A Diverging Species within the Stewartia gemmata (Theaceae) Complex Revealed by RAD-Seq Data
Abstract
:1. Introduction
2. Results
2.1. Assembled Data
2.2. Phylogenetic Relationship of S. gemmata and S. acutisepala
2.3. Genetic Differentiation within the S. gemmata Complex
3. Discussion
4. Materials and Methods
4.1. Plant Sampling and DNA Extraction
4.2. RAD-Seq and Data Assembly
4.3. Inference of Phylogenetic Tree
4.4. Analysis of Genetic Divergence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darwin, C. On the Origin of Species by Means of Natural Selection; John Murray: London, UK, 1859. [Google Scholar]
- Mayr, E. Systematics and the Origin of Species; Columbia University Press: New York, NY, USA, 1942. [Google Scholar]
- Simpson, G.G. The species concept. Evolution 1951, 5, 285–298. [Google Scholar] [CrossRef]
- Michener, C.D. Diverse approaches to systematics. Evol. Biol. 1970, 4, 1–38. [Google Scholar]
- Van Valen, L. Ecological species, multispecies, and oaks. Taxon 1976, 25, 233–239. [Google Scholar] [CrossRef]
- Donoghue, M.J. A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 1985, 88, 172–181. [Google Scholar] [CrossRef]
- De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 2007, 56, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.S. Species: A History of the Idea; University of California Press: Berkeley, CA, USA, 2009. [Google Scholar]
- Hong, D.Y. Gen-morph species concept—A new and integrative species concept for outbreeding organisms. J. Syst. Evol. 2020, 58, 725–742. [Google Scholar] [CrossRef]
- Freudenstein, J.V.; Broe, M.B.; Folk, R.A.; Sinn, B.T. Biodiversity and the species concept—Lineages are not enough. Syst. Biol. 2017, 66, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Wiens, J.J. Species Delimitation: New approaches for discovering diversity. Syst. Biol. 2007, 56, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.L.; Knowles, L.L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B Biol. Sci. 2014, 281, 20132765. [Google Scholar] [CrossRef]
- Liu, J. The integrative species concept and species on the speciation way. Biodivers. Sci. 2016, 24, 1004–1008. [Google Scholar] [CrossRef]
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.L.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef]
- Gittenberger, E. What about non-adaptive radiation? Biol. J. Linn. Soc. 1991, 43, 263–272. [Google Scholar] [CrossRef]
- Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 2004, 19, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, H.B.; Thomson, R.C. Delimiting species in recent radiations. Syst. Biol. 2007, 56, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Barley, A.J.; White, J.; Diesmos, A.C.; Brown, R.M. The challenge of species delimitation at the extremes: Diversification without morphological change in Philippine sun skinks. Evolution 2013, 67, 3556–3572. [Google Scholar] [CrossRef]
- Pinheiro, F.; Dantas-Queiroz, M.V.; Palma-Silva, C. Plant species complexes as models to understand speciation and evolution: A review of South American studies. CRC Crit. Rev. Plant Sci. 2018, 37, 54–80. [Google Scholar] [CrossRef]
- Yan, S. On the Chinese genera Stewartia L. and Hartia Dunn. Acta Phytotaxon. Sin. 1981, 19, 462–471. [Google Scholar]
- Li, J. A systematic study on the genera Stewartia and Hartia (Theaceae). Acta Phytotaxon. Sin. 1996, 34, 48–67. [Google Scholar]
- Ming, T.; Bartholomew, B. Stewartia. In Flora of China; Wu, Z.Y., Raven, P., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2007; pp. 424–429. [Google Scholar]
- Yu, X.; Gao, L.; Soltis, D.E.; Soltis, P.S.; Yang, J.; Fang, L.; Yang, S.; Li, D. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytol. 2017, 215, 1235–1248. [Google Scholar] [CrossRef]
- Lin, H.Y.; Hao, Y.J.; Li, J.H.; Fu, C.X.; Soltis, P.S.; Soltis, D.E.; Zhao, Y.P. Phylogenomic conflict resulting from ancient introgression following species diversification in Stewartia s.l. (Theaceae). Mol. Phylogenet. Evol. 2019, 135, 1–11. [Google Scholar] [CrossRef]
- Lin, H.Y.; Gu, K.J.; Li, W.H.; Zhao, Y.P. Integrating coalescent-based species delimitation with ecological niche modeling delimited two species within the Stewartia sinensis Complex (Theaceae). J. Syst. Evol. 2022, 60, 1037–1048. [Google Scholar] [CrossRef]
- Chien, S.; Cheng, W. Stewartia gemmata. Contrib. Biol. Lab. Sci. Soc. China Bot. Ser. 1931, 6, 66–69. [Google Scholar]
- Chiu, P.; Zhong, G. Brief note on the genus Stewartia in Zhejiang. Plant Divers. 1988, 10, 1–3. [Google Scholar]
- Chen, Z. Stewartia . In New Edition of Flora of Zhejiang; Editorial Board of Flora of Zhejiang, Ed.; Zhejiang Science and Technology Publishing House: Hangzhou, China, 2021; pp. 312–315. [Google Scholar]
- Zimmer, E.A.; Wen, J. Using nuclear gene data for plant phylogenetics: Progress and prospects II. Next-gen approaches. J. Syst. Evol. 2015, 53, 371–379. [Google Scholar] [CrossRef]
- Leaché, A.D.; Oaks, J.R. The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 69–84. [Google Scholar] [CrossRef]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef] [PubMed]
- Seeb, J.E.; Carvalho, G.; Hauser, L.; Naish, K.; Roberts, S.; Seeb, L.W. Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol. Ecol. Resour. 2011, 11, 1–8. [Google Scholar] [CrossRef]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Herrera, S.; Shank, T.M. RAD Sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol. Phylogenet. Evol. 2016, 100, 70–79. [Google Scholar] [CrossRef]
- Curto, M.; Schachtler, C.; Puppo, P.; Meimberg, H. Using a new RAD-sequencing approach to study the evolution of Micromeria in the Canary islands. Mol. Phylogenet. Evol. 2018, 119, 160–169. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Lu, Z.; Zhao, J.; Li, Q. Genomic data reveal two distinct species from the widespread alpine ginger Roscoea tibetica Batalin (Zingiberaceae). J. Syst. Evol. 2021, 59, 1232–1243. [Google Scholar] [CrossRef]
- Parker, E.; Dornburg, A.; Struthers, C.D.; Jones, C.D.; Near, T.J. Phylogenomic species delimitation dramatically reduces species diversity in an Antarctic adaptive radiation. Syst. Biol. 2022, 71, 58–77. [Google Scholar] [CrossRef] [PubMed]
- Obiol, J.F.; Herranz, J.M.; Paris, J.R.; Whiting, J.R.; Rozas, J.; Riutort, M.; González-Solís, J. Species delimitation using genomic data to resolve taxonomic uncertainties in a speciation continuum of pelagic seabirds. Mol. Phylogenet. Evol. 2023, 179, 107671. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Cheng, J.; Xiang, Q. RAD-seq data provide new insights into biogeography, diversity anomaly, and species delimitation in eastern Asian–North American disjunct clade Benthamidia of Cornus (Cornaceae). J. Syst. Evol. 2024, 62, 1–19. [Google Scholar] [CrossRef]
- Jin, X.; Ji, Z.; Gao, J. Validation of Rhododendron sparsifolium and Stewartia acutisepala, endemic to China. Nord. J. Bot. 2009, 27, 370–371. [Google Scholar] [CrossRef]
- Mayr, E. Of what use are subspecies? Auk 1982, 99, 593–595. [Google Scholar]
- Hartl, D.L.; Clark, A.G. Principles of Population Genetics; Sinauer: Sunderland, UK, 2007. [Google Scholar]
- Qiu, Y.; Lu, Q.; Zhang, Y.; Cao, Y. Phylogeography of East Asia’s Tertiary relict plants: Current progress and future prospects. Biodivers. Sci. 2017, 25, 24–28. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, J.; Zhao, J.; Comes, H.P.; Li, P.; Fu, C.; Xie, X.; Lu, R.; Xu, W.; Feng, Y.; et al. Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, Cercidiphyllum japonicum. New Phytol. 2020, 228, 1674–1689. [Google Scholar] [CrossRef] [PubMed]
- Rieseberg, L.H.; Brouillet, L. Are many plant species paraphyletic? Taxon 1994, 43, 21–32. [Google Scholar] [CrossRef]
- Hudson, R.R.; Coyne, J.A. Mathematical consequences of the genealogical species concept. Evolution 2002, 56, 1557–1565. [Google Scholar]
- Anacker, B.L.; Strauss, S.Y. The geography and ecology of plant speciation: Range overlap and niche divergence in sister species. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132980. [Google Scholar] [CrossRef] [PubMed]
- Atran, S. Cognitive Foundations of Natural History: Towards an Anthropology of Science; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Burbano, H.A.; Gutaker, R.M. Ancient DNA genomics and the renaissance of herbaria. Science 2023, 382, 59–63. [Google Scholar] [CrossRef]
- Harr, B. Genomic islands of differentiation between house mouse subspecies. Genome Res. 2006, 16, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Nosil, P.; Funk, D.J.; Ortiz-Barrientos, D. Divergent selection and heterogeneous genomic divergence. Mol. Ecol. 2009, 18, 375–402. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, T.E.; Hahn, M.W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 2014, 23, 3133–3157. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, R.; Chen, X. Genomic island of divergence during speciation and its underlying mechanisms. Biodivers. Sci. 2022, 30, 21383. [Google Scholar] [CrossRef]
- Marks, R.A.; Hotaling, S.; Frandsen, P.B.; VanBuren, R. Representation and participation across 20 years of plant genome sequencing. Nat. Plants 2021, 7, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Bock, D.G.; Cai, Z.; Elphinstone, C.; González-Segovia, E.; Hirabayashi, K.; Huang, K.; Keais, G.L.; Kim, A.; Owens, G.L.; Rieseberg, L.H. Genomics of plant speciation. Plant Commun. 2023, 4, 100599. [Google Scholar] [CrossRef] [PubMed]
- Emerson, K.J.; Merz, C.R.; Catchen, J.M.; Hohenlohe, P.A.; Cresko, W.A.; Bradshaw, W.E.; Holzapfel, C.M. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. USA 2010, 107, 16196–16200. [Google Scholar] [CrossRef]
- Eaton, D.A.R.; Overcast, I. Ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020, 36, 2592–2594. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Shi, L.; Gong, D.; Zhang, S.; Zhao, Q.; Zhan, D.; Vasseur, L.; Wang, Y.; Yu, J.; et al. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 2021, 53, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Y.; Cai, G.; Cai, R.; Hu, Z.; Wang, H. Tree Visualization by One Table (TvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023, 51, W587–W592. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
Species | Locality | Voucher No. | Longitude | Latitude | ID | Clean Data (Gb) |
---|---|---|---|---|---|---|
S. acutisepala | Mt. Tiantai, Tiantai Co., Taizhou, China | H. Lin 16232 | 121.068863 | 29.278347 | acu1 | 2.96 |
S. acutisepala | Wuyanling National Nature Reserve, Taishun Co., Wenzhou, China | H. Lin HZU13869 | 119.669257 | 27.716245 | acu2 | 4.72 |
S. acutisepala | Mt. Baishanzu, Qingyuan Co., Lishui, China | H. Lin 21013 | 119.197744 | 27.762519 | acu3 | 3.95 |
S. acutisepala | Mt. Baishanzu, Qingyuan Co., Lishui, China | H. Lin 21014 | 119.196900 | 27.761892 | acu4 | 5.45 |
S. acutisepala | Mt. Baishanzu, Qingyuan Co., Lishui, China | H. Lin 21015 | 119.197056 | 27.762336 | acu5 | 4.80 |
S. gemmata | Mt. Tiantangzhai, Jinzhai Co., Lu’an, China | W. Li LWH201704 | 115.787014 | 31.135476 | gem1 | 3.39 |
S. gemmata | Mt. Mang, Yizhang Co., Chenzhou, China | H. Lin 16154 | 112.930632 | 24.940206 | gem2 | 2.75 |
S. gemmata | Mt. Gutian, Kaihua Co., Quzhou, China | H. Lin HZU13983 | 118.152874 | 29.255328 | gem3 | 3.87 |
S. gemmata | Huaping National Nature Reserve, Longsheng Co., Guilin, China | H. Lin 17499 | 109.929795 | 25.606376 | gem4 | 3.42 |
S. gemmata | Mt. Tianmu, Linan Co., Hangzhou, China | X. Zheng ZXM00054 | 119.448134 | 30.348420 | gem5 | 2.85 |
S. monadelpha | Mt. Ohdai, Yoshino, Nara, Japan | S. Sakaguchi & D. Takahashi SS111-3 | 135.877671 | 34.352534 | mon | 3.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Li, W.; Zhao, Y. A Diverging Species within the Stewartia gemmata (Theaceae) Complex Revealed by RAD-Seq Data. Plants 2024, 13, 1296. https://doi.org/10.3390/plants13101296
Lin H, Li W, Zhao Y. A Diverging Species within the Stewartia gemmata (Theaceae) Complex Revealed by RAD-Seq Data. Plants. 2024; 13(10):1296. https://doi.org/10.3390/plants13101296
Chicago/Turabian StyleLin, Hanyang, Wenhao Li, and Yunpeng Zhao. 2024. "A Diverging Species within the Stewartia gemmata (Theaceae) Complex Revealed by RAD-Seq Data" Plants 13, no. 10: 1296. https://doi.org/10.3390/plants13101296
APA StyleLin, H., Li, W., & Zhao, Y. (2024). A Diverging Species within the Stewartia gemmata (Theaceae) Complex Revealed by RAD-Seq Data. Plants, 13(10), 1296. https://doi.org/10.3390/plants13101296