Identification of Novel Loci Precisely Modulating Pre-Harvest Sprouting Resistance and Red Color Components of the Seed Coat in T. aestivum L.
Abstract
:1. Introduction
2. Results
2.1. Variability in the Grain Color Component and the PHS Traits
2.2. Relationship between Tamyb10 Dominant Allele Number and Red Color Components of Seed Coat
2.3. Analysis of the Population Structure
2.4. Association Analysis
2.5. Gene Prioritization
3. Discussion
3.1. Variability in the Red-Grained Winter Wheat Population in PHS and Seed Color Characteristics
3.2. Comparing the Localization of Putative QTL with Existing Data
3.3. Candidate Genes for Pre-Harvest Sprouting
3.4. Candidate Genes for Grain Color
4. Materials and Methods
4.1. Plant Material
4.2. Evaluation of the Pre-Harvest Sprouting Traits
4.3. Grain Color Traits Estimation
4.4. Evaluation of the Relationship between Year and Seed Color Characteristics
4.5. Identification of Allelic Variations in the Tamyb10 Gene
4.6. Statistical Analysis
4.7. Genotyping and Imputation
4.8. Population Structure
4.9. Genome-Wide Association Analysis
4.10. Genes Prioritization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABA | Abscisic acid |
cv. | Cultivar |
FLS | Flavonol synthase |
FN | Falling number |
GI | Germination index |
PCA | Principal component analysis |
PHS | Pre-harvest sprouting |
PSY | Phytoene synthase |
QTL | Quantitative trait locus |
SNP | Single-nucleotide polymorphism |
TPM | Transcript per million |
References
- Mares, D.J. Temperature Dependence of Germinability of Wheat (Triticum aestivum L.) Grain in Relation to Pre-Harvest Sprouting. Aust. J. Agric. Res. 1984, 35, 115–128. [Google Scholar] [CrossRef]
- Groos, C.; Gay, G.; Perretant, M.-R.; Gervais, L.; Bernard, M.; Dedryver, F.; Charmet, G. Study of the Relationship between Pre-Harvest Sprouting and Grain Color by Quantitative Trait Loci Analysis in a White×red Grain Bread-Wheat Cross. Theor. Appl. Genet. 2002, 104, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Moot, D.J.; Every, D. A Comparison of Bread Baking, Falling Number, α-Amylase Assay and Visual Method for the Assessment of Pre-Harvest Sprouting in Wheat. J. Cereal Sci. 1990, 11, 225–234. [Google Scholar] [CrossRef]
- Olaerts, H.; Courtin, C.M. Impact of Preharvest Sprouting on Endogenous Hydrolases and Technological Quality of Wheat and Bread: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 698–713. [Google Scholar] [CrossRef] [PubMed]
- Derera, N.F.; Bhatt, G.M.; McMaster, G.J. On the Problem of Pre-Harvest Sprouting of Wheat. Euphytica 1977, 26, 299–308. [Google Scholar] [CrossRef]
- Simsek, S.; Ohm, J.-B.; Lu, H.; Rugg, M.; Berzonsky, W.; Alamri, M.S.; Mergoum, M. Effect of Pre-Harvest Sprouting on Physicochemical Changes of Proteins in Wheat: Effect of Pre-Harvest Sprouting on Wheat Proteins. J. Sci. Food Agric. 2014, 94, 205–212. [Google Scholar] [CrossRef]
- Yanagisawa, A.; Nishimura, T.; Amano, Y.; Torada, A.; Shibata, S. Development of Winter Wheat with Excellent Resistance to Pre-Harvest Sprouting and Rain Damage. Euphytica 2005, 143, 313–318. [Google Scholar] [CrossRef]
- De Pauw, R.M.; Knox, R.E.; Singh, A.K.; Fox, S.L.; Humphreys, D.G.; Hucl, P. Developing Standardized Methods for Breeding Preharvest Sprouting Resistant Wheat, Challenges and Successes in Canadian Wheat. Euphytica 2012, 188, 7–14. [Google Scholar] [CrossRef]
- Vetch, J.M.; Stougaard, R.N.; Martin, J.M.; Giroux, M.J. Review: Revealing the Genetic Mechanisms of Pre-Harvest Sprouting in Hexaploid Wheat (Triticum aestivum L.). Plant Sci. 2019, 281, 180–185. [Google Scholar] [CrossRef]
- Tai, L.; Wang, H.-J.; Xu, X.-J.; Sun, W.-H.; Ju, L.; Liu, W.-T.; Li, W.-Q.; Sun, J.; Chen, K.-M. Pre-Harvest Sprouting in Cereals: Genetic and Biochemical Mechanisms. J. Exp. Bot. 2021, 72, 2857–2876. [Google Scholar] [CrossRef]
- Hilhorst, H.W.M.; Karssen, C.M. Seed Dormancy and Germination: The Role of Abscisic Acid and Gibberellins and the Importance of Hormone Mutants. Plant Growth Regul. 1992, 11, 225–238. [Google Scholar] [CrossRef]
- Nambara, E.; Okamoto, M.; Tatematsu, K.; Yano, R.; Seo, M.; Kamiya, Y. Abscisic Acid and the Control of Seed Dormancy and Germination. Seed Sci. Res. 2010, 20, 55–67. [Google Scholar] [CrossRef]
- Gfeller, F.; Svejda, F. Inheritance of post-harvest seed dormancy and kernel colour in spring wheat lines. Can. J. Plant Sci. 1960, 40, 1–6. [Google Scholar] [CrossRef]
- Himi, E.; Mares, D.J.; Yanagisawa, A.; Noda, K. Effect of Grain Colour Gene (R) on Grain Dormancy and Sensitivity of the Embryo to Abscisic Acid (ABA) in Wheat. J. Exp. Bot. 2002, 53, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Barron, C.; Surget, A.; Rouau, X. Relative Amounts of Tissues in Mature Wheat (Triticum aestivum L.) Grain and Their Carbohydrate and Phenolic Acid Composition. J. Cereal Sci. 2007, 45, 88–96. [Google Scholar] [CrossRef]
- Lachman, J.; Martinek, P.; Kotíková, Z.; Orsák, M.; Šulc, M. Genetics and Chemistry of Pigments in Wheat Grain—A Review. J. Cereal Sci. 2017, 74, 145–154. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Liu, J.; Huang, T.; Zhang, X.; Xie, H.; Guo, Y.; Wang, Q.; Zhang, P.; Qin, P. Grain Color Formation and Analysis of Correlated Genes by Metabolome and Transcriptome in Different Wheat Lines at Maturity. Front. Nutr. 2023, 10, 1112497. [Google Scholar] [CrossRef]
- Neill, S.O.; Gould, K.S. Anthocyanins in Leaves: Light Attenuators or Antioxidants? Funct. Plant Biol. 2003, 30, 865. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen Radical Absorbing Capacity of Anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Plaza, B.M.; Jiménez, S.; Segura, M.L.; Contreras, J.I.; Lao, M.T. Physiological Stress Caused by Salinity in Cordyline fruticosa and Its Indicators. Commun. Soil Sci. Plant Anal. 2009, 40, 473–484. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Gordeeva, E.I.; Arbuzova, V.S.; Khlestkina, E.K. Anthocyanins Participate in Protection of Wheat Seedlings from Osmotic Stress. Cereal Res. Commun. 2017, 45, 47–56. [Google Scholar] [CrossRef]
- Himi, E.; Matsuura, T.; Miura, H.; Yoshihara, N.; Maekawa, M. A New Method for Detecting Proanthocyanidin Content in Wheat Reveals the Relationship between R-1 Gene to Grain Color Deepness. Cereal Chem. 2023, 100, 512–521. [Google Scholar] [CrossRef]
- Lang, J.; Fu, Y.; Zhou, Y.; Cheng, M.; Deng, M.; Li, M.; Zhu, T.; Yang, J.; Guo, X.; Gui, L.; et al. Myb10-D Confers PHS-3D Resistance to Pre-harvest Sprouting by Regulating NCED in ABA Biosynthesis Pathway of Wheat. New Phytol. 2021, 230, 1940–1952. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.H.; Sun, Y.W.; Xiao, Y.G.; Xia, L.Q. Characterization of DFR Allelic Variations and Their Associations with Pre-Harvest Sprouting Resistance in a Set of Red-Grained Chinese Wheat Germplasm. Euphytica 2014, 195, 197–207. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, L.-X.; Chen, X.-J.; Cao, J.-J.; Wu, Z.-Y.; Liu, K.; Zhang, C.; Wei, W.-X.; Xie, H.-Y.; Li, L.; et al. A Novel 33-Bp Insertion in the Promoter of TaMFT-3A Is Associated with Pre-Harvest Sprouting Resistance in Common Wheat. Mol. Breed. 2018, 38, 69. [Google Scholar] [CrossRef]
- Vetch, J.M.; Stougaard, R.N.; Martin, J.M.; Giroux, M. Allelic Impacts of TaPHS1, TaMKK3, and Vp1B3 on Preharvest Sprouting of Northern Great Plains Winter Wheats. Crop Sci. 2019, 59, 140–150. [Google Scholar] [CrossRef]
- Torada, A.; Koike, M.; Ogawa, T.; Takenouchi, Y.; Tadamura, K.; Wu, J.; Matsumoto, T.; Kawaura, K.; Ogihara, Y. A Causal Gene for Seed Dormancy on Wheat Chromosome 4A Encodes a MAP Kinase Kinase. Curr. Biol. 2016, 26, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Abe, F.; Kawahigashi, H.; Nakazono, K.; Tagiri, A.; Matsumoto, T.; Utsugi, S.; Ogawa, T.; Handa, H.; Ishida, H.; et al. A Wheat Homolog of MOTHER OF FT AND TFL1 Acts in the Regulation of Germination. Plant Cell 2011, 23, 3215–3229. [Google Scholar] [CrossRef]
- Fakthongphan, J.; Bai, G.; St. Amand, P.; Graybosch, R.A.; Baenziger, P.S. Identification of Markers Linked to Genes for Sprouting Tolerance (Independent of Grain Color) in Hard White Winter Wheat (HWWW). Theor. Appl. Genet. 2016, 129, 419–430. [Google Scholar] [CrossRef]
- Liu, S.; Cai, S.; Graybosch, R.; Chen, C.; Bai, G. Quantitative Trait Loci for Resistance to Pre-Harvest Sprouting in US Hard White Winter Wheat Rio Blanco. Theor. Appl. Genet. 2008, 117, 691–699. [Google Scholar] [CrossRef]
- Fedyaeva, A.; Afonnikova, S.; Afonnikov, D.; Smirnova, O.; Deeva, V.; Pryanishnikov, A.; Salina, E. Biochemical, Genetic and Grain Digital Evaluation of Soft Winter Wheat Varieties with Different Germination Index. Russ. J. Plant Physiol. 2024, 71. in press. [Google Scholar]
- Dencic, S.; DePauw, R.; Kobiljski, B.; Momcilovic, V. Hagberg Falling Number and Rheological Properties of Wheat Cultivars in Wet and Dry Preharvest Periods. Plant Prod. Sci. 2013, 16, 342–351. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.L.; Meng, J.Y.; Zhang, Y.J.; He, Z.H.; Yang, Y. Characterization of Tamyb10 Allelic Variants and Development of STS Marker for Pre-Harvest Sprouting Resistance in Chinese Bread Wheat. Mol. Breed. 2016, 36, 148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cui, G.; Bai, X.; Ye, Z.; Zhang, S.; Xie, K.; Sun, F.; Zhang, C.; Xi, Y. Regulatory Network of Preharvest Sprouting Resistance Revealed by Integrative Analysis of mRNA, Noncoding RNA, and DNA Methylation in Wheat. J. Agric. Food Chem. 2021, 69, 4018–4035. [Google Scholar] [CrossRef] [PubMed]
- Fedyaeva, A.V.; Salina, E.A.; Shumny, V.K. Pre-Harvest Sprouting in Soft Winter Wheat (Triticum aestivum L.) and Evaluation Methods. Russ. J. Genet. 2023, 59, 1–11. [Google Scholar] [CrossRef]
- Albrecht, T.; Oberforster, M.; Kempf, H.; Ramgraber, L.; Schacht, J.; Kazman, E.; Zechner, E.; Neumayer, A.; Hartl, L.; Mohler, V. Genome-Wide Association Mapping of Preharvest Sprouting Resistance in a Diversity Panel of European Winter Wheats. J. Appl. Genet. 2015, 56, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Komyshev, E.; Genaev, M.; Afonnikov, D. Evaluation of the SeedCounter, A Mobile Application for Grain Phenotyping. Front. Plant Sci. 2017, 7, 1990. [Google Scholar] [CrossRef]
- Afonnikov, D.A.; Komyshev, E.G.; Efimov, V.M.; Genaev, M.A.; Koval, V.S.; Gierke, P.U.; Börner, A. Relationship between the Characteristics of Bread Wheat Grains, Storage Time and Germination. Plants 2021, 11, 35. [Google Scholar] [CrossRef]
- De Pauw, R.M.; McCAIG, T.N. Utilization of sodium hydroxide to assess kernel color and its inheritance in eleven spring wheat varieties. Can. J. Plant Sci. 1988, 68, 323–329. [Google Scholar] [CrossRef]
- Bassoi, M.C.; Flintham, J. Relationship between Grain Colour and Preharvest Sprouting-Resistance in Wheat. Pesqui. Agropecuária Bras. 2005, 40, 981–988. [Google Scholar] [CrossRef]
- Ram, M.S.; Dowell, F.E.; Seitz, L.; Lookhart, G. Development of Standard Procedures for a Simple, Rapid Test to Determine Wheat Color Class. Cereal Chem. 2002, 79, 230–237. [Google Scholar] [CrossRef]
- Rabieyan, E.; Bihamta, M.R.; Moghaddam, M.E.; Mohammadi, V.; Alipour, H. Genome-Wide Association Mapping and Genomic Prediction for Pre-harvest Sprouting Resistance, Low α-Amylase and Seed Color in Iranian Bread Wheat. BMC Plant Biol. 2022, 22, 300. [Google Scholar] [CrossRef]
- Yan, S.; Yu, Z.; Gao, W.; Wang, X.; Cao, J.; Lu, J.; Ma, C.; Chang, C.; Zhang, H. Dissecting the Genetic Basis of Grain Color and Pre-Harvest Sprouting Resistance in Common Wheat by Association Analysis. J. Integr. Agric. 2023, 22, 2617–2631. [Google Scholar] [CrossRef]
- Yiwen, H.; Xuran, D.; Hongwei, L.; Shuo, Y.; Chunyan, M.; Liqiang, Y.; Guangjun, Y.; Li, Y.; Yang, Z.; Hongjie, L.; et al. Identification of Effective Alleles and Haplotypes Conferring Pre-Harvest Sprouting Resistance in Winter Wheat Cultivars. BMC Plant Biol. 2022, 22, 326. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Zhang, Y.; Li, M.; Xu, D.; Tian, X.; Song, J.; Luo, X.; Xie, L.; Wang, D.; et al. Genome-Wide Linkage Mapping for Preharvest Sprouting Resistance in Wheat Using 15K Single-Nucleotide Polymorphism Arrays. Front. Plant Sci. 2021, 12, 749206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, S.; Wei, W.; Xie, H.; Liu, K.; Zhang, C.; Wu, Z.; Jiang, H.; Cao, J.; Zhao, L.; et al. Genome-Wide Association Study of Pre-Harvest Sprouting Tolerance Using a 90K SNP Array in Common Wheat (Triticum aestivum L.). Theor. Appl. Genet. 2019, 132, 2947–2963. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, G.; Guo, X.; Chi, S.; Yu, H.; Jin, K.; Huang, H.; Wang, D.; Wu, C.; Tian, J.; et al. Genetic Dissection of Protein and Starch during Wheat Grain Development Using QTL Mapping and GWAS. Front. Plant Sci. 2023, 14, 1189887. [Google Scholar] [CrossRef]
- Jiang, Y.-F.; Wang, J.-R.; Luo, W.; Wei, Y.-M.; Qi, P.-F.; Liu, Y.-X.; Jiang, Q.-T.; Peng, Y.-Y.; Chen, G.-Y.; Dai, S.-F.; et al. Quantitative Trait Locus Mapping for Seed Dormancy in Different Post-Ripening Stages in a Tibetan Semi-Wild Wheat (Triticum aestivum ssp. tibetanum Shao). Euphytica 2015, 203, 557–567. [Google Scholar] [CrossRef]
- Izydorczyk, C.; Nguyen, T.; Jo, S.; Son, S.; Tuan, P.A.; Ayele, B.T. Spatiotemporal Modulation of Abscisic Acid and Gibberellin Metabolism and Signalling Mediates the Effects of Suboptimal and Supraoptimal Temperatures on Seed Germination in Wheat (Triticum aestivum L.). Plant Cell Environ. 2018, 41, 1022–1037. [Google Scholar] [CrossRef]
- Abe, F.; Haque, E.; Hisano, H.; Tanaka, T.; Kamiya, Y.; Mikami, M.; Kawaura, K.; Endo, M.; Onishi, K.; Hayashi, T.; et al. Genome-Edited Triple-Recessive Mutation Alters Seed Dormancy in Wheat. Cell Rep. 2019, 28, 1362–1369.e4. [Google Scholar] [CrossRef]
- Arif, M.A.R.; Komyshev, E.G.; Genaev, M.A.; Koval, V.S.; Shmakov, N.A.; Börner, A.; Afonnikov, D.A. QTL Analysis for Bread Wheat Seed Size, Shape and Color Characteristics Estimated by Digital Image Processing. Plants 2022, 11, 2105. [Google Scholar] [CrossRef] [PubMed]
- Kuchel, H.; Langridge, P.; Mosionek, L.; Williams, K.; Jefferies, S.P. The Genetic Control of Milling Yield, Dough Rheology and Baking Quality of Wheat. Theor. Appl. Genet. 2006, 112, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Pozniak, C.J.; Knox, R.E.; Clarke, F.R.; Clarke, J.M. Identification of QTL and Association of a Phytoene Synthase Gene with Endosperm Colour in Durum Wheat. Theor. Appl. Genet. 2007, 114, 525–537. [Google Scholar] [CrossRef]
- Bargsten, J.W.; Nap, J.-P.; Sanchez-Perez, G.F.; Van Dijk, A.D. Prioritization of Candidate Genes in QTL Regions Based on Associations between Traits and Biological Processes. BMC Plant Biol. 2014, 14, 330. [Google Scholar] [CrossRef]
- Brown, A.V.; Grant, D.; Nelson, R.T. Using Crop Databases to Explore Phenotypes: From QTL to Candidate Genes. Plants 2021, 10, 2494. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, A.A.; Leonova, I.N.; Pshenichnikova, T.A.; Salina, E.A. Dissection of Novel Candidate Genes for Grain Texture in Russian Wheat Varieties. Plant Mol. Biol. 2020, 104, 219–233. [Google Scholar] [CrossRef]
- Tandayu, E.; Borpatragohain, P.; Mauleon, R.; Kretzschmar, T. Genome-Wide Association Reveals Trait Loci for Seed Glucosinolate Accumulation in Indian Mustard (Brassica juncea L.). Plants 2022, 11, 364. [Google Scholar] [CrossRef]
- Cabral, A.L.; Jordan, M.C.; McCartney, C.A.; You, F.M.; Humphreys, D.G.; MacLachlan, R.; Pozniak, C.J. Identification of Candidate Genes, Regions and Markers for Pre-Harvest Sprouting Resistance in Wheat (Triticum aestivum L.). BMC Plant Biol. 2014, 14, 340. [Google Scholar] [CrossRef] [PubMed]
- Kishchenko, O.; Zhou, Y.; Jatayev, S.; Shavrukov, Y.; Borisjuk, N. Gene Editing Applications to Modulate Crop Flowering Time and Seed Dormancy. aBIOTECH 2020, 1, 233–245. [Google Scholar] [CrossRef]
- Fan, X.; Liu, X.; Feng, B.; Zhou, Q.; Deng, G.; Long, H.; Cao, J.; Guo, S.; Ji, G.; Xu, Z.; et al. Construction of a Novel Wheat 55 K SNP Array-Derived Genetic Map and Its Utilization in QTL Mapping for Grain Yield and Quality Related Traits. Front. Genet. 2022, 13, 978880. [Google Scholar] [CrossRef]
- Mrva, K.; Wallwork, M.; Mares, D.J. α-Amylase and Programmed Cell Death in Aleurone of Ripening Wheat Grains. J. Exp. Bot. 2006, 57, 877–885. [Google Scholar] [CrossRef]
- Campo, S.; San Segundo, B. Systemic Induction of Phosphatidylinositol-Based Signaling in Leaves of Arbuscular Mycorrhizal Rice Plants. Sci. Rep. 2020, 10, 15896. [Google Scholar] [CrossRef] [PubMed]
- Montag, K.; Hornbergs, J.; Ivanov, R.; Bauer, P. Phylogenetic Analysis of Plant Multi-Domain SEC14-like Phosphatidylinositol Transfer Proteins and Structure–Function Properties of PATELLIN2. Plant Mol. Biol. 2020, 104, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Abd-Hamid, N.-A.; Ahmad-Fauzi, M.-I.; Zainal, Z.; Ismail, I. Diverse and Dynamic Roles of F-Box Proteins in Plant Biology. Planta 2020, 251, 68. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.P.Y.; Wang, L.; Lui, A.C.W.; Liu, H.; Umezawa, T.; Tobimatsu, Y.; Lo, C. Flavonoids in Major Cereal Grasses: Distribution, Functions, Biosynthesis, and Applications. Phytochem. Rev. 2023, 22, 1399–1438. [Google Scholar] [CrossRef]
- Park, S.; Kim, D.-H.; Park, B.-R.; Lee, J.-Y.; Lim, S.-H. Molecular and Functional Characterization of Oryza Sativa Flavonol Synthase (OsFLS), a Bifunctional Dioxygenase. J. Agric. Food Chem. 2019, 67, 7399–7409. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Kim, J.H.; Kwon, J.; Jeong, C.Y.; Lee, W.; Lee, D.; Hong, S.-W.; Lee, H. Characterization of Arabidopsis Thaliana FLAVONOL SYNTHASE 1 (FLS1)-Overexpression Plants in Response to Abiotic Stress. Plant Physiol. Biochem. 2016, 103, 133–142. [Google Scholar] [CrossRef]
- Khoo, H.-E.; Prasad, K.N.; Kong, K.-W.; Jiang, Y.; Ismail, A. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules 2011, 16, 1710–1738. [Google Scholar] [CrossRef]
- Qin, X.; Fischer, K.; Yu, S.; Dubcovsky, J.; Tian, L. Distinct Expression and Function of Carotenoid Metabolic Genes and Homoeologs in Developing Wheat Grains. BMC Plant Biol. 2016, 16, 155. [Google Scholar] [CrossRef] [PubMed]
- Flowerika; Alok, A.; Kumar, J.; Thakur, N.; Pandey, A.; Pandey, A.K.; Upadhyay, S.K.; Tiwari, S. Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0162443. [Google Scholar] [CrossRef]
- Colasuonno, P.; Gadaleta, A.; Giancaspro, A.; Nigro, D.; Giove, S.; Incerti, O.; Mangini, G.; Signorile, A.; Simeone, R.; Blanco, A. Development of a High-Density SNP-Based Linkage Map and Detection of Yellow Pigment Content QTLs in Durum Wheat. Mol. Breed. 2014, 34, 1563–1578. [Google Scholar] [CrossRef]
- Maass, D.; Arango, J.; Wüst, F.; Beyer, P.; Welsch, R. Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels. PLoS ONE 2009, 4, e6373. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.; Li, G.; Sun, Y.; Song, J.; Li, J.; Song, G.; Li, Y.; Ling, H.; He, Z.; Xia, X. Genetic Analysis of Phytoene Synthase 1 (Psy1) Gene Function and Regulation in Common Wheat. BMC Plant Biol. 2016, 16, 228. [Google Scholar] [CrossRef]
- Shcherban, A.B.; Kuvaeva, D.D.; Mitrofanova, O.P.; Khverenets, S.E.; Pryanishnikov, A.I.; Salina, E.A. Targeting the B1 Gene and Analysis of Its Polymorphism Associated with Awned/Awnless Trait in Russian Germplasm Collections of Common Wheat. Plants 2021, 10, 2285. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Hagberg, S. A Rapid Method for Determining Alpha-Amylase Activity. Cereal Chem. 1960, 37, 218–222. [Google Scholar]
- Walker-Simmons, M. Enhancement of ABA Responsiveness in Wheat Embryos by High Temperature. Plant Cell Environ. 1988, 11, 769–775. [Google Scholar] [CrossRef]
- Komyshev, E.G.; Genaev, M.A.; Afonnikov, D.A. Analysis of Color and Texture Characteristics of Cereals on Digital Images. Vavilov J. Genet. Breed. 2020, 24, 340–347. [Google Scholar] [CrossRef]
- Polunin, D.; Shtaiger, I.; Efimov, V. JACOBI4 Software for Multivariate Analysis of Biological Data. bioRxiv 2019, 803684. [Google Scholar] [CrossRef]
- Skolotneva, E.S.; Leonova, I.N.; Bukatich, E.Y.; Salina, E.A. Methodical Approaches to Identification of Effective Wheat Genes Providing Broad-Spectrum Resistance against Fungal Diseases. Vavilov J. Genet. Breed. 2017, 21, 862–869. [Google Scholar] [CrossRef]
- Himi, E.; Maekawa, M.; Miura, H.; Noda, K. Development of PCR Markers for Tamyb10 Related to R-1, Red Grain Color Gene in Wheat. Theor. Appl. Genet. 2011, 122, 1561–1576. [Google Scholar] [CrossRef]
- Plaschke, J.; Ganal, M.W.; Röder, M.S. Detection of Genetic Diversity in Closely Related Bread Wheat Using Microsatellite Markers. Theor. Appl. Genet. 1995, 91, 1001–1007. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Frichot, E.; François, O. LEA: An R Package for Landscape and Ecological Association Studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A Memory-Efficient, Visualization-Enhanced, and Parallel-Accelerated Tool for Genome-Wide Association Study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Warnes, G.; Warnes, M.G. The genetics package. Locus 2007, 26, 1. [Google Scholar]
- Shin, J.-H.; Blay, S.; Graham, J.; McNeney, B. LDheatmap: An R Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. J. Stat. Softw. 2006, 16, 1–9. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, L.; Rimbert, H.; Rodriguez, J.C.; Deal, K.R.; De Oliveira, R.; Choulet, F.; Keeble-Gagnère, G.; Tibbits, J.; Rogers, J.; et al. Optical Maps Refine the Bread Wheat Triticum aestivum Cv. Chinese Spring Genome Assembly. Plant J. 2021, 107, 303–314. [Google Scholar] [CrossRef]
- Hassani-Pak, K.; Singh, A.; Brandizi, M.; Hearnshaw, J.; Parsons, J.D.; Amberkar, S.; Phillips, A.L.; Doonan, J.H.; Rawlings, C. KnetMiner: A Comprehensive Approach for Supporting Evidence-based Gene Discovery and Complex Trait Analysis across Species. Plant Biotechnol. J. 2021, 19, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-González, R.H.; Borrill, P.; Lang, D.; Harrington, S.A.; Brinton, J.; Venturini, L.; Davey, M.; Jacobs, J.; Van Ex, F.; Pasha, A.; et al. The Transcriptional Landscape of Polyploid Wheat. Science 2018, 361, eaar6089. [Google Scholar] [CrossRef] [PubMed]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef] [PubMed]
- Aramaki, T.; Blanc-Mathieu, R.; Endo, H.; Ohkubo, K.; Kanehisa, M.; Goto, S.; Ogata, H. KofamKOALA: KEGG Ortholog Assignment Based on Profile HMM and Adaptive Score Threshold. Bioinformatics 2020, 36, 2251–2252. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
Trait | Marker | Chr | Position RefSeq2, bp | p-Value | H&B Corrected p-Value | Allele | Effect | Explained Variance, % |
---|---|---|---|---|---|---|---|---|
PHS-related traits | ||||||||
GI_milk | AX-95172164 | 1B | 630,723,427 | 3.34 × 10−8 | 3.3 × 10−4 | G | −0.09 | 24.1 |
BS00094471_51 | 1D | 60,703,757 | 2.70 × 10−6 | 1.5 × 10−2 | G | −0.06 | ||
AX-94469815 | 4A | 616,122,007 | 7.82 × 10−6 | 2.6 × 10−2 | G | 0.05 | ||
Kukri_c38732_246 | 6B | 157,204,861 | 3.46 × 10−6 | 1.5 × 10−2 | G | 0.05 | ||
Kukri_c109962_396 | 7B | 26,387,277 | 3.67 × 10−6 | 1.5 × 10−2 | G | 0.06 | ||
AX-158544327 1 | 7D | 40,278,555 1 | 8.46 × 10−11 | 1.7 × 10−6 | T | −0.12 | 25.3 | |
Grain color traits | ||||||||
YCrCb_dCCr_1 | BS00075001_51 | 1D | 416,729,513 | 7.08 × 10−9 | 1.4 × 10−4 | G | 1.07 | 31.7 |
RGB_dCR_1 | wsnp_Ex_rep_c66423_64641115 | 1D | 417,833,476 | 3.77 × 10−7 | 7.5 × 10−3 | T | 4.27 | 24.0 |
HSV_dCV_1 | Excalibur_c48317_242 | 1D | 418,514,802 | 1.05 × 10−7 | 2.1 × 10−3 | T | −4.14 | 50.0 |
Lab_dCb_1 | 1D | 418,514,802 | 1.15 × 10−8 | 2.3 × 10−4 | T | −1.40 | 50.0 | |
YCrCb_dCCb_1 | 1D | 418,514,802 | 8.95 × 10−9 | 1.8 × 10−4 | T | 1.41 | 50.0 | |
Lab_dCL_1 | wsnp_Ex_c54357_57265797 | 3B | 150,293,422 | 1.42 × 10−6 | 1.4 × 10−2 | G | −2.31 | 16.2 |
YCrCb_dCY_1 | 3B | 150,293,422 | 7.88 × 10−7 | 5.9 × 10−3 | G | −2.28 | 16.9 | |
HSV_dCV_1 | Ku_c27771_508 | 3B | 508,816,336 | 3.46 × 10−6 | 3.4 × 10−2 | T | −4.23 | |
Lab_dCL_1 | 3B | 508,816,336 | 1.12 × 10−6 | 1.4 × 10−2 | T | −3.55 | 27.9 | |
RGB_dCR_1 | 3B | 508,816,336 | 1.31 × 10−6 | 1.3 × 10−2 | T | −4.29 | 25.3 | |
YCrCb_dCY_1 | 3B | 508,816,336 | 8.97 × 10−7 | 5.9 × 10−3 | T | −3.38 | 31.1 | |
YCrCb_dCCr_1 | GENE-3601_145 | 5A | 582,358,406 | 1.11 × 10−6 | 1.1 × 10−2 | T | −0.98 | 22.8 |
YCrCb_dCY_1 | Excalibur_c81824_411 | 7B | 752,467,841 | 2.72 × 10−7 | 5.4 × 10−3 | T | −2.08 | 13.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonnikova, S.D.; Kiseleva, A.A.; Fedyaeva, A.V.; Komyshev, E.G.; Koval, V.S.; Afonnikov, D.A.; Salina, E.A. Identification of Novel Loci Precisely Modulating Pre-Harvest Sprouting Resistance and Red Color Components of the Seed Coat in T. aestivum L. Plants 2024, 13, 1309. https://doi.org/10.3390/plants13101309
Afonnikova SD, Kiseleva AA, Fedyaeva AV, Komyshev EG, Koval VS, Afonnikov DA, Salina EA. Identification of Novel Loci Precisely Modulating Pre-Harvest Sprouting Resistance and Red Color Components of the Seed Coat in T. aestivum L. Plants. 2024; 13(10):1309. https://doi.org/10.3390/plants13101309
Chicago/Turabian StyleAfonnikova, Svetlana D., Antonina A. Kiseleva, Anna V. Fedyaeva, Evgenii G. Komyshev, Vasily S. Koval, Dmitry A. Afonnikov, and Elena A. Salina. 2024. "Identification of Novel Loci Precisely Modulating Pre-Harvest Sprouting Resistance and Red Color Components of the Seed Coat in T. aestivum L." Plants 13, no. 10: 1309. https://doi.org/10.3390/plants13101309
APA StyleAfonnikova, S. D., Kiseleva, A. A., Fedyaeva, A. V., Komyshev, E. G., Koval, V. S., Afonnikov, D. A., & Salina, E. A. (2024). Identification of Novel Loci Precisely Modulating Pre-Harvest Sprouting Resistance and Red Color Components of the Seed Coat in T. aestivum L. Plants, 13(10), 1309. https://doi.org/10.3390/plants13101309