Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study
Abstract
:1. Introduction
2. Results
2.1. Tissue Culture Performance
2.2. Specialized Metabolites of Tissue Cultures and Organs of Tilia spp.
2.3. Chemical Differences between Tissue Types and Tilia Species
2.4. Coumarins
2.5. Catechin Derivatives
2.6. Flavonoid Glycosides
2.7. Flavonoid Aglyca
3. Discussion
3.1. Coumarins from Organs and Tissue Cultures of Tilia spp.
3.2. Catechin Derivatives from Organs and Tissue Cultures of Tilia spp.
3.3. Flavonoid Glycosides from Organs and Tissue Cultures of Tilia spp.
3.4. Flavonoid Aglyca from Organs and Tissue Cultures of Tilia spp.
3.5. Unique Patterns in Untargeted Metabolomics Data
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.2.1. Tissue Samples from Trees
4.2.2. Tissue Culture Initiation and General Protocols
4.3. Phytochemical Analysis
4.3.1. Sample Preparation
4.3.2. LC-ESI-MS
4.3.3. Method Performance Assessment
4.3.4. Metabolite Annotation
4.3.5. Quality Controlled, Untargeted Metabolomics
4.4. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant Tissue Culture as a Perpetual Source for Production of Industrially Important Bioactive Compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, B.; Ishaku, G.; Andrew, F.; Afolabi, A. Callus Culture for the Production of Therapeutic Compounds. Am. J. Plant Biol. 2019, 4, 76–84. [Google Scholar] [CrossRef]
- Abbas, G.M.; Abdel Bar, F.M.; Sallam, A.; Elgamal, R.M.; Lahloub, M.-F.I.; Gohar, A.A. In Vitro Callus Culture of Cynara Cardunculus Subsp. Scolymus: A Biosystem for Production of Caffeoylquinic Acid Derivatives, Sesquiterpene Lactones, and Flavonoids. Plant Biosyst. 2022, 156, 865–874. [Google Scholar] [CrossRef]
- Anand, P.; Singh, K.P.; Prasad, K.V.; Kaur, C.; Verma, A.K. Betalain Estimation and Callus Induction in Different Explants of Bougainvillea spp. Indian J. Agric. Sci. 2017, 87, 191–196. [Google Scholar] [CrossRef]
- Nandhakumar, N.; Kumar, K.; Sudhakar, D.; Soorianathasundaram, K. Plant Regeneration, Developmental Pattern and Genetic Fidelity of Somatic Embryogenesis Derived Musa spp. J. Genet. Eng. Biotechnol. 2018, 16, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.-H.; Zhang, R.; Wang, N.; Yang, L.; Chen, X.-S. Transcriptome Profiling Reveals Auxin Suppressed Anthocyanin Biosynthesis in Red-Fleshed Apple Callus (Malus sieversii f. Niedzwetzkyana). Plant Cell Tissue Organ Cult. 2015, 123, 389–404. [Google Scholar] [CrossRef]
- Xu, X.; Legay, S.; Berni, R.; Hausman, J.-F.; Guerriero, G. Transcriptomic Changes in Internode Explants of Stinging Nettle during Callogenesis. Int. J. Mol. Sci. 2021, 22, 12319. [Google Scholar] [CrossRef] [PubMed]
- Bong, F.J.; Yeou Chear, N.J.; Ramanathan, S.; Mohana-Kumaran, N.; Subramaniam, S.; Chew, B.L. The Development of Callus and Cell Suspension Cultures of Sabah Snake Grass (Clinacanthus nutans) for the Production of Flavonoids and Phenolics. Biocatal. Agric. Biotechnol. 2021, 33, 101977. [Google Scholar] [CrossRef]
- Yaman, C.; Önlü, Ş.; Ahmed, H.A.A.; Erenler, R. Comparison of phytochemicals and antioxidant capacity of Hypericum perforatum; wild plant parts and in vitro samples. J. Anim. Plant Sci.-JAPS 2021, 32, 596–603. [Google Scholar] [CrossRef]
- Arias-Rodríguez, L.I.; Rodríguez-Mendiola, M.A.; Arias-Castro, C.; Gutiérrez Miceli, F.A.; Reséndez Pérez, D.; Luján Hidalgo, M.C.; Villalobos Maldonado, J.J.; Mancilla Margalli, N.A. Comparison of Apigenin, Quercetin and Kaempferol Accumulation and Total Flavonoid Content in Leaves, Embryogenic Cultures and Cell Suspension Cultures of Parsley (Petroselinum crispum). Phyton-Int. J. Exp. Bot. 2023, 92, 2807–2823. [Google Scholar] [CrossRef]
- Adil, M.; Haider Abbasi, B.; ul Haq, I. Red Light Controlled Callus Morphogenetic Patterns and Secondary Metabolites Production in Withania somnifera L. Biotechnol. Rep. 2019, 24, e00380. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, R.; Xavier, L.S.E.; Udayakumaran, G.; Kumar, D.S.; Venkatesh, R.; Nagella, P. Biotic Elicitors: A Boon for the in-Vitro Production of Plant Secondary Metabolites. Plant Cell Tissue Organ Cult. 2022, 149, 7–24. [Google Scholar] [CrossRef]
- Gonda, S.; Kiss-Szikszai, A.; Szűcs, Z.; Máthé, C.; Vasas, G. Effects of N Source Concentration and NH4+/NO3− Ratio on Phenylethanoid Glycoside Pattern in Tissue Cultures of Plantago lanceolata L.: A Metabolomics Driven Full-Factorial Experiment with LC–ESI–MS3. Phytochemistry 2014, 106, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Sõukand, R.; Quave, C.L.; Pieroni, A.; Pardo-de-Santayana, M.; Tardío, J.; Kalle, R.; Łuczaj, Ł.; Svanberg, I.; Kolosova, V.; Aceituno-Mata, L.; et al. Plants Used for Making Recreational Tea in Europe: A Review Based on Specific Research Sites. J. Ethnobiol. Ethnomed. 2013, 9, 58. [Google Scholar] [CrossRef]
- Tsioutsiou, E.E.; Amountzias, V.; Vontzalidou, A.; Dina, E.; Stevanović, Z.D.; Cheilari, A.; Aligiannis, N. Medicinal Plants Used Traditionally for Skin Related Problems in the South Balkan and East Mediterranean Region—A Review. Front. Pharmacol. 2022, 13, 936047. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.N.; Tsitsilin, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Heinrich, M. Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Front. Pharmacol. 2017, 8, 306255. [Google Scholar] [CrossRef] [PubMed]
- López-Rubalcava, C.; Estrada-Camarena, E. Mexican Medicinal Plants with Anxiolytic or Antidepressant Activity: Focus on Preclinical Research. J. Ethnopharmacol. 2016, 186, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D.; Newall, C.A. Herbal Medicines; Pharmaceutical Press: London, UK, 2007; Volume 459. [Google Scholar]
- Dénes, A.; Papp, N.; Babai, D.; Czúcz, B.; Molnár, Z. Wild Plants Used for Food by Hungarian Ethnic Groups Living in the Carpathian Basin. Acta Soc. Bot. Pol. 2012, 81, 381–396. [Google Scholar] [CrossRef]
- Karioti, A.; Chiarabini, L.; Alachkar, A.; Fawaz Chehna, M.; Vincieri, F.F.; Bilia, A.R. HPLC-DAD and HPLC-ESI-MS Analyses of Tiliae Flos and Its Preparations. J. Pharm. Biomed. Anal. 2014, 100, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Szűcs, Z.; Cziáky, Z.; Kiss-Szikszai, A.; Sinka, L.; Vasas, G.; Gonda, S. Comparative Metabolomics of Tilia platyphyllos Scop. Bracts during Phenological Development. Phytochemistry 2019, 167, 112084. [Google Scholar] [CrossRef] [PubMed]
- Chalupa, V. Somatic Embryogenesis in Linden (Tilia spp.). In Somatic Embryogenesis in Woody Plants: Volume 5; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Forestry Sciences; Springer: Dordrecht, The Netherlands, 1999; pp. 31–43. ISBN 978-94-011-4774-3. [Google Scholar]
- Flores-Sánchez, K.; Cruz-Sosa, F.; Zamilpa-Alvarez, A.; Nicasio-Torres, P. Active Compounds and Anti-Inflammatory Activity of the Methanolic Extracts of the Leaves and Callus from Tilia americana Var. Mexicana Propagated Plants. Plant Cell Tissue Organ Cult. 2019, 137, 55–64. [Google Scholar] [CrossRef]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, C.J.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass Spectrometry-Based Metabolomics: A Guide for Annotation, Quantification and Best Reporting Practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Parejo, I.; Jauregui, O.; Sánchez-Rabaneda, F.; Viladomat, F.; Bastida, J.; Codina, C. Separation and Characterization of Phenolic Compounds in Fennel (Foeniculum vulgare) Using Liquid Chromatography-Negative Electrospray Ionization Tandem Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 3679–3687. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, Y.-K.; Xiao, X.-R.; Zhao, Q.; Huang, J.-F.; Zhu, W.-F.; Li, F. Metabolic Profiling of Coumarins by the Combination of UPLC-MS-Based Metabolomics and Multiple Mass Defect Filter. Xenobiotica 2020, 50, 1076–1089. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, Y.; Sun, S.; Chen, X.; Shi, X.; Fang, H.; Zhang, Y.; Fang, Z. Fragmentation Pathways of Protonated Coumarin by ESI-QE-Orbitrap-MS/MS Coupled with DFT Calculations. J. Mass Spectrom. 2020, 55, e4496. [Google Scholar] [CrossRef]
- Vukics, V.; Guttman, A. Structural Characterization of Flavonoid Glycosides by Multi-Stage Mass Spectrometry. Mass Spectrom. Rev. 2010, 29, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Chen, M.; Zhou, F.; Cai, D.; Bai, H.; Wang, P.; Lei, H.; Ma, Q. Separation and Analysis of Flavonoid Chemical Constituents in Flowers of Juglans regia L. by Ultra-High-Performance Liquid Chromatography-Hybrid Quadrupole Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 164, 734–741. [Google Scholar] [CrossRef]
- Wan, L.; Gong, G.; Liang, H.; Huang, G. In Situ Analysis of Unsaturated Fatty Acids in Human Serum by Negative-Ion Paper Spray Mass Spectrometry. Anal. Chim. Acta 2019, 1075, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, W.J. Tandem Mass Spectrometry in the Study of Fatty Acids, Bile Acids, and Steroids. Mass Spectrom. Rev. 2003, 22, 81–152. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Moon, E.; Cha, J.M.; Lee, S.; Yu, J.S.; Kim, C.S.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Antineuroinflammatory and Antiproliferative Activities of Constituents from Tilia amurensis. Chem. Pharm. Bull. 2015, 63, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Nicasio-Torres, P.; Zamilpa, A.; González-Cortazar, M.; Herrera-Ruiz, M. Production of Anti-Inflammatory Compounds in Calli and Cells in Suspension of Tilia americana Var. Mexicana. Acta Physiol. Plant. 2022, 44, 64. [Google Scholar] [CrossRef]
- Arcos, M.L.B.; Cremaschi, G.; Werner, S.; Coussio, J.; Ferraro, G.; Anesini, C. Tilia Cordata Mill. Extracts and Scopoletin (Isolated Compound): Differential Cell Growth Effects on Lymphocytes. Phytother. Res. 2006, 20, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Seo, C.-S.; Zheng, M.-S.; Lee, C.-S.; Son, J.-K. Topoisomerase I and II Inhibitory Constituents from the Bark of Tilia amurensis. Arch. Pharm. Res. 2008, 31, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Torres, D.; Cruz-Sosa, F.; González-Cortazar, M.; Martínez-Trujillo, A.; Nicasio-Torres, P. Enhancing the Production of Scopoletin and Quercetin 3-O-β-d-Glucoside from Cell Suspension Cultures of Tilia americana Var. Mexicana by Modulating the Copper and Nitrate Concentrations. Plant Cell Tissue Organ Cult. 2019, 139, 305–316. [Google Scholar] [CrossRef]
- Rao, K.; Chodisetti, B.; Gandi, S.; Giri, A.; Kishor, P.B.K. Regeneration-Based Quantification of Coumarins (Scopoletin and Scoparone) in Abutilon indicum In Vitro Cultures. Appl. Biochem. Biotechnol. 2016, 180, 766–779. [Google Scholar] [CrossRef]
- Del Pilar Nicasio-Torres, M.; Pérez-Hernández, J.; González-Cortazar, M.; Meckes-Fischer, M.; Tortoriello, J.; Cruz-Sosa, F. Production of Potential Anti-Inflammatory Compounds in Cell Suspension Cultures of Sphaeralcea angustifolia (Cav.) G. Don. Acta Physiol. Plant. 2016, 38, 209. [Google Scholar] [CrossRef]
- Biswal, B.; Jena, B.; Giri, A.K.; Acharya, L. Monochromatic Light Elicited Biomass Accumulation, Antioxidant Activity, and Secondary Metabolite Production in Callus Culture of Operculina turpethum (L.). Plant Cell Tissue Organ Cult. 2022, 149, 123–134. [Google Scholar] [CrossRef]
- Usman, H.; Ullah, M.A.; Jan, H.; Siddiquah, A.; Drouet, S.; Anjum, S.; Giglioli-Guviarc’h, N.; Hano, C.; Abbasi, B.H. Interactive Effects of Wide-Spectrum Monochromatic Lights on Phytochemical Production, Antioxidant and Biological Activities of Solanum xanthocarpum Callus Cultures. Molecules 2020, 25, 2201. [Google Scholar] [CrossRef] [PubMed]
- Usman, H.; Jan, H.; Zaman, G.; Khanum, M.; Drouet, S.; Garros, L.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H. Comparative Analysis of Various Plant-Growth-Regulator Treatments on Biomass Accumulation, Bioactive Phytochemical Production, and Biological Activity of Solanum virginianum L. Callus Culture Extracts. Cosmetics 2022, 9, 71. [Google Scholar] [CrossRef]
- Khurshid, R.; Ullah, M.A.; Tungmunnithum, D.; Drouet, S.; Shah, M.; Zaeem, A.; Hameed, S.; Hano, C.; Abbasi, B.H. Lights Triggered Differential Accumulation of Antioxidant and Antidiabetic Secondary Metabolites in Callus Culture of Eclipta alba L. PLoS ONE 2020, 15, e0233963. [Google Scholar] [CrossRef] [PubMed]
- Juneja, K.; Beuerle, T.; Sircar, D. Enhanced Accumulation of Biologically Active Coumarin and Furanocoumarins in Callus Culture and Field-Grown Plants of Ruta chalepensis through LED Light-Treatment. Photochem. Photobiol. 2022, 98, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Naik, P.M. Influence of 2iP and 2,4-D Concentrations on Accumulation of Biomass, Phenolics, Flavonoids and Radical Scavenging Activity in Date Palm (Phoenix dactylifera L.) Cell Suspension Culture. Horticulturae 2022, 8, 683. [Google Scholar] [CrossRef]
- Bavi, K.; Khavari-Nejad, R.A.; Najafi, F.; Ghanati, F. Phenolics and Terpenoids Change in Response to Yeast Extract and Chitosan Elicitation in Zataria multiflora Cell Suspension Culture. 3 Biotech 2022, 12, 163. [Google Scholar] [CrossRef] [PubMed]
- Krasteva, G. Effect of Basal Medium on Growth and Polyphenols Accumulation by Gardenia Jasminoides Ellis Cell Suspension. BIO Web Conf. 2022, 45, 02006. [Google Scholar] [CrossRef]
- Kim, J.-H.; Han, J.-E.; Murthy, H.N.; Kim, J.-Y.; Kim, M.-J.; Jeong, T.-K.; Park, S.-Y. Production of Secondary Metabolites from Cell Cultures of Sageretia thea (Osbeck) M.C. Johnst. Using Balloon-Type Bubble Bioreactors. Plants 2023, 12, 1390. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Nasibi, F.; Kalantari, K.M.; Benakashani, F. Callogenesis Optimization and Cell Suspension Culture Establishment of Dracocephalum polychaetum Bornm. and Dracocephalum kotschyi Boiss.: An in vitro Approach for Secondary Metabolite Production. S. Afr. J. Bot. 2020, 132, 79–86. [Google Scholar] [CrossRef]
- Samadi, S.; Saharkhiz, M.J.; Azizi, M.; Samiei, L.; Ghorbanpour, M. Exploring Potential of Multi-Walled Carbon Nanotubes to Establish Efficient Callogenesis, Elicitation of Phenolic Compounds and Antioxidative Activities in Thyme Plants (Thymus daenensis): An in Vitro Assay. S. Afr. J. Bot. 2023, 157, 602–613. [Google Scholar] [CrossRef]
- Azeez, H.; Ibrahim, K.; Pop, R.; Pamfil, D.; Hârţa, M.; Bobiș, O. Changes Induced by Gamma Ray Irradiation on Biomass Production and Secondary Metabolites Accumulation in Hypericum triquetrifolium Turra Callus Cultures. Ind. Crops Prod. 2017, 108, 183–189. [Google Scholar] [CrossRef]
- Alagarsamy, K.; Shamala, L.F.; Wei, S. Influence of Media Supplements on Inhibition of Oxidative Browning and Bacterial Endophytes of Camellia sinensis Var. Sinensis. 3 Biotech 2018, 8, 356. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Hernández, E.; González-Trujano, M.E.; Martínez, A.L.; Moreno, J.; Kite, G.; Terrazas, T.; Soto-Hernández, M. HPLC/MS Analysis and Anxiolytic-like Effect of Quercetin and Kaempferol Flavonoids from Tilia americana Var. Mexicana. J. Ethnopharmacol. 2010, 127, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortega, G.; Guevara-Fefer, P.; Chávez, M.; Herrera, J.; Martínez, A.; Martínez, A.L.; González-Trujano, M.E. Sedative and Anxiolytic Efficacy of Tilia americana Var. Mexicana Inflorescences Used Traditionally by Communities of State of Michoacan, Mexico. J. Ethnopharmacol. 2008, 116, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Piao, X.-C.; Zhang, W.-B.; Jiang, J.; Jin, Y.-H.; Park, P.-J.; Kim, S.-E.; Lian, M.-L. Cell Suspension Culture of Orostachys cartilaginous in Bioreactor Systems for Bioactive Compound Production and Evaluation of Their Antioxidant Properties. Acta Physiol. Plant. 2017, 39, 70. [Google Scholar] [CrossRef]
- Gehlot, A.; Chaudhary, N.; Devi, J.; Joshi, R.; Kumar, D.; Bhushan, S. Induction and Submerged Cultivation of Valeriana jatamansi Adventitious Root Cultures for Production of Valerenic Acids and Its Derivatives. Plant Cell Tissue Organ Cult. 2022, 148, 347–361. [Google Scholar] [CrossRef]
- Chung, I.-M.; Rekha, K.; Rajakumar, G.; Thiruvengadam, M. Elicitation of Silver Nanoparticles Enhanced the Secondary Metabolites and Pharmacological Activities in Cell Suspension Cultures of Bitter Gourd. 3 Biotech 2018, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Guo, H.; Zhang, L.; Tang, Z.; Yu, X.; Wu, J.; Zeng, F. Metabolome and Transcriptome Association Analysis Reveals Dynamic Regulation of Purine Metabolism and Flavonoid Synthesis in Transdifferentiation during Somatic Embryogenesis in Cotton. Int. J. Mol. Sci. 2019, 20, 2070. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Ruiz, M.; Román-Ramos, R.; Zamilpa, A.; Tortoriello, J.; Jiménez-Ferrer, J.E. Flavonoids from Tilia americana with Anxiolytic Activity in Plus-Maze Test. J. Ethnopharmacol. 2008, 118, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Fahim, J.R.; Hegazi, G.A.E.-M.; Abo El-Fadl, R.E.-S.; Abd Alhady, M.R.A.A.; Desoukey, S.Y.; Ramadan, M.A.; Kamel, M.S. Production of Rhoifolin and Tiliroside from Callus Cultures of Chorisia chodatii and Chorisia speciosa. Phytochem. Lett. 2015, 13, 218–227. [Google Scholar] [CrossRef]
- Pinheiro, L.Z.; Ramos, C.C.; Oliveira, D.B.D.; Nunes, C.D.R.; Bernardes, N.R.; Glória, L.L.; Lemos, C.D.O.; Santa-Catarina, C.; Pereira, S.M.D.F. In Vitro Micropropagation and Tiliroside Production in Paratecoma peroba (Record) Kuhlm, an Endemic and Endangered Brazilian Tree. Nat. Prod. Res. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.A.; Tungmunnithum, D.; Garros, L.; Hano, C.; Abbasi, B.H. Monochromatic Lights-Induced Trends in Antioxidant and Antidiabetic Polyphenol Accumulation in in Vitro Callus Cultures of Lepidium sativum L. J. Photochem. Photobiol. B 2019, 196, 111505. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Zahir, A.; Nadeem, M.; Zia, M.; Hano, C.; Abbasi, B.H. Thidiazuron-Induced Efficient Biosynthesis of Phenolic Compounds in Callus Culture of Ipomoea turbinata Lagasca and Segura. Vitr. Cell. Dev. Biol. Plant 2019, 55, 710–719. [Google Scholar] [CrossRef]
- Arias, J.P.; Mendoza, D.; Arias, M. Agitation Effect on Growth and Metabolic Behavior of Plant Cell Suspension Cultures of Thevetia Peruviana at Bench Scale Reactor. Plant Cell Tissue Organ Cult. 2021, 145, 307–319. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Chen, X.; Dong, L.; Zheng, Y.; Wu, M.; Ding, Q.; Xu, S.; Ding, C.; Liu, W. Establishment of Callus Induction System, Histological Evaluation and Taxifolin Production of Larch. Plant Cell Tissue Organ Cult. 2021, 147, 467–475. [Google Scholar] [CrossRef]
- Monti, M.C.; Frei, P.; Weber, S.; Scheurer, E.; Mercer-Chalmers-Bender, K. Beyond Δ9-Tetrahydrocannabinol and Cannabidiol: Chemical Differentiation of Cannabis Varieties Applying Targeted and Untargeted Analysis. Anal. Bioanal. Chem. 2022, 414, 3847–3862. [Google Scholar] [CrossRef] [PubMed]
- Kharbach, M.; Marmouzi, I.; El Jemli, M.; Bouklouze, A.; Vander Heyden, Y. Recent Advances in Untargeted and Targeted Approaches Applied in Herbal-Extracts and Essential-Oils Fingerprinting—A Review. J. Pharm. Biomed. Anal. 2020, 177, 112849. [Google Scholar] [CrossRef] [PubMed]
- Afzan, A.; Kasim, N.; Ismail, N.H.; Azmi, N.; Ali, A.M.; Mat, N.; Wolfender, J.-L. Differentiation of Ficus deltoidea Varieties and Chemical Marker Determination by UHPLC-TOFMS Metabolomics for Establishing Quality Control Criteria of This Popular Malaysian Medicinal Herb. Metabolomics 2019, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.; Blatt-Janmaat, K.L.; Tkach, N.; van Dam, N.M.; Neumann, S. Untargeted Metabolomics for Integrative Taxonomy: Metabolomics, DNA Marker-Based Sequencing, and Phenotype Bioimaging. Plants 2023, 12, 881. [Google Scholar] [CrossRef] [PubMed]
- Mannochio-Russo, H.; de Almeida, R.F.; Nunes, W.D.G.; Bueno, P.C.P.; Caraballo-Rodríguez, A.M.; Bauermeister, A.; Dorrestein, P.C.; Bolzani, V.S. Untargeted Metabolomics Sheds Light on the Diversity of Major Classes of Secondary Metabolites in the Malpighiaceae Botanical Family. Front. Plant Sci. 2022, 13, 854842. [Google Scholar] [CrossRef] [PubMed]
- Pigott, D. Lime-Trees and Basswoods: A Biological Monograph of the Genus Tilia; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-139-56027-6. [Google Scholar]
- Lloyd, G.; McCown, B. Commercially-Feasible Micropropagation of Mountain Laurel, Kalmia latifolia, by Use of Shoot-Tip Culture. Comb. Proc. Int. Plant Propagators Soc. 1980, 30, 421–427. [Google Scholar]
- Kirwan, J.A.; Gika, H.; Beger, R.D.; Bearden, D.; Dunn, W.B.; Goodacre, R.; Theodoridis, G.; Witting, M.; Yu, L.-R.; Wilson, I.D.; et al. Quality Assurance and Quality Control Reporting in Untargeted Metabolic Phenotyping: mQACC Recommendations for Analytical Quality Management. Metabolomics 2022, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Rainer, J.; Vicini, A.; Salzer, L.; Stanstrup, J.; Badia, J.M.; Neumann, S.; Stravs, M.A.; Verri Hernandes, V.; Gatto, L.; Gibb, S.; et al. A Modular and Expandable Ecosystem for Metabolomics Data Annotation in R. Metabolites 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Gonda, S.; Szűcs, Z.; Plaszkó, T.; Cziáky, Z.; Kiss-Szikszai, A.; Sinka, D.; Bácskay, I.; Vasas, G. Quality-Controlled LC-ESI-MS Food Metabolomics of Fenugreek (Trigonella foenum-Graecum) Sprouts: Insights into Changes in Primary and Specialized Metabolites. Food Res. Int. 2023, 164, 112347. [Google Scholar] [CrossRef] [PubMed]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Nothias, L.-F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C.; et al. Systematic Classification of Unknown Metabolites Using High-Resolution Fragmentation Mass Spectra. Nat. Biotechnol. 2021, 39, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.-F.; Reher, R.; Kang, K.B.; van der Hooft, J.J.J.; Dorrestein, P.C.; Gerwick, W.H.; Cottrell, G.W. NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Gowda, H.; Ivanisevic, J.; Johnson, C.H.; Kurczy, M.E.; Benton, H.P.; Rinehart, D.; Nguyen, T.; Ray, J.; Kuehl, J.; Arevalo, B.; et al. Interactive XCMS Online: Simplifying Advanced Metabolomic Data Processing and Subsequent Statistical Analyses. Anal. Chem. 2014, 86, 6931–6939. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
Name | m/z (pos.) | m/z (neg.) | Rt (min) | Formula (M) | m/z diff. ppm (pos.) | m/z diff. ppm (neg.) | Major MS/MS Fragments | Id. Level | Ref. |
---|---|---|---|---|---|---|---|---|---|
Coumarins and derivatives | |||||||||
Esculin | 339.0725 | 7.45 | C15H16O9 | +2.6 | 177.0184; 133.0284 | A | |||
Methylesculetin derivative | 399.0936 | 7.67 | NA | NA | 191.0345 176.0106 | B(iii) | [25,26] | ||
Scopoletin-O-hexoside | 353.0877 | 7.66 | C16H18O9 | +1.2 | 193.0499; 163.0391 | B(i) | [27] | ||
Fraxin | 369.0830 | 7.77 | C16H18O10 | +2.2 | 207.0294; 192.0058; 163.0029 | B(i) | [25,26] | ||
Scopoletin | 193.0493 | 8.38 | C10H8O4 | −4.0 | 161.0594; 133.0647; 105.0701 | A | |||
Catechins and derivatives | |||||||||
Gallocatechol | 305.0670 | 7.52 | C15H14O7 | +2.9 | 261.0760; 219.0650; 179.0340; 167.0339; 139.0387; 125.02303 | B(ii) | [20,28] | ||
Catechin | 289.0721 | 7.68 | C15H14O6 | +3.1 | 271.0621; 245.0813; 221.0811; 179.0338; 125.0231 | A | |||
Catechin dimer | 577.135 | 7.78 | C30H26O12 | +0.7 | 407.0766; 289.0716; 245.00814; 161.0230; 125.0229 | B(i) | [28,29] | ||
Catechin trimer | 865.1990 | 7.92 | C45H38O18 | +1.2 | 407.0766; 289.0716; 245.0448; 125.0228 | B(i) | [20,28] | ||
Flavonoid glycosides | |||||||||
Isoquercitrin | 463.0887 | 8.18 | C21H20O12 | +2.3 | 301.0344; 300.0272; 271.0247; 151.0021 | A | |||
Quercetin-malonyl-O- hexoside | 549.0890 | 8.27 | C24H22O15 | +1.7 | 463.0889; 371.2072; 301.0356; 300.0279; 271.0254; 255.0298; 151.0024 | B(ii) | [20,28] | ||
Astragalin | 447.0939 | 8.32 | C21H20O11 | +2.6 | 285.0408; 284.0332; 271.0255; 255.0298; 227.0351 | A | |||
Quercetin-O-pentoside | 435.0923 | 8.36 | C20H18O11 | −1.0 | 303.0498; 257.0447; 153.0182 | B(i) | [20,28] | ||
Kaempferol-O- pentoside | 417.0828 | 8.41 | C20H18O10 | +1.5 | 285.0392; 255. 0293; 227.0341; 151.0022 | B(ii) | [28,29] | ||
Luteolin-O-deoxy- hexoside | 431.0986 | 8.48 | C21H20O10 | +1.8 | 285.0409; 284.0391; 255.0297; 227.0343; 151.0024 | B(i) | [20,28] | ||
Tiliroside | 595.1461 | 8.71 | C30H26O13 | +1.6 | 287.0894; 195.0294; 153.0184 | B(ii) | [20,28] | ||
Rhamnetin-O-hexoside | 477.1039 | 8.74 | C22H22O12 | +1.3 | 315.0512; 301.0364; 271.0243 | B(i) | [20,28] | ||
Flavonoid aglyca | |||||||||
Taxifolin | 303.0504 | 8.36 | C15H12O7 | −0.3 | 287.0551; 259.0584; 231.0653; 153.01836 | A | |||
Eriodictyol | 287.0559 | 8.84 | C15H12O6 | +1.2 | 269.0458; 169.0129; 151.0022; 135.0437 | A | |||
Quercetin | 301.0349 | 8.89 | C15H10O7 | +0.2 | 273.0404; 255.1966; 151.002 | A | |||
Trihydroxy-flavanone | 273.0761 | 9.19 | C15H12O5 | −0.7 | 255.06561; 215.0465; 153.01836 | B(ii) | [28,29] | ||
Kaempferol | 287.0554 | 9.23 | C15H10O6 | −0.4 | 255.0648; 215.0463; 187.0153; 153.0179 | A | |||
Fatty acids | |||||||||
Trihydroxy-linoleic acid | 327.2180 | 9.03 | C18H32O5 | +2.6 | 309.2078; 291.1968; 229.1442; 211.1334; 183.1382; 171.1016 | B(i) | [30] | ||
Linoleic acid derivate | 329.2336 | 9.2 | NA | NA | 293.2132; 229.1442; 211.1335; 183.1384; 171.1017 | B(iii) | [30] | ||
1-18:3-lysoPE | 476.2765 | 10.35 | C23H42NO7P | −2.5 | 335.2576; 304.2629; 261.2204 | B(i) | [31] | ||
1-18:2-lysoPE | 478.2929 | 10.65 | C23H44NO7P | −1.0 | 337.2735; 306.2791; 263.2369 | B(i) | [31] | ||
Dehydro-hydroxy- linoleic acid | 293.2126 | 10.74 | C18H30O3 | +3.2 | 275.2020 235.1703 183.1381 171.1011 | B(ii) | [30] | ||
1-16:0-lysoPE | 454.2932 | 10.94 | C21H44NO7P | −0.4 | 313.2730; 282.2785; 239.2367; 155.0101 | B(i) | [31] | ||
Hydroxy-linoleic acid | 295.2280 | 11.05 | C18H32O3 | +2.3 | 277.2174; 195.1386; 183.1386; 171.1016 | B(ii) | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szűcs, Z.; Cziáky, Z.; Volánszki, L.; Máthé, C.; Vasas, G.; Gonda, S. Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study. Plants 2024, 13, 1288. https://doi.org/10.3390/plants13101288
Szűcs Z, Cziáky Z, Volánszki L, Máthé C, Vasas G, Gonda S. Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study. Plants. 2024; 13(10):1288. https://doi.org/10.3390/plants13101288
Chicago/Turabian StyleSzűcs, Zsolt, Zoltán Cziáky, László Volánszki, Csaba Máthé, Gábor Vasas, and Sándor Gonda. 2024. "Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study" Plants 13, no. 10: 1288. https://doi.org/10.3390/plants13101288
APA StyleSzűcs, Z., Cziáky, Z., Volánszki, L., Máthé, C., Vasas, G., & Gonda, S. (2024). Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study. Plants, 13(10), 1288. https://doi.org/10.3390/plants13101288