Isolation of the Antifungal Compound Alliodorin from the Heartwood of Cordia elaeagnoides A. DC. and the In Silico Analysis of the Laccase
Abstract
:1. Introduction
2. Results
2.1. Extractives Content
2.2. Antifungal Activity
2.3. Identification of the Crystalline Isolated Compound
2.4. Analysis of the Docking Study and the Laccase–Alliodorin Complex
3. Discussion
4. Materials and Methods
4.1. Obtaining Wood Extracts
4.2. Antifungal Bioassay
4.3. Modeling and Molecular Docking
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pennington, T.D. Manual para la Identificacion de Campo de los Principales Arboles de Mexico Instituto Nacional de Investigaciones Forestales; Secretaria de Agricultura y Ganaderia Publishing: Mexico City, Mexico, 1968; ISBN 9683664288/9789583664280. [Google Scholar]
- Pennington, T.D.; Sarukhán, J. Árboles Tropicales de México: Manual para la Identificación de las Principales Especies; UNAM Publishing: Mexico City, Mexico, 2005; ISBN 9789703216437. ISSN 9789703216437. [Google Scholar]
- Colín-Urieta, S.; Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; López-Albarrán, P.; Gabriel-Parra, R.; Ngangyo-Heya, M. Natural Durability of Seven Tropical Timber Species in Ground Contact at Three Sites in Mexico. J. Trop. For. Sci. 2018, 30, 75–81. [Google Scholar]
- Colín-Urieta, S.; Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; López-Albarran, P.; Gabriel-Parra, R.; Corral-Rivas, J.J. Assessing the natural durability of different tropical timbers in soil-bed tests. Maderas-Cienc. Tecnol. 2019, 21, 231–238. [Google Scholar] [CrossRef]
- Zabel, R.A.; Morrell, J.J. Wood Microbiology: Decay and its Prevention, 2nd ed.; Academic Press: Cambridge, MA, USA, 2020; ISBN 9780128194652. [Google Scholar]
- Van Acker, J.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Le Bayon, I.; Kleist, G.; Peek, R.D. Biological durability of wood in relation to end-use. Holz Roh Werkst. 2003, 61, 35–45. [Google Scholar] [CrossRef]
- Ávila, L.E.; Herrera, M.A. Efecto de los extraíbles en tres propiedades físicas de la madera de Enterolobium cyclocarpum procedente de Michoacán, México. Bosque 2012, 33, 25–26. [Google Scholar] [CrossRef]
- Kirker, G.T.; Blodgett, A.B.; Arango, R.A.; Lebow, P.K.; Clausen, C.A. The role of extractives in naturally durable wood species. Int. Biodeterior. Biodegrad. 2013, 82, 53–58. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; Taylor & Francis: Washington, DC, USA, 2005; pp. 53–55. ISBN 0-8493-1588-3. [Google Scholar]
- Sepúlveda Jiménez, A.; Ducoing, P.; Sosa, R. La Participación de los Metabolitos Secundarios en la Defensa de las Plantas. Rev. Mex. Fitopatol. 2003, 21, 355–363. [Google Scholar]
- Murace, M.; Spavento, E.; Rivas, P.; Saparrat, M.; Keil, G. Comportamiento de Pinus ponderosa Dougl. ex. Laws. expuesto al hongo de pudrición castaña Gloeophyllum sepiarium (Wulf.: Fr.) P. Karst. Quebracho 2014, 22, 114–124. [Google Scholar]
- Clausen, C.A. Biodeterioration of wood. In Wood Handbook: Wood as an Engineering Material; Forest Products Laboratory Publishing: Madison, WI, USA, 2010; pp. 312–315. [Google Scholar]
- Goodell, B. Fungi involved in the biodeterioration and bioconversion of lignocellulose substrates. In Genetics and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 369–397. [Google Scholar] [CrossRef]
- Sundararaj, R.; Shanbhag, R.R.; Nagaveni, H.; Vijayalakshmi, G. Natural durability of timbers under Indian environmental conditions—An overview. Int. Biodeterior. Biodegrad. 2015, 103, 196–214. [Google Scholar] [CrossRef]
- Schwarze, F.W.M.R.; Engels, J.; Mattheck, C. Fungal Strategies of Wood Decay in Trees; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000; pp. 16–31. ISBN 978-3-642-63133-7. [Google Scholar]
- Goodell, B.; Qian, Y.; Jellison, J. Fungal decay of wood: Soft rot—Brown rot—White rot. ACS Symp. Ser. 2008, 982, 9–12. [Google Scholar] [CrossRef]
- Carneiro, J.S.; Emmert, L.; Sternadt, G.H.; Mendes, J.C.; Almeida, G.F. Decay susceptibility of Amazon wood species from Brazil against white rot and brown rot decay fungi. Holzforschung 2009, 63, 767–772. [Google Scholar] [CrossRef]
- Arantes, V.; Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. In Deterioration and Protection of Sustainable Biomaterials; ACS Publications: Washington, DC, USA, 2014; pp. 3–21. [Google Scholar] [CrossRef]
- Have, R.T.; Teunissen, P.J.M. Oxidative Mechanisms Involved in Lignin Degradation by White-Rot Fungi. Chem. Rev. 2001, 101, 3397–3413. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Du, L.; Yang, J.; Wu, W.-M.; Liang, H. A critical review of the application of white rot fungus to environmental pollution control. Crit. Rev. Biotechnol. 2010, 30, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Leliebre-Lara, V.; Lima, C.N.; Su, R. Composición química del hongo basidiomiceto cubano, Trametes versicolor Chemical composition from Cuban basidiomycete Trametes versicolor. Acta Botánica Cuba. 2019, 218, 11–20. [Google Scholar]
- Liese, W. Ultrastructural Aspects of Woody Tissue Disintegration. Annu. Rev. Phytopathol. 1970, 8, 231–258. [Google Scholar] [CrossRef]
- Collins, P.J.; Dobson, A. Regulation of Laccase Gene Transcription in Trametes versicolor. Appl. Environ. Microbiol. 1997, 63, 3444–3450. [Google Scholar] [CrossRef] [PubMed]
- Bari, E.; Taghiyari, H.R.; Naji, H.R.; Schmidt, O.; Ohno, K.M.; Clausen, C.A.; Bakar, E.S. Assessing the destructive behaviors of two white-rot fungi on beech wood. Int. Biodeterior. Biodegrad. 2016, 114, 129–140. [Google Scholar] [CrossRef]
- Bari, E.; Daryaei, M.G.; Karim, M.; Bahmani, M.; Schmidt, O.; Woodward, S.; Ghanbary, M.A.T.; Sistani, A. Decay of Carpinus betulus wood by Trametes versicolor—An anatomical and chemical study. Int. Biodeterior. Biodegrad. 2018, 137, 68–77. [Google Scholar] [CrossRef]
- ASTM D. 81; Standard Test Method for Accelerated Laboratory Test of Natural Decay Resistance of Woods. American Society for Testing and Materials (ASTM): Philadelphia, PA, USA, 1994; Annual Book of ASTM Standards. Volume 04.09, pp. 324–328.
- Mir-Tutusaus, J.A.; Masís-Mora, M.; Corcellas, C.; Eljarrat, E.; Barceló, D.; Sarrà, M.; Caminal, G.; Vicent, T.; Rodríguez-Rodríguez, C.E. Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Sci. Total. Environ. 2014, 500–501, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Rameshaiah, G.N.; Reddy, M.L.J. Applications of Ligninolytic Enzymes from a White-Rot Fungus Trametes versicolor. Univers. J. Environ. Res. Technol. 2015, 5, 1–7. [Google Scholar]
- Gochev, V.K.; Krastanov, A.I. Fungal Laccases (Review). Vol. 13. Bulg. J. Agric. Sci. 2007, 73, 75. [Google Scholar]
- Sharma, K.K.; Kuhad, R.C. Laccase: Enzyme revisited and function redefined. Indian J. Microbiol. 2008, 48, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Chiranjeevi, P.V.; Rajasekara, M.; Sathish, T. Lignolytic enzyme. BioResources 2014, 9, 4212–4225. [Google Scholar]
- Götze, J.P.; Bühl, M. Laccase Redox Potentials: pH Dependence and Mutants, a QM/MM Study. J. Phys. Chem. B 2016, 120, 9265–9276. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Gupta, N. Microbial Laccase: A robust enzyme and its industrial applications. Biologia 2020, 75, 1183–1193. [Google Scholar] [CrossRef]
- Johannes, C.; Majcherczyk, A. Laccase activity tests and laccase inhibitors. J. Biotechnol. 2000, 78, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Xu, F. Oxidation of Phenols, Anilines, and Benzenethiols by Fungal Laccases: Correlation between Activity and Redox Potentials as Well as Halide Inhibition. Biochemistry 1996, 35, 7608–7614. [Google Scholar] [CrossRef]
- Gao, H.; Obanda, D.N.; Shupe, T.F.; Hse, C.Y.; Ring, D.R. Antifungal activities of heartwood extracts of Port-Orford cedar extractives. Holzforschung 2008, 62, 620–623. [Google Scholar] [CrossRef]
- Hashim, R.; Boon, J.G.; Sulaiman, O.; Kawamura, F.; Lee, C.Y. Evaluation of the decay resistance properties of Cerbera odollam extracts and their influence on properties of particleboard. Int. Biodeterior. Biodegrad. 2009, 63, 1013–1017. [Google Scholar] [CrossRef]
- Anouhe, J.-B.S.; Niamké, F.B.; Faustin, M.; Virieux, D.; Pirat, J.-L.; Adima, A.A.; Kati-Coulibaly, S.; Amusant, N. The role of extractives in the natural durability of the heartwood of Dicorynia guianensis Amsh: New insights in antioxydant and antifungal properties. Ann. For. Sci. 2018, 75, 15. [Google Scholar] [CrossRef]
- Pereira, H.; Graça, J.; Rodrigues, J.C. Wood Chemistry in Relation to Quality. In Wood Quality and Its Biological Basis; Blackwell Publishing: Hoboken, NJ, USA, 2003; Volume 3, pp. 53–83. ISBN 0-8493-2819-5. [Google Scholar]
- Rutiaga-Quiñones, J.G. Chemische und biologische Untersuchungen zum Verhalten dauerhafter Holzarten und ihrer Extrakte gegenüber holzabbauenden Pilzen; Buchverlag Gräfelfing: München, Germany, 2001. [Google Scholar]
- Martínez-Sotres, C.; López-Albarrán, P.; Cruz-De-León, J.; García-Moreno, T.; Rutiaga-Quiñones, J.G.; Vázquez-Marrufo, G.; Tamariz-Mascarúa, J.; Herrera-Bucio, R. Medicarpin, an antifungal compound identified in hexane extract of Dalbergia congestiflora Pittier heartwood. Int. Biodeterior. Biodegrad. 2012, 69, 38–40. [Google Scholar] [CrossRef]
- Veeraswamy, S.D.; Raju, I.; Mohan, S. An Approach to Antifungal Efficacy through Well Diffusion Analysis and Molecular Interaction Profile of Polyherbal Formulation. Biomed. Pharmacol. J. 2022, 15, 2069–2084. [Google Scholar] [CrossRef]
- Kara, M.; Oztas, E.; Ramazanoğulları, R.; Kouretas, D.; Nepka, C.; Tsatsakis, A.M.; Veskoukis, A.S. Benomyl, a benzimidazole fungicide, induces oxidative stress and apoptosis in neural cells. Toxicol. Rep. 2020, 7, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Manners, G.D.; Jurd, L. The Hydroquinone Terpenoids of Cordia alliodora-C. Biotropica; Academic Press: Cambridge, MA, USA, 1971; Volume 1. [Google Scholar] [CrossRef]
- Manners, G.D. The hydroquinone terpenoids of Cordia elaeagnoides. J. Chem. Soc. Perkin Trans. 1983, 1, 39–43. [Google Scholar] [CrossRef]
- Mun, S.P.; Prewitt, L. Antifungal Activity of Organic Extracts from Juniperus virginiana Heartwood against Wood Decay Fungi. For. Prod. J. 2011, 61, 443–449. [Google Scholar] [CrossRef]
- Tchinda, J.-B.S.; Ndikontar, M.K.; Belinga, A.D.F.; Mounguengui, S.; Njankouo, J.M.; Durmaçay, S.; Gerardin, P. Inhibition of fungi with wood extractives and natural durability of five Cameroonian wood species. Ind. Crop. Prod. 2018, 123, 183–191. [Google Scholar] [CrossRef]
- Vek, V.; Poljanšek, I.; Humar, M.; Willför, S.; Oven, P. In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii. Wood Sci. Technol. 2020, 54, 1645–1662. [Google Scholar] [CrossRef]
- Koyama, M.; Tamai, Y.; Shigetomi, K.; Sano, Y. Evaluation of antifungal activities of woody plant barks using an incubation system with Trametes versicolor. Trees 2023, 38, 37–47. [Google Scholar] [CrossRef]
- Martínez-Sotres, C.; Rutiaga-Quiñones, J.G.; Herrera-Bucio, R.; Gallo, M.; López-Albarrán, P. Molecular docking insights into the inhibition of laccase activity by medicarpin. Wood Sci. Technol. 2015, 49, 857–868. [Google Scholar] [CrossRef]
- Awasthi, M.; Jaiswal, N.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. J. Biomol. Struct. Dyn. 2015, 33, 1835–1849. [Google Scholar] [CrossRef] [PubMed]
- Mo, D.; Zeng, G.; Yuan, X.; Chen, M.; Hu, L.; Li, H.; Wang, H.; Xu, P.; Lai, C.; Wan, J.; et al. Molecular docking simulation on the interactions of laccase from Trametes versicolor with nonylphenol and octylphenol isomers. Bioprocess Biosyst. Eng. 2018, 41, 331–343. [Google Scholar] [CrossRef]
- Fu, N.; Li, J.; Wang, M.; Ren, L.; Luo, Y. Genes Identification, Molecular Docking and Dynamics Simulation Analysis of Laccases from Amylostereum areolatum Provides Molecular Basis of Laccase Bound to Lignin. Int. J. Mol. Sci. 2020, 21, 8845. [Google Scholar] [CrossRef] [PubMed]
- Tappi, T. 264 cm-97: Preparation of Wood for Chemical Analysis. Test Methods; TAPPI Press: Atlanta, GA, USA, 2007. [Google Scholar]
- Magaldi, S.; Mata-Essayag, S.; de Capriles, C.H.; Perez, C.; Colella, M.T.; Olaizola, C.; Ontiveros, Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004, 8, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Arthington-Skaggs, B.; Iqbal, N.; Ellis, D.; Pfaller, M.A.; Messer, S.; Rinaldi, M.; Fothergill, A.; Gibbs, D.L.; Wang, A. Multicenter Evaluation of a New Disk Agar Diffusion Method for Susceptibility Testing of Filamentous Fungi with Voriconazole, Posaconazole, Itraconazole, Amphotericin B, and Caspofungin. J. Clin. Microbiol. 2007, 45, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Schwanninger, M.; Hinterstoisser, B. Comparison of the classical wood extraction method using a Soxhlet apparatus with an advanced extraction method. Holz Roh Werkst. 2002, 60, 343–346. [Google Scholar] [CrossRef]
- Baskaran, C.; Bai, V.R.; Velu, S.; Kumaran, K. The efficacy of Carica papaya leaf extract on some bacterial and a fungal strain by well diffusion method. Asian Pac. J. Trop. Dis. 2012, 2 (Suppl. S2), S658–S662. [Google Scholar] [CrossRef]
- Sathish, L.; Pavithra, N.; Ananda, K. Antimicrobial activity and biodegrading enzymes of endophytic fungi from eucalyptus. IJPSR 2012, 3, 8. [Google Scholar]
- Fitter, A.H.; Nichols, R. The use of benomyl to control infection by vesicular–arbuscular mycorrhizal fungi. New Phytol. 1988, 110, 201–206. [Google Scholar] [CrossRef]
- Gossen, B.D.; Rimmer, S.R.; Holley, J.D. First Report of Resistance to Benomyl Fungicide in Sclerotinia sclerotiorum. Plant Dis. 2001, 85, 1206. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Piontek, K.; Antorini, M.; Choinowski, T.; Lemercier, G.; Dutoya, S.; Luo, S.; Ruiz, F.A.; Rodrigues, C.O.; Baltz, T.; Docampo, R.; et al. Crystal Structure of a Laccase from the Fungus Trametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers. J. Biol. Chem. 2002, 277, 37663–37669. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 16391662. [Google Scholar] [CrossRef]
Carbon Position | Experimental Compound | Alliodorin |
---|---|---|
C-10′ | 9.2 | 9.1 |
C-9′ | 15.9 | 15.9 |
C-5′ | 27.0 | 27.5 |
C-1′ | 28.9 | 28.9 |
C-4′ | 37.9 | 38.6 |
C-6 | 113.7 | 113.6 |
C-3 | 116.2 | 116.2 |
C-4 | 116.3 | 117.0 |
C-2′ | 123.1 | 124.6 |
C-3′ | 128.0 | 129.2 |
C-1 | 135.8 | 134.9 |
C-7′ | 139.5 | 139.8 |
C-5 | 147.5 | 148.4 |
C-2 | 149.4 | 151.0 |
C-6′ | 154.7 | 154.6 |
C-8′ | 196.0 | 195.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara-Martínez, S.J.; Villanueva-Mejía, F.; Zamudio-Ojeda, A.; Herrera-Bucio, R.; Morales-Palacios, F.G. Isolation of the Antifungal Compound Alliodorin from the Heartwood of Cordia elaeagnoides A. DC. and the In Silico Analysis of the Laccase. Plants 2024, 13, 1294. https://doi.org/10.3390/plants13101294
Guevara-Martínez SJ, Villanueva-Mejía F, Zamudio-Ojeda A, Herrera-Bucio R, Morales-Palacios FG. Isolation of the Antifungal Compound Alliodorin from the Heartwood of Cordia elaeagnoides A. DC. and the In Silico Analysis of the Laccase. Plants. 2024; 13(10):1294. https://doi.org/10.3390/plants13101294
Chicago/Turabian StyleGuevara-Martínez, Santiago José, Francisco Villanueva-Mejía, Adalberto Zamudio-Ojeda, Rafael Herrera-Bucio, and Fredy Geovannini Morales-Palacios. 2024. "Isolation of the Antifungal Compound Alliodorin from the Heartwood of Cordia elaeagnoides A. DC. and the In Silico Analysis of the Laccase" Plants 13, no. 10: 1294. https://doi.org/10.3390/plants13101294
APA StyleGuevara-Martínez, S. J., Villanueva-Mejía, F., Zamudio-Ojeda, A., Herrera-Bucio, R., & Morales-Palacios, F. G. (2024). Isolation of the Antifungal Compound Alliodorin from the Heartwood of Cordia elaeagnoides A. DC. and the In Silico Analysis of the Laccase. Plants, 13(10), 1294. https://doi.org/10.3390/plants13101294