [Google Scholar] [CrossRef] [PubMed]
- Chopra, R. A review of work on Indian medicinal plants. In Pharmacopoeia of India; Council of Medical Research: New Delhi, India, 1955. [Google Scholar]
- Nadkarni, A. KM Nadkarni’s Indian Materia Medica; Popular Prakashan: Bombay, India, 1976; Volume 1, pp. 80–83. [Google Scholar]
- Sezik, E.; Tabata, M.; Yesilada, E.; Honda, G.; Goto, K.; Ikeshiro, Y. Traditional medicine in Turkey I. Folk medicine in northeast Anatolia. J. Ethnopharmacol. 1991, 35, 191–196. [Google Scholar] [CrossRef] [PubMed]
- China, P.C. Pharmacopoeia of the People’s Republic of China; Chemical Industry Press: Beijing, China, 2000. [Google Scholar]
- Yan, X.; Xie, G.; Zhou, J.; Milne, G.W. Traditional Chinese Medicines: Molecular Structures, Natural Sources and Applications; Routledge: London, UK, 2018. [Google Scholar]
- Kovač, J.; Šimunović, K.; Wu, Z.; Klančnik, A.; Bucar, F.; Zhang, Q.; Možina, S.S. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS ONE 2015, 10, e0122871. [Google Scholar] [CrossRef]
- Griffiths, E.; Bociek, S.; Harries, P.; Jeffcoat, R.; Sissons, D.; Trudgill, P. Bacterial metabolism of alpha-pinene: Pathway from alpha-pinene oxide to acyclic metabolites in Nocardia sp. strain P18. 3. J. Bacteriol. 1987, 169, 4972–4979. [Google Scholar] [CrossRef] [PubMed]
- Baik, J.-S.; Kim, S.-S.; Lee, J.-A.; Oh, T.-H.; Kim, J.-Y.; Lee, N.-H.; Hyun, C.-G. Chemical composition and biological activities of essential oils extracted from Korean endemic citrus species. J. Microbiol. Biotechnol. 2008, 18, 74–79. [Google Scholar] [PubMed]
- Dhar, P.; Chan, P.; Cohen, D.T.; Khawam, F.; Gibbons, S.; Snyder-Leiby, T.; Dickstein, E.; Rai, P.K.; Watal, G. Synthesis, antimicrobial evaluation, and structure–activity relationship of α-pinene derivatives. J. Agric. Food Chem. 2014, 62, 3548–3552. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Eduardo, L.; Farias, T.C.; Ferreira, S.B.; Ferreira, P.B.; Lima, Z.N.; Ferreira, S.B. Antibacterial activity and time-kill kinetics of positive enantiomer of α-pinene against strains of Staphylococcus aureus and Escherichia coli. Curr. Top. Med. Chem. 2018, 18, 917–924. [Google Scholar] [CrossRef] [PubMed]
- da Franca Rodrigues, K.A.; Amorim, L.V.; Dias, C.N.; Moraes, D.F.C.; Carneiro, S.M.P.; de Amorim Carvalho, F.A. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J. Ethnopharmacol. 2015, 160, 32–40. [Google Scholar] [CrossRef]
- de Eduardo, L.; Farias, T.; Silva, G.; da Lopes, F.P.; Ferreira, S. Antibacterial Potential of the Alpha-pinene Positive Enantiomer against the Strain Proteus mirabilis. In Proceedings of the MOL2NET’17, Conference on Molecular, Biomed., Comput. & Network Science and Engineering, 3rd ed., Bilbao, Germany, 15 January–15 December 2017; MDPI: Basel, Switzerland. [Google Scholar] [CrossRef]
- Chalchat, J.; Chiron, F.; Garry, R.P.; Lacoste, J.; Sautou, V. Photochemical hydroperoxidation of terpenes. Antimicrobial activity of α-pinene, β-pinene and limonene hydroperoxides. J. Essent. Oil Res. 2000, 12, 125–134. [Google Scholar] [CrossRef]
- Silva, A.C.R.d.; Lopes, P.M.; Azevedo, M.M.B.d.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological activities of a-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- Leite, A.M.; Lima, E.D.O.; Souza, E.L.D.; Diniz, M.D.F.F.M.; Trajano, V.N.; Medeiros, I.A.D. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Bras. Cienc. Farm. 2007, 43, 121–126. [Google Scholar] [CrossRef]
- Mockute, D.; Nivinskiene, O. The Sabinene Chemotype of Essential Oil of Seeds of Daucus carota L. ssp. carota Growing Wild in Lithuania. J. Essent. Oil Res. 2004, 16, 277–281. [Google Scholar] [CrossRef]
- Flamini, G.; Cosimi, E.; Cioni, P.L.; Molfetta, I.; Braca, A. Essential-oil composition of Daucus carota ssp. major (Pastinocello Carrot) and nine different commercial varieties of Daucus carota ssp. sativus fruits. Chem. Biodivers. 2014, 11, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Elias, A.; Shebaby, W.N.; Nehme, B.; Faour, W.; Bassil, B.S.; El Hakim, J.; Iskandar, R.; Dib-Jalbout, N.; Mroueh, M.; Daher, C. In Vitro and In Vivo Evaluation of the Anticancer and Anti-inflammatory Activities of 2-Himachelen-7-ol isolated from Cedrus Libani. Sci. Rep. 2019, 9, 12855. [Google Scholar] [CrossRef] [PubMed]
- Taleb, R.I.; Najm, P.; Shebaby, W.; Boulos, J.C.; Demirdjian, S.; Hariri, E.; El-Sibai, M.; Daher, C.; Mroueh, M. β-2-himachalen-6-ol: A novel anticancer sesquiterpene unique to the Lebanese wild carrot. J. Ethnopharmacol. 2016, 190, 59–67. [Google Scholar] [CrossRef]
- Zeinab, R.A.; Mroueh, M.; Diab-Assaf, M.; Jurjus, A.; Wex, B.; Sakr, A.; Daher, C.F. Chemopreventive effects of wild carrot oil against 7, 12-dimethyl benz (a) anthracene-induced squamous cell carcinoma in mice. Pharm. Biol. 2011, 49, 955–961. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Cardoso, S.M.; Salgueiro, L. New claims for wild carrot (Daucus carota subsp. carota) essential oil. Evid. Based Complement. Alternat Med. 2016, 2016, 9045196. [Google Scholar] [CrossRef]
- Mohammedi, H.; Mecherara-Idjeri, S.; Foudil-Cherif, Y.; Hassani, A. Chemical composition and antioxidant activity of essential oils from Algerian Daucus carota L. subsp. Carota aerial parts. J. Essent. Oil-Bear. Plants 2015, 18, 873–883. [Google Scholar] [CrossRef]
- Ksouri, A.; Dob, T.; Belkebir, A.; Krimat, S.; Chelghoum, C. Chemical composition and antioxidant activity of the essential oil and the methanol extract of Algerian wild carrot Daucus carota L. ssp. carota. (L.) Thell. J. Mater. Environ. Sci. 2015, 6, 784–791. [Google Scholar]
- Soković, M.; Stojković, D.; Glamočlija, J.; Ćirić, A.; Ristić, M.; Grubišić, D. Susceptibility of pathogenic bacteria and fungi to essential oils of wild Daucus carota. Pharm. Biol. 2009, 47, 38–43. [Google Scholar] [CrossRef]
- Tavares, A.C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Lopes, M.C.; Canhoto, J.; Salgueiro, L.R. Essential oil of Daucus carota subsp. halophilus: Composition, antifungal activity and cytotoxicity. J. Ethnopharmacol. 2008, 119, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Asilbekova, D.T.; Bobakulov, K.M.; Sasmakov, S.A.; Abdurakhmanov, J.M.; Azimova, S.S.; Abdullaev, N.D.; Sagdullaev, S. Composition and antimicrobial activity of essential oils from Daucus carota L. subsp. carota, growing in Uzbekistan. Am. J. Essent. Oils Nat. Prod. 2017, 5, 9–13. [Google Scholar]
- Muturi, E.J.; Doll, K.; Ramirez, J.L.; Rooney, A.P. Bioactivity of wild carrot (Daucus carota, Apiaceae) essential oil against mosquito larvae. J. Med. Entomol. 2019, 56, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.C.; Loureiro, J.; Castro, S.; Coutinho, A.P.; Paiva, J.; Cavaleiro, C.; Salgueiro, L.; Canhoto, J.M. Assessment of Daucus carota L. (Apiaceae) subspecies by chemotaxonomic and DNA content analyses. Biochem. Syst. Ecol. 2014, 55, 222–230. [Google Scholar] [CrossRef]
- Valente, J.; Resende, R.; Zuzarte, M.; Gonçalves, M.; Lopes, M.; Cavaleiro, C.; Pereira, C.; Salgueiro, L.; Cruz, M. Bioactivity and safety profile of Daucus carota subsp. maximus essential oil. Ind. Crops Prod. 2015, 77, 218–224. [Google Scholar] [CrossRef]
- Gaglio, R.; Barbera, M.; Aleo, A.; Lommatzsch, I.; La Mantia, T.; Settanni, L. Inhibitory activity and chemical characterization of Daucus carota subsp. maximus essential oils. Chem. Biodivers. 2017, 14, e1600477. [Google Scholar] [CrossRef] [PubMed]
- Jabrane, A.; Jannet, H.B.; Harzallah-Skhiri, F.; Mastouri, M.; Casanova, J.; Mighri, Z. Flower and Root Oils of the Tunisian Daucus carota L. ssp. maritimus (Apiaceae): Integrated Analyses by GC, GC/MS, and 13C-NMR Spectroscopy, and in vitro Antibacterial Activity. Chem. Biodivers. 2009, 6, 881–889. [Google Scholar] [CrossRef]
- Bendiabdellah, A.; Dib, M.E.A.; Djabou, N.; Hassani, F.; Paolini, J.; Tabti, B.; Costa, J.; Muselli, A. Daucus carota ssp. hispanicus Gouan. essential oils: Chemical variability and fungitoxic activity. J. Essent. Oil Res. 2014, 26, 427–440. [Google Scholar] [CrossRef]
- Pinilla, M.G.; Pérez-Alonso, M.J.; Velasco-Negueruela, A. Volatile Constituents from Fruits of Daucus carota L., subsp. Gummifer Hooker Fil. J. Essent. Oil Res. 1995, 7, 433–435. [Google Scholar] [CrossRef]
- Hammami, S.; Elshamy, A.I.; Mokni, R.E.; Snene, A.; Iseki, K.; Dhaouadi, H.; Okamoto, Y.; Suenaga, M.; Noji, M.; Umeyama, A. Chemical constituents of the aerial parts of Daucus carota subsp. hispidus growing in Tunisia. Nat. Prod. Commun. 2019, 14, 1934578X19863512. [Google Scholar]
- Elias, M.G.; Mrad, Y.N.; Nehmeh, B.; Dagher, C.; Mroueh, M.; Taleb, R.I.; Daher, C.F. Wild Daucus Carota Oil Extract: An Innocuous Preventative and Chemotherapeutic Agent Against Chemically Induced Breast Cancer. J. Food Sci. Technol. 2022, 7, 442–455. [Google Scholar] [CrossRef]
- Ambrož, M.; Matoušková, P.; Skarka, A.; Zajdlová, M.; Žáková, K.; Skálová, L. The effects of selected sesquiterpenes from myrica rubra essential oil on the efficacy of doxorubicin in sensitive and resistant cancer cell lines. Molecules 2017, 22, 1021. [Google Scholar] [CrossRef] [PubMed]
- Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 2007, 59, 1643–1647. [Google Scholar] [CrossRef]
- El Hadri, A.; del Rio, M.G.; Sanz, J.; Coloma, A.G.; Idaomar, M.; Ozonas, B.R.; González, J.B.; Reus, M.I.S. Cytotoxic activity of α-humulene and transcaryophyllene from Salvia officinalis in animal and human tumor cells. An. R. Acad. Nac. Farm. 2010, 76, 343–356. [Google Scholar]
- Sylvestre, M.; Longtin, A.P.A.; Legault, J. Volatile leaf constituents and anticancer activity of Bursera simaruba (L.) Sarg. essential oil. Nat. Prod. Commun. 2007, 2, 1934578X0700201217. [Google Scholar] [CrossRef]
- Kim, C.; Cho, S.K.; Kim, K.-D.; Nam, D.; Chung, W.-S.; Jang, H.-J.; Lee, S.-G.; Shim, B.S.; Sethi, G.; Ahn, K.S. β-Caryophyllene oxide potentiates TNFα-induced apoptosis and inhibits invasion through down-modulation of NF-κB-regulated gene products. Apoptosis 2014, 19, 708–718. [Google Scholar] [CrossRef]
- Yin, J.; Li, X.; Huang, F.; Lu, M.; Yang, J.; Zhu, L. Chemical composition, antioxidant and anticancer activity of the essential oil from myric rubra leaves. In Proceedings of IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 012085. [Google Scholar]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Dong, C.; Davis, R.J.; Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 2002, 20, 55–72. [Google Scholar] [CrossRef]
- Shebaby, W.N.; Mroueh, M.; Bodman-Smith, K.; Mansour, A.; Taleb, R.I.; Daher, C.F.; El-Sibai, M. Daucus carota pentane-based fractions arrest the cell cycle and increase apoptosis in MDA-MB-231 breast cancer cells. BMC Complement. Altern. Med. 2014, 14, 387. [Google Scholar] [CrossRef]
- Shebaby, W.N.; Bodman-Smith, K.; Mansour, A.; Mroueh, M.; Taleb, R.I.; El-Sibai, M.; Daher, C.F. Daucus carota pentane-based fractions suppress proliferation and induce apoptosis in human colon adenocarcinoma HT-29 cells by inhibiting the MAPK and PI3K pathways. J. Med. Food 2015, 18, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Shebaby, W.N.; Mroueh, M.A.; Boukamp, P.; Taleb, R.I.; Bodman-Smith, K.; El-Sibai, M.; Daher, C.F. Wild carrot pentane-based fractions suppress proliferation of human HaCaT keratinocytes and protect against chemically-induced skin cancer. BMC Complement. Altern. Med. 2017, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Zgheib, P.; Daher, C.F.; Mroueh, M.; Nasrallah, A.; Taleb, R.I.; El-Sibai, M. Daucus carota Pentane/Diethyl Ether Fraction Inhibits Motility and Reduces Invasion of Cancer Cells. Chemotherapy 2014, 60, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Daaboul, H.E.; Dagher, C.; Taleb, R.I.; Bodman-Smith, K.; Shebaby, W.N.; El-Sibai, M.; Mroueh, M.A.; Daher, C.F. The chemotherapeutic effect of β-2-himachalen-6-ol in chemically induced skin tumorigenesis. Biomed. Pharmacother. 2018, 103, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Daaboul, H.E.; Daher, C.F.; Bodman-Smith, K.; Taleb, R.I.; Shebaby, W.N.; Boulos, J.; Dagher, C.; Mroueh, M.A.; El-Sibai, M. Antitumor activity of β-2-himachalen-6-ol in colon cancer is mediated through its inhibition of the PI3K and MAPK pathways. Chem. Biol. Interact. 2017, 275, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Daaboul, H.E.; Daher, C.F.; Taleb, R.I.; Boulos, J.; Bodman-Smith, K.; Boukamp, P.; Shebaby, W.N.; Dagher, C.; El-Sibai, M.; Mroueh, M.A. β-2-himachalen-6-ol protects against skin cancer development in vitro and in vivo. J. Pharm. Pharmacol. 2017, 69, 1552–1564. [Google Scholar] [CrossRef] [PubMed]
- Daaboul, H.E.; Dagher, C.; Taleb, R.I.; Bodman-Smith, K.; Shebaby, W.N.; El-Sibai, M.; Mroueh, M.A.; Daher, C.F. β-2-Himachalen-6-ol inhibits 4T1 cells-induced metastatic triple negative breast carcinoma in murine model. Chem. Biol. Interact. 2019, 309, 108703. [Google Scholar] [CrossRef]
- Wehbe, K.; Mroueh, M.; Daher, C.F. The potential role of Daucus carota aqueous and methanolic extracts on inflammation and gastric ulcers in rats. J. Complement. Integr. 2009, 6. [Google Scholar] [CrossRef]
- Sela, F.; Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Kulevanova, S. Chemical composition and antimicrobial activity of essential oils of Juniperus excelsa Bieb. (Cupressaceae) grown in R. Macedonia. Pharmacogn. Res. 2015, 7, 74. [Google Scholar]
- Arunkumar, R.; Nair, S.A.; Rameshkumar, K.B.; Subramoniam, A. The essential oil constituents of Zornia diphylla (L.) Pers, and anti-inflammatory and antimicrobial activities of the oil. Rec. Nat. Prod. 2014, 8, 385. [Google Scholar]
- Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida activity of Bursera morelensis Ramirez essential oil and two compounds, α-pinene and γ-terpinene—An in vitro study. Molecules 2017, 22, 2095. [Google Scholar] [CrossRef] [PubMed]
- Thakre, A.; Zore, G.; Kodgire, S.; Kazi, R.; Mulange, S.; Patil, R.; Shelar, A.; Santhakumari, B.; Kulkarni, M.; Kharat, K. Limonene inhibits Candida albicans growth by inducing apoptosis. Med. Mycol. 2018, 56, 565–578. [Google Scholar] [PubMed]
- Ünal, M.Ü.; Ucan, F.; Şener, A.; Dincer, S. Research on antifungal and inhibitory effects of DL-limonene on some yeasts. Turk. J. Agric. For. 2012, 36, 576–582. [Google Scholar] [CrossRef]
- Dias, A.; Sousa, W.; Batista, H.; Alves, C.; Souchie, E.; Silva, F.; Pereira, P.; Sperandio, E.; Cazal, C.; Forim, M. Chemical composition and in vitro inhibitory effects of essential oils from fruit peel of three Citrus species and limonene on mycelial growth of Sclerotinia sclerotiorum. Braz. J. Biol. 2019, 80, 460–464. [Google Scholar] [CrossRef]
- Cai, R.; Hu, M.; Zhang, Y.; Niu, C.; Yue, T.; Yuan, Y.; Wang, Z. Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. LWT 2019, 106, 50–56. [Google Scholar] [CrossRef]
- Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K.; Dubey, N.K. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem. Toxicol. 2010, 48, 1734–1740. [Google Scholar] [CrossRef]
- Chee, H.Y.; Mm, H.; Lee, M.H. In vitro antifungal activity of limonene against Trichophyton rubrum. Mycobiology 2009, 37, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, M.J.; Cruz, M.T.; Tavares, A.C.; Cavaleiro, C.; Lopes, M.C.; Canhoto, J.; Salgueiro, L. Composition and biological activity of the essential oil from Thapsia minor, a new source of geranyl acetate. Ind. Crops Prod. 2012, 35, 166–171. [Google Scholar] [CrossRef]
- Akgul, Y.; Aktas, L.Y.; Anil, H. Compounds from flowers of Daucus carota L. ssp. carota and their antioxidant activity. Chem. Nat. Compd. 2009, 45, 889–892. [Google Scholar] [CrossRef]
- Shebaby, W.N.; Daher, C.F.; El-Sibai, M.; Bodman-Smith, K.; Mansour, A.; Karam, M.C.; Mroueh, M. Antioxidant and hepatoprotective activities of the oil fractions from wild carrot (Daucus carota ssp. carota). Pharm. Biol. 2015, 53, 1285–1294. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology 2006, 217, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Rho, H.S.; Kim, D.H.; Chang, I.S. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J. Agric. Food Chem. 2006, 54, 2951–2956. [Google Scholar] [CrossRef] [PubMed]
- Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Yin, J.; Si, C.-L.; Wang, M.-H. Antioxidant activity of flavanoids and their glucosides from Sonchus oleraceus L. J. Appl. Biol. Chem. 2008, 51, 57–60. [Google Scholar] [CrossRef]
- Mayachiew, P.; Devahastin, S. Antimicrobial and antioxidant activities of Indian gooseberry and galangal extracts. LWT Food Sci. Technol. 2008, 41, 1153–1159. [Google Scholar] [CrossRef]
- Pérez Gutierrez, R.; Hernández Luna, H.; Hernández Garrido, S. Antioxidant activity of Tagetes erecta essential oil. J. Chil. Chem. Soc. 2006, 51, 883–886. [Google Scholar] [CrossRef]
- Remya, M.; Vashum, N.; Sivasankar, S. Bioactivity studies on Lantana camara Linn. Int. J. Pharma Bio Sci. 2013, 4, 81–90. [Google Scholar]
- Kumar, R.; Prakash, O.; Pant, A.; Isidorov, V.A.; Mathela, C. Chemical composition, antioxidant and myorelaxant activity of essential oils of Globba sessiliflora Sims. J. Essent. Oil Res. 2012, 24, 385–391. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Zhang, Y.; Zhao, H.; Dong, A.; Xu, D.; Yang, L.; Ma, Y.; Wang, J. Analysis of the Essential Oils of Pine Cones of Pinus koraiensis Steb. Et Zucc. and P. sylvestris L. from China. J. Essent. Oil Res. 2010, 22, 446–448. [Google Scholar] [CrossRef]
- Benedet, J.A.; Shibamoto, T. Role of transition metals, Fe (II), Cr (II), Pb (II), and Cd (II) in lipid peroxidation. Food Chem. 2008, 107, 165–168. [Google Scholar] [CrossRef]
- Khunkitti, W.; Veerapan, P.; Hahnvajanawong, C. In vitro bioactivities of clove buds oil (Eugenia caryophyllata) and its effect on dermal fibroblast. Int. J. Pharm. Pharm. Sci. 2012, 4, 556–560. [Google Scholar]
- Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. J. Nat. Prod. 2014, 77, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Lee, H.-J.; Jeon, Y.-D.; Han, Y.-H.; Kee, J.-Y.; Kim, H.-J.; Shin, H.-J.; Kang, J.; Lee, B.S.; Kim, S.-H. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Garg, S. Antifertility effect of some chromatographic fractions of Daucus carota. Indian. J. Pharmacol. 1975, 7, 40. [Google Scholar]
- Chu, Y.; Zhou, M.; Li, Q.; Bao, Y. Antifertility effect of volatile oil of Daucus carota seeds. Reprod. Contracept. 1985, 5, 37–40. [Google Scholar]
- Sharma, M.; Lal, G.; Jacob, D. Estrogenic and pregnancy interceptory effects of carrot daucus carota seeds. Indian J. Exp. Biol. 1976, 14, 506–508. [Google Scholar] [PubMed]
- Garg, S.K.; Garg, G.P. Antifertility screening of plants. VII. Effect of five indigenous plants on early pregnancy in albino rats. Indian J. Med. Res. 1971, 59, 302–306. [Google Scholar]
- Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar] [CrossRef]
- Salzano, S.; Checconi, P.; Hanschmann, E.-M.; Lillig, C.H.; Bowler, L.D.; Chan, P.; Vaudry, D.; Mengozzi, M.; Coppo, L.; Sacre, S. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA 2014, 111, 12157–12162. [Google Scholar] [CrossRef]
- Bryan, N.; Ahswin, H.; Smart, N.; Bayon, Y.; Wohlert, S.; Hunt, J.A. Reactive oxygen species (ROS)—A family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur. Cell Mater. 2012, 24, e65. [Google Scholar] [CrossRef] [PubMed]
- Naik, E.; Dixit, V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 2011, 208, 417–420. [Google Scholar] [CrossRef] [PubMed]
Ethnic Groups | Traditional Uses | References |
---|---|---|
Native Americans | Used for various medicinal purposes, including as a diuretic and for digestive issues. Wild carrot seeds are included in a recipe specifically for female contraception. | [34,41,42] |
Romans | Used as a component for contraception and contragestion, as well as for its diuretic properties and aphrodisiac effects. | [12,27,33,34] |
Greeks | Seeds are recommended for their anti-fertility properties and their role as emmenagogues. | [33,34] |
Persians | Leaf and root are recognized as diuretic, beneficial for fertility, and efficacious against conditions such as a cough, pleurisy, corrosive ulcers, and dropsy. Additionally, the seeds are noted for their diuretic and emmenagogic properties and is considered deobstruent and useful for alleviating intestinal pain. | [43] |
Indians | Used in Ayurvedic medicine for various purposes, including as a diuretic and to treat digestive issues. The seeds are used as a method of controlling women’s fertility and the induction of abortion. | [44,45,46,47] |
Turkish | Seeds employed in Turkish folk medicine for the treatment of gastrointestinal and respiratory disorders. | [48] |
Chinese | Fruits utilized for the management of ascariasis, enterobiasis, and tapeworm disease. The roots and basal leaves are employed to strengthen the spleen and treat conditions such as dyspepsia and chronic dysentery. | [49,50] |
Europeans | Wild carrot essential oil is used as an antiseptic for the treatment of cystitis and prostatitis as well to treat urinary calculus, gout, and lithuria. | [11,12,13] |
Lebanese | Employed in the protection against hepatic diseases and in the treatment of diabetes, gastric ulcers, muscle pain, and cancer. Also, it is utilized as a vermifuge, a diuretic, an antidote for snake bites, and for managing sterility. | [40] |
Class | Types | Examples |
---|---|---|
Terpenoids | Monoterpenes | Geraniol, Limonene, α-Pinene, β-Pinene, Sabinene, α-Terpinene, β-Myrcene, Geranyl acetate, Linalool, and α-Thujone |
Sesquiterpenes | Bergamotene, Humulene, Nerolidol, Selinene, Farnesol, Germacrene, Carotol, Caryophyllene, β-Himachalene, and β-Bisabolene | |
Diterpenes | Phytol, Vitamin A1, and Cembrene | |
Triterpenes | Squaline, Saponins, and Ginsenoide | |
Tetraterpenes | Carotenoids (e.g., α-carotene, β-carotene, lycopene) and Xanthophylls (lutein) | |
Phenolics | Phenylpropanoids | Apigenin, Quercetin, Myristicin, and Methylisoeugenol |
Flavonoids | Luteolin, Apigenin, Quercetin, Myristicin, and Kaempferol | |
Tannins | Gallic acid and Ellagic acid |
Daucus carota ssp. | Plant Organ | Country | Main Components | References |
---|---|---|---|---|
carota | Umbels | Lebanon | β-2-himachalen-6-ol (33%), α-longipinene (3.22–15.87%), methyl linoleate (8.26%), (E)-methylisoeugenol (2.21–7.92%), 2-butanone (5.95%), α-Selinene (4.53–5.69%), Elemicin (4.03–4.93%), β-Asarone (4.07%), β Himachalene (2.24–4.63%), n-hexadecanoic acid (3.72%), humulene (3.27%), himachala-1,4-diene (3.09%), β-Bisabolene (1.76–3.78%) | [37,64,65] |
Flowering umbels | Portugal | α-Pinene (37.9%), geranyl acetate (15%), (E)-caryophyllene (4.9%), β-Pinene (3.5%), | [6] | |
Umbels with ripe seeds | Geranyl acetate (65%), α-Pinene (13%) | |||
Flowering umbels | Italy | Carotol (25.1%), 11αH-himachal-4-en-1-β-ol (21.6%), β-bisabolene (17.6%), elemicin (6.4%) | ||
Umbels with ripe seeds | β-bisabolene (51%), (E)-methyl isoeugenol (10%), 11αH-himachal-4-en-1-β-ol (9%), elemicin (5.2%), α-longipinene (3.1%) | |||
Ripe umbels | Portugal | Geranyl acetate (29%), α-Pinene (27.2%), Limonene (9%), 11αH-Himachal-4-en-1-β-ol (9.2%), Carotol (6.2%), β-Pinene (4.5%) | [66] | |
Ripe umbels with mature seeds | Tunisia | Carotol (3.5–55.7%), Elemecin (1.4–35.3%), 11αH-Himachal-4-en-1-β-ol (12.7–17.4%), Sabinene (12–14.5%), α-Selinene (7.4–8.6%), Eudesm-7(11)-en-4-ol (8.2–8.5%), β-Bisabolene (5.5–7.6%), (Z)-β-Farnesene (1.6–5%), (E)-α-Bergamotene (0.2–3.8%) | [9] | |
Herbs | Poland | Sabinene (30.1%), α-Pinene (30%), Terpinen-4-ol (6.1%), limonene (5.3%), myrcene (5.2%) | [8] | |
Flowering Umbels | α-Pinene (42%), Sabinene (19.5%), limonene (3.7%), myrcene (3.1%) | |||
Mature Umbels | Sabinene (40.5%), α-Pinene (17.2%), geranyl acetate (16.5%), Terpinen-4-ol (4.9%), | |||
Aerial parts | France | (E)-methylisoeugenol (21.8–33%), β-Bisabolene (4.4–21.3%), Elemicin (11.4–16.3%), α-Pinene (15.9–24.9%), Sabinene (2.7–3.7%), Myrcene (2–3.5%), α-Terpinen-4-ol (0.5–3.5%) | [5,7] | |
Flowers | Algeria | α-Pinene (10.9%), α-Asarone (9.8%), β-Bisabolene (7.6%), β-Caryophyllene (7.1%), Sabinene (7%), Daucol (3.2%), Limonene (3%) | [67] | |
Leaves + Stems | α-Pinene (10.6%), α-Asarone (9.4%), β-Bisabolene (9.3%), Sabinene (7.2%), Carotol (6.8%), E-α-Bisabolene (6.3%), Daucol (5.3%), β-Caryophyllene (4.3%), Limonene (4%) | |||
Aerial parts | α-Pinene (21.3%), α-Asarone (18.4%), β-Bisabolene (7.3%), Sabinene (6.5%), Limonene (6.4%), Carotol (3.5%), Terpinen-4-ol (3.5%), β-Caryophyllene (3.3%), E-α-Bisabolene (3.2%) | |||
Leaves | α-Pinene (27.44%), sabinene (25.34%), Germacrene D (16.33%) | [68] | ||
Seeds | Geranyl acetate (52.45%), Cedrone S (14.04%), Asarone (11.39%), β-bisobolene (4.83%), Ar-himachalene (3.54%) | |||
Ripe fruits | Serbia | Sabinene (27.16%), α-pinene (21.3%), α-muurolene (8.23%), β-caryophyllene (6.82%), α-ylangene (5.21%), β-Pinene (3.9%) | [69] | |
Unripe fruits | α-muurolene (10.97%), sabinene (10.67%), caryophyllene oxide (7.7%), α-amorphene (7.57%), α-pinene (7.05%), carotol (6.15%), dimenone (5.28%), α-ylangene (4.88%), | |||
Flowers | α-Pinene (51.23%), Limonene (9.59%), Sabinene (8.62%), β-Myrcene (7.18%), Terpinen-4-ol (3.48%), β-Pinene (3.35%) | |||
Roots | Sabinene (36.39%), α-Pinene (24.56%), Limonene (6.53%), β-Pinene (5.39%) | |||
Leaves | α-Pinene (30.83%), Limonene (8.6%), β-Myrcene (5.6%), Germacrene D (4.56%) | |||
Stems | α-Pinene (18.53%), α-Bisabolol (6.02%), Limonene (5.74%), β-Myrcene (3.4%), Sabinene (3.23%) | |||
Fruits | Portugal | Geranyl acetate (28.7–65%), α-Pinene (13–27.1%), 11αH-Himachal-4-en-1-β-ol (0.5–9.4%), Limonene (1.2–9%), β-Pinene (2.3–4.5%) | [70] | |
Roots | Vienna | α-Terpinolene (26.2–56.3%), β-Pinene (4.1–8.2%), p-Cymene (2.7–7.4%), Sabinene (5.6–5.9%), γ-terpinene (0.9–5.6%), Limonene (5.5%), Myristicin (4.9–5.1%) | [1] | |
Leaves | α-Pinene (20.9–44.8%), Sabinene (11.3–19.5%), Germacrene D (4.9–14%), Limonene (3.9–12.7%), Myrcene (4–11.2%), β-Pinene (1.3–5.9%), Caryophyllene (1.2–3.7%) | |||
Fruits | Sabinene (21.5–46.6%), α-Pinene (23.5–30.4%), Geranyl acetate (3.9–28.1%), β-Pinene (3–13.1%), α-Thujene (1–8.8%), γ-terpinene (0.3–4.1%), Myrcene (3.4–3.9%) | |||
Seeds | Lithuania | Sabinene (28.2–37.5%), α-Pinene (16–24.5%), Terpinen-4-ol (5–6%), γ-terpinene (2.9–6%), Limonene (3–4.2%) | [61] | |
Leaves | Uzbekistan | Carotol (68.3%), Daucene (5%), trans-β-Farnesene (3.7%), β-Bisabolene (3.3%), α-Pinene (3.1%) | [71] | |
Flowers | Carotol (68.8%), Daucene (4.7%), Daucol (3.4%), trans-β-Farnesene (3.3%) | |||
Petals | Carotol (78.3%) | |||
Fruits | Carotol (69.8%), Daucene (9%), trans-α-Bergamotene (4.7%), trans-β-Farnesene (3.7%) | |||
Umbels | United States | α-Pinene (33.02%), β-Pinene (25.77%), Borneol (10.4%), Myrcene (6.41%), Limonene (5.34%), γ-terpinene (4.97%) | [72] | |
maximus | Ripe and mature fruits | Egypt | (E)-methylisoeugenol (37.22%), β-bisabolene (34.7%), β-Asarone (17.65%) | [2] |
Leaf | Preisocalamendiol (17.95%), Shyobunone (16.84%), β-Cubebene (12.72%), Tridecane (3.411%), Linalool (3.34%), (E)-2-Nonenal (3.22%) | |||
Stem | Preisocalamendiol (32.69%), Shyobunone (24.33%), α-Pinene (4.37%), β-Cubebene (3.55%) | |||
Fruits | Portugal | α-Pinene (10–25.9%), α-Asarone (5.8–25.8%), Geranyl acetate (3.4–16%), β-bisabolene (8.3–15.1%), (E)-methylisoeugenol (8.2–15.7%), Elemicin (4.9–13.6%), β-Pinene (4–6.8%), Limonene (1.8–3.3%) [73] | [70] | |
Ripe umbels | Portugal | α-Pinene (22.2%), Geranyl acetate (16%), β-bisabolene (11.5%), α-asarone (9.8%), (E)-methylisoeugenol (8%), Elemicin (6%), β-Pinene (5.8%) | [74] | |
Green seeds | Italy | Carotol (44.68%), β-bisabolene (12.72%), Isoelemicin (11.51%), Geranyl acetate (4.36%) | [75] | |
maritimus | Flowers | Tunisia | Sabinene (51.6%), Terpinen-4-ol (11%), p-Cymene (4.2%), Eudesm-6-en-4α-ol (3.6%) | [76] |
Roots | Dillapiole (46.6%), Myristicin (29.7%), Limonene (3.6%) | |||
major | Flowers | Italy | α-Pinene (24.4%), Sabinene (13.3%), Geranyl acetate (13%), epi-α-Cadinol (8.5%), Myrcene (4.8%), β-Oplopenone (4.3%) | [62] |
Fruits | Geranyl acetate (34.2%), α-Pinene (12.9%), Geraniol (6.9%), Myrcene (4.7%), epi-α-Bisabolol (4.5%), Sabinene (3.3%) | |||
halophilus | Flowering Umbels | Portugal | Sabinene (28.3–33.8%), α-Pinene (12.6–16%), Limonene (11–11.8%), (E)-methylisoeugenol (0.7–7.4%), Elemicin (5.9–6.2%), β-Bisabolene (0.4–5.3%), Terpinene-4-ol (4.1–4.8%), Myrcene (3.2–4.7%), β-Pinene (2.3–5.1%) | [73] |
Ripe Umbels | Elemicin (26–31%), Sabinene (27.6–29%), α-Pinene (10.1–12.2%), Limonene (5.5–6.5%), (E)-methylisoeugenol (0.5–6.9%) | |||
Fruits | Elemicin (15–31%), Sabinene (9–29%), α-Pinene (12.2–23%), Limonene (5.5–12%), (E)-methylisoeugenol (0.5–7.4%), Terpinen-4-ol (2–4.7%) | [70] | ||
hispanicus | Roots | Algeria | Apiole (80.3%), Myristicin (16.6%) | [77] |
Aerial parts | Myristicin (73.2%), Epiglobulol (5.1%), Germacrene D (3.1%) | |||
Stems | Myristicin (66.9%), α-Thujene (4.3%) | |||
Leaves | Myristicin (80.2%), Epiglobulol (3.1%) | |||
Flowers | Myristicin (83.8%), Germacrene D (6.4%) | |||
gummifer | Fruits | Spain | Geranyl acetate (51.74–76.95%), Sabinene (4.42–11.13%), Terpinen-4-ol (0.93–8.17%), Linalool (3.97–5.18%) [78] | [78] |
Portugal | Geranyl acetate (18–55%), α-Pinene (11–31%), Carotol (5–15%), Sabinene (2.1–10%), Limonene (5.8–9%), Germacrene D (2–5.5%), β-Pinene (3.8–5.2%), Myrcene (2.1–3.7%) | [73] | ||
Ripe umbels | Portugal | Geranyl acetate (37%), Limonene (5.8%), α-Pinene (30.9%), β-Pinene (3.8%) | [24] | |
hispidus | Aerial parts | Tunisia | (4R)-1-p-menthen-6,8-diol, 1-p-menthen-4,7-diol, (1R,2R,4R)-p-menthane-1,2,4-triol, β-sitosterol 3-O-glucoside (abundance not specified) [79] | [79] |
Extracts/Compounds | Detail | Concentration/Dose | References |
---|---|---|---|
Methanol/Acetone (1:1) Daucus carota oil extract (DCOE) | Cytotoxicty against U937 | IC50 = 1 μg/mL | [25] |
Cytotoxicty against KG-1 | IC50 = 1 μg/mL | ||
Cytotoxicty against HL60 | IC50 = 5.5 μg/mL | ||
Cytotoxicty against TF1-VSrc | IC50 = 7.3 μg/mL | ||
Cytotoxicty against Mono-Mac-6 | IC50 = 12.4 μg/mL | ||
Cytotoxicty against Mono-Mac-1 | IC50 = 13.2 μg/mL | ||
Cytotoxicty against TF1-VRaf | IC50 = 14.4 μg/mL | ||
Cytotoxicty against MV-4-11 | IC50 = 14.9 μg/mL | ||
Cytotoxicty against ML1 | IC50 = 19.6 μg/mL | ||
Cytotoxicty against TF1-HaRas | IC50 = 26 μg/mL | ||
Cytotoxicty against ML2 | IC50 = 26.2 μg/mL | ||
Cytotoxicity against human peripheral blood mononuclear cells (PBMCs) | IC50 > 100 μg/mL | ||
Cytotoxicty against HT-29 | IC50 = 34 μg/mL | [37] | |
Cytotoxicty against MDA-MB231 | IC50 = 27 μg/mL | ||
Cytotoxicty against MCF-7 | IC50 = 33 μg/mL | ||
Cytotoxicty against Caco-2 | IC50 = 30 μg/mL | ||
Pentane (100%) fraction (F1) Pentane: diethyl ether (50:50) fraction (F2) Diethyl ether (100%) fraction (F3) Chloroform: methanol (93:7) fraction (F4) | F1: Cytotoxicty against MDA-MB-231 | IC50 = 17 μg/mL | [89] |
Cytotoxicty against MCF-7 | IC50 = 22 μg/mL | ||
F2: Cytotoxicty against MDA-MB-231 | IC50 = 11 μg/mL | ||
Cytotoxicty against MCF-7 | IC50 = 32 μg/mL | ||
F3: Cytotoxicty against MDA-MB-231 | IC50 = 27 μg/mL | ||
Cytotoxicty against MCF-7 | IC50 = 48 μg/mL | ||
F4: Cytotoxicty against MDA-MB-231 | IC50 = 23 μg/mL | ||
Cytotoxicty against MCF-7 | IC50 = 43 μg/mL | ||
F1: Cytotoxicty against HaCaT-ras A5 | IC50 = 10.6 μg/mL | [91] | |
Cytotoxicty against HaCaT-ras II4 | IC50 = 10.2 μg/mL | ||
Cytotoxicty against HaCaT | IC50 = 29.8 μg/mL | ||
F2: Cytotoxicty against HaCaT-ras A5 | IC50 = 14.6 μg/mL | ||
Cytotoxicty against HaCaT-ras II4 | IC50 = 11.4 μg/mL | ||
Cytotoxicty against HaCaT | IC50 = 33.2 μg/mL | ||
F3: Cytotoxicty against HaCaT-ras A5 | IC50 = 19.1 μg/mL | ||
Cytotoxicty against HaCaT-ras II4 | IC50 = 17.8 μg/mL | ||
Cytotoxicty against HaCaT | IC50 = 47.3 μg/mL | ||
F4: Cytotoxicty against HaCaT-ras A5 | IC50 = 16.2 μg/mL | ||
Cytotoxicty against HaCaT-ras II4 | IC50 = 14.5 μg/mL | ||
Cytotoxicty against HaCaT | IC50 = 43.4 μg/mL | ||
Pentane (100%) fraction (F1) Pentane: diethyl ether (50:50) fraction (F2) | F1: Cytotoxicty against HT-29 | IC50 = 22 μg/mL | [90] |
Cytotoxicty against Caco-2 | IC50 = 18.5 μg/mL | ||
F2: Cytotoxicty against HT-29 | IC50 = 17.5 μg/mL | ||
Cytotoxicty against Caco-2 | IC50 = 19 μg/mL | ||
β-2-himachalen-6-ol (HC) | Cytotoxicty against B16F-10 | IC50 = 13 μg/mL | [64] |
Cytotoxicty against Caco2 | IC50 = 8 μg/mL | ||
Cytotoxicty against MB-MDA-231 | IC50 = 6 μg/mL | ||
Cytotoxicty against A549 | IC50 = 5 μg/mL | ||
Cytotoxicty against SF-268 | IC50 = 4 μg/mL | ||
Cytotoxicty against SW116 | IC50 = 18 and 14.5 μg/mL, 24 and 48 h respectively | [94] | |
Cytotoxicty against HaCaT-ras II-4 | IC50 = 7 μg/mL | [93] | |
Cytotoxicty against HaCaT-ras II-4 | IC50 = 8 μg/mL | [95] | |
Cytotoxicty against 4T1 | IC50 = 7 μg/mL | [96] |
Cancer Model | Extracts/Compounds | Mode of Treatment (Dose and Frequency of Administration) | Results | References |
---|---|---|---|---|
DMBA/TPA-induced skin carcinogenesis model in mice | Methanol/Acetone (1:1) Daucus carota oil extract (DCOE) | Gavage, 20 μL of 100% oil Intraperitoneal, 0.3 mL of 2% oil. Topical, 0.2 mL of 100% oil; 50% oil; 5% oil. | Minimal effects seen with gavage administration. Significant decrease in tumor volume, delay in tumor appearance, and inhibition of tumor incidence and yield with intraperitoneal and topical administration. | [65] |
Chemoprevention: Pre-treatment with DCOE (25 mg/kg) a week prior to cancer induction Treatment twice weekly for 14 weeks. Chemotherapeutic: DCOE (25 mg/kg body weight; IP; thrice a week for 8 weeks). | Reduced tumor incidence. Protection against DMBA-induced toxicity. Significant inhibition of tumor volume. No decrease in body weight as compared to cisplatin. | [80] | ||
Pentane: diethyl ether (50:50) fraction (F2) | Intraperitoneal treatment (10–200 mg/kg) | Significant inhibition of papilloma incidence, yield, and volume at weeks 15, 18, and 21. | [91] | |
β-2-himachalen-6-ol (HC) | Topical (5%). Intraperitoneal HC (25 mg/kg). | Significant decrease in papilloma yield and volume at weeks 12, 16, and 18, and increase in survival rates. No decrease in weight with HC (safer). | [93] | |
Topical (5%). Intraperitoneal HC (10, 25, and 50 mg/kg). | Significant decrease in papilloma yield, incidence, and volume, and twofold to threefold increase in survival rates. | [95] |
DC Subspecies | Plant Organ, Location | Treatment | Detail | Concentration/MICs | References |
---|---|---|---|---|---|
carota | Herbs and umbels, Poland | Essential oil (hydrodistillation) | Inhibitory effects against Bacillus subtilis and Staphylococcus aureus. | MIC = 3–5 μL/mL | [8] |
Inhibitory effects against Escherichia coli and Pseudomonas aeruginosa. | MIC = ≥8 μL/mL | ||||
Ripe and unripe fruits, flowers, roots, leaves. and stems; Serbia | All oils; strongest inhibitory effects against Bacillus cereus: | MIC = 5.0–50.0 μL/mL | [69] | ||
Ripe fruit oil; | MIC = 5.0–25.0 μL/mL | ||||
Unripe fruit oil; | MIC = 10.0–25.0 μL/mL | ||||
Flower oil; | MIC = 50.0–400.0 μL/mL | ||||
Root oil; | MIC = 5.0–150.0 μL/mL | ||||
Stem oil; | MIC = 25.0–250.0 μL/mL | ||||
Leaf oil. | MIC = 25.0–350.0 μL/mL | ||||
Ripe umbels, Portugal | Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. | MIC = 0.32–0.64 μL/mL | [66] | ||
Escherichia coli and Salmonella typhimurium. | MIC > 10 μL/mL | ||||
Leaves, flower, petals, and fruits; Uzbekistan | Bacillus subtilis and Staphylococcus aureus. | MIC = 6–7 μL/mL | [71] | ||
The aerial parts, France | Essential oil (vapor distillation) | Inhibitory effects against C. jejuni, C. coli, and C. lari. | MIC = 250 μg/mL | [5] | |
Inhibitory effects against C. jejuni F38O11, LV7, and LV9 clinical isolates vs. human isolate LV11. | MIC = 250 µg/mL vs. MIC = 500 µg/mL | ||||
Inhibitory effects against C. jejuni LM7A. | MIC = 250 µg/mL | ||||
Inhibitory effects against C. jejuni Lme27A. | MIC = 125 µg/mL | ||||
Umbels, Tunisia | Essential oil (hydrodistillation) and supercritical CO2 extracts | Inhibitory effects against Escherichia coli ATCC 35218 and Staphylococcus aureus ATCC 43300. | MIC > 2.5% (v/v) | [9] | |
Umbels, Lebanon | Daucus carota (DC) aqueous and methanolic extracts | Inhibitory effects against Staphylococcus aureus meti S and meti R: | [97] | ||
Aqueous extract; | MIC = 20 mg/mL | ||||
Methanolic extract. | MIC = 10 mg/mL | ||||
maritimus | Flowers and roots, Tunisia | Essential oil (hydrodistillation) | Inhibitory effects against Gram-positive and Gram-negative bacteria. | MIC = 1.25–5 mg/mL | [76] |
Flower oil: more effective against E. coli (ESLβ). | MIC = 1.25 mg/mL | ||||
Root oil: more effective against S. aureus, S. pneumonia, Shigella spp., and E. faecalis. | MIC = 1.25 mg/mL | ||||
hispanicus | Roots and aerial parts, Algeria | Aerial part oil: | [77] | ||
Inhibitory effects against B. subtilis; | MIC = 1.2 mg/mL | ||||
Inhibitory effects against S. aureus. Root oil: | MIC = 4.8 mg/mL | ||||
Inhibitory effects against B. subtilis; | MIC = 1.5 mg/mL | ||||
Inhibitory effects against S. aureus. | MIC = 4.2 mg/mL | ||||
maximus | Green seeds, Italy | Essential oil (steam distillation) | Inhibitory effects against Gram-positive strains (Staphylococcus and six out of twenty-five L. monocytogenes strains) and Grams-negative strains (Acinetobacter and Stenotrophomonas maltophilia ICE272). | MIC = 1.25–2.5 μL/mL | [75] |
DC Subspecies | Plant Organ, Location | Treatment | Detail | Concentration/MICs | References |
---|---|---|---|---|---|
carota | Ripe and unripe fruits, flowers, roots, leaves, and stems; Serbia | Essential oil (hydrodistillation) | Inhibitory effects against Fulvia fulvum; | MIC = 2.0–100.0 μL/mL | [69] |
Inhibitory effects against Trichoderma viride; | MIC = 25.0–100.0 μL/mL | ||||
Inhibitory effects against Aspergillus ochraceus. | MIC = 10.0–150.0 μL/mL | ||||
Herbs and umbels, Poland | Inhibitory effects against Candida albicans; | MIC = 5 μL/mL | [8] | ||
Inhibitory effects against Penicillium expansum. | MIC = 8 μL/mL | ||||
Umbels, Tunisia | Inhibitory effects against clinical strains of Candida albicans and C. tropicalis 1011 RM. | MIC > 2.5% (v/v) | [9] | ||
Ripe umbels, Portugal | Inhibitory effects against Cryptococcus neoformans; | MIC = 0.16 μL/mL | [66] | ||
Inhibitory effects against dermatophytes; | MIC = 0.32–0.64 μL/mL | ||||
Inhibitory effects against C. guilliermondii. | MIC = 0.32 μL/mL | ||||
Fruits, Uzbekistan | Inhibitory effects against Candida albicans. | MIC = 12 μL/mL | [71] | ||
Blooming and flowering umbels, Sardinia Islands and Portugal | Essential oil (hydrodistillation) and supercritical CO2 extracts | Portugal: | [6] | ||
Inhibitory effects against Cryptococcus neoformans; | MIC = 0.32–0.64 μL/mL | ||||
Inhibitory effects against dermatophytes. | MIC = 1.25–2.5 μL/mL | ||||
Italy: | |||||
Inhibitory effects against Cryptococcus neoformans; | MIC = 0.32 μL/mL | ||||
Inhibitory effects against dermatophytes. | MIC = 0.16–0.32 μL/mL | ||||
gummifer | Aerial parts, Portugal | Essential oil (hydrodistillation) | Inhibitory effects against dermatophyte strains and C. neoformans; | MIC = 0.32–0.64 μL/mL | [24] |
Inhibitory effects against C. guillermondii. | MIC = 1.25 μL/mL | ||||
halophilus | Umbels, Portugal | Inhibitory effects against dermatophytes. | MIC = 0.16–0.64 μL/mL | [73] | |
hispanicus | Root and aerial parts, Algeria | Inhibitory effects against Candida albicans | [77] | ||
Aerial parts: | MIC = 0.078 ± 0.02 mg/mL | ||||
Roots: | MIC = 0.125 ± 0.04 mg/mL | ||||
Inhibitory effects against Aspergillus flavus. | |||||
Root vs. aerial parts oil inhibition: | 100% vs. 42.22% | ||||
maximus | Aerial parts, Portugal | Inhibitory effects against dermatophytes and Cryptococus neoformans; | MIC = 0.16–0.32 μL/mL | [74] | |
Inhibitory effects against Aspergillus; | MIC = 0.32–0.64 μL/mL | ||||
Inhibitory effects against Candida. | MIC = 0.64–1.25 μL/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, J.; Shebaby, W.N.; Daher, J.; Boulos, J.C.; Taleb, R.; Daher, C.F.; Mroueh, M. The Wild Carrot (Daucus carota): A Phytochemical and Pharmacological Review. Plants 2024, 13, 93. https://doi.org/10.3390/plants13010093
Ismail J, Shebaby WN, Daher J, Boulos JC, Taleb R, Daher CF, Mroueh M. The Wild Carrot (Daucus carota): A Phytochemical and Pharmacological Review. Plants. 2024; 13(1):93. https://doi.org/10.3390/plants13010093
Chicago/Turabian StyleIsmail, Jana, Wassim N. Shebaby, Joey Daher, Joelle C. Boulos, Robin Taleb, Costantine F. Daher, and Mohamad Mroueh. 2024. "The Wild Carrot (Daucus carota): A Phytochemical and Pharmacological Review" Plants 13, no. 1: 93. https://doi.org/10.3390/plants13010093
APA StyleIsmail, J., Shebaby, W. N., Daher, J., Boulos, J. C., Taleb, R., Daher, C. F., & Mroueh, M. (2024). The Wild Carrot (Daucus carota): A Phytochemical and Pharmacological Review. Plants, 13(1), 93. https://doi.org/10.3390/plants13010093