Response of Functional Traits of Aquatic Plants to Water Depth Changes under Short-Term Eutrophic Clear-Water Conditions: A Mesocosm Study
Abstract
:1. Introduction
2. Results
2.1. Water Physico-Chemical Parameters, Periphyton Biomass, and Phytoplankton Biomass
2.2. Effects of Water Depth on Plant Function Traits
2.3. Species Variation of Functional Traits in 20 Aquatic Plants
2.4. Relationship between Functional Traits of Vertical Growth and Horizontal Expansion
2.5. Relationship between Aquatic Plants and Periphyton Traits
3. Discussion
3.1. Water Depth Impacts on Plant Traits
3.2. Trade-Offs between Plant Functional Traits
3.3. Shallow Lake Restoration with Aquatic Plants
4. Materials and Methods
4.1. Experimental Materials and Design
4.2. Sampling Methods
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeppesen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K. The Structuring Role of Submerged Macrophytes in Lakes; Springer: New York, NY, USA, 1998. [Google Scholar]
- Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative Equilibria in Shallow Lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global Loss of Aquatic Vegetation in Lakes. Earth-Sci. Rev. 2017, 173, S0012825217304294. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Rajamanickam, S.; Sivarethinamohan, S.; Reddy, M.K.; Velusamy, P.; Gomathi, R.; Ravindiran, G.; Gurugubelli, T.R.; Munisamy, S.K. Impact of Climate Change and Anthropogenic Activities on Aquatic Ecosystem—A Review. Environ. Res. 2023, 238, 117233. [Google Scholar]
- Brouwer, E.; Bobbink, R.; Roelofs, J.G.M. Restoration of Aquatic Macrophyte Vegetation in Acidified and Eutrophied Softwater Lakes: An Overview. Aquat. Bot. 2002, 73, 405–431. [Google Scholar] [CrossRef]
- Chen, K.N.; Bao, C.H.; Zhou, W.P. Ecological Restoration in Eutrophic Lake Wuli: A Large Enclosure Experiment. Ecol. Eng. 2009, 35, 1646–1655. [Google Scholar] [CrossRef]
- Grutters, B.M.C.; Gross, E.M.; van Donk, E.; Bakker, E.S. Periphyton Density Is Similar on Native and Non-Native Plant Species. Freshw. Biol. 2017, 62, 906–915. [Google Scholar] [CrossRef]
- Short, F.T.; Kosten, S.; Morgan, P.A.; Malone, S.; Moore, G.E. Impacts of Climate Change on Submerged and Emergent Wetland Plants. Aquat. Bot. 2016, 135, 3–17. [Google Scholar] [CrossRef]
- Xue, S.M.; Jiang, S.Q.; Li, R.Z.; Jiao, Y.Y.; Kang, Q.; Zhao, L.Y.; Li, Z.H.; Chen, M. The Decomposition of Algae Has a Greater Impact on Heavy Metal Transformation in Freshwater Lake Sediments Than That of Macrophytes. Sci. Total Environ. 2024, 906, 167752. [Google Scholar] [CrossRef]
- Richardson, D.; Holmes, P.; Esler, K.; Galatowitsch, S.; Stromberg, J.; Kirkman, S.; Pysek, P.; Hobbs, R. Riparian Vegetation: Degradation, Alien Plant Invasions, and Restoration Prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Saqrane, S.; Oudra, B. Cyanobacterial Toxins: A Short Review on Phytotoxic Effect in an Aquatic Environment. Afr. J. Environ. Sci. Technol. 2011, 5, 1146–1151. [Google Scholar] [CrossRef]
- Nielsen, S.R.; Martinsen, K.T.; Pedersen, O.; Baastrup-Spohr, L. Reasons for the Dramatic Loss of Lobelia dortmanna, a Keystone Plant Species of Softwater Lakes in the Northern Hemisphere. Freshw. Biol. 2023, 68, 1673–1684. [Google Scholar] [CrossRef]
- Ansari, A.A.; Singh, G.S.; Lanza, G.R.; Rast, W. (Eds.) Eutrophication: Causes, Consequences and Control; Springer: New York, NY, USA, 2010. [Google Scholar]
- Sun, J.; Doeser, A.; Cao, Y.; Lv, X.; Li, W.; Liu, F. Regional macrophyte diversity is shaped by accumulative effects across waterbody types in southern China. Aquat. Bot. 2022, 176, 103468. [Google Scholar] [CrossRef]
- Yu, D. Study on the Dynamics and Succession of Aquatic Plant Communities. J. Plant Ecol. 1994, 18, 372–378. (In Chinese) [Google Scholar]
- Moss, B.; Kosten, S.; Meerhoff, M.; Battarbee, R.W.; Jeppesen, E.; Mazzeo, N.; Havens, K.; Lacerot, G.; Liu, Z.; Meester, L.D. Allied Attack: Climate Change and Eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef]
- Cao, Y.; Olsen, S.; Gutierrez, M.F.; Brucet, S.; Davidson, T.A.; Li, W.; Lauridsen, T.L.; Søndergaard, M.; Jeppesen, E. Temperature Effects on Periphyton, Epiphyton and Epipelon under a Nitrogen Pulse in Low-Nutrient Experimental Freshwater Lakes. Hydrobiologia 2017, 795, 267–279. [Google Scholar] [CrossRef]
- Phillips, G.L.; Eminson, D.; Moss, B. A Mechanism to Account for Macrophyte Decline in Progressively Eutrophicated Freshwaters. Aquat. Bot. 1978, 4, 103–126. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Jeppesen, E.; Wei, L. The Response of Vallisneria spinulosa (Hydrocharitaceae) and Plankton to Pulse Addition of Inorganic Nitrogen with Different Loading Patterns. Hydrobiologia 2016, 767, 175–184. [Google Scholar] [CrossRef]
- Strand, J.A.; Weisner, S.E.B. Morphological Plastic Responses to Water Depth and Wave Exposure in an Aquatic Plant (Myriophyllum spicatum). J. Ecol. 2001, 89, 166–175. [Google Scholar] [CrossRef]
- Fu, H.; Zhong, J.; Yuan, G.; Ni, L.; Xie, P.; Cao, T. Functional Traits Composition Predict Macrophytes Community Productivity along a Water Depth Gradient in a Freshwater Lake. Ecol. Evol. 2014, 4, 1516–1523. [Google Scholar] [CrossRef]
- Fu, H.; Zhong, J.; Yuan, G.; Xie, P.; Guo, L.; Zhang, X.; Xu, J.; Li, Z.; Li, W.; Zhang, M. Trait-Based Community Assembly of Aquatic Macrophytes along a Water Depth Gradient in a Freshwater Lake. Freshw. Biol. 2015, 59, 2462–2471. [Google Scholar] [CrossRef]
- Kisand, A.; Nõges, P. Sediment Phosphorus Release in Phytoplankton Dominated versus Macrophyte Dominated Shallow Lakes: Importance of Oxygen Conditions. Hydrobiologia 2003, 506–509, 129–133. [Google Scholar] [CrossRef]
- Pacheco, J.P.; Aznarez, C.; Meerhoff, M.; Liu, Y.; Li, W.; Baattrup-Pedersen, A.; Cao, Y.; Jeppesen, E. Small-Sized Omnivorous Fish Induce Stronger Effects on Food Webs than Warming and Eutrophication in Experimental Shallow Lakes. Sci. Total Environ. 2021, 797, 148998. [Google Scholar] [CrossRef] [PubMed]
- Dorenbosch, M.; Bakker, E.S. Effects of Contrasting Omnivorous Fish on Submerged Macrophyte Biomass in Temperate Lakes: A Mesocosm Experiment. Freshw. Biol. 2012, 57, 1360–1372. [Google Scholar] [CrossRef]
- Grime, J.P. Vegetation Classification by Reference to Strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- Shipley, B.; Laughlin, D.C.; Sonnier, G.; Otfinowski, R. A Strong Test of a Maximum Entropy Model of Trait-Based Community Assembly. Ecology 2011, 92, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Guo, D.; Xu, X.; Lu, M.; Bardgett, R.D.; Eissenstat, D.M.; Mccormack, M.L.; Hedin, L.O. Erratum: Evolutionary History Resolves Global Organization of Root Functional Traits. Nature 2018, 555, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Mark, W.; Ackerly, D.D.; Zdravko, B.; Frans, B.; Jeannine, C.B.; Terry, C.; Cornelissen, J.H.C.; Matthias, D. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821. [Google Scholar] [CrossRef] [PubMed]
- Weiher, E.; Werf, A.v.d.; Thompson, K.; Roderick, M.; Garnier, E.; Eriksson, O. Challenging Theophrastus: A Common Core List of Plant Traits for Functional Ecology. J. Veg. Sci. 1999, 10, 609–620. [Google Scholar] [CrossRef]
- Funk, J.L.; Cleland, E.E.; Suding, K.N.; Zavaleta, E.S. Restoration through Reassembly: Plant Traits and Invasion Resistance. Trends Ecol. Evol. 2008, 23, 695–703. [Google Scholar] [CrossRef]
- Wei, H.; Cheng, S.; Tang, H.; He, F.; Liang, W.; Wu, Z. The Strategies of Morphology, Reproduction and Carbohydrate Metabolism of Hydrilla verticillata (Linn.f.) Royle in Fluctuating Waters. Fresenius Environ. Bull. 2013, 22, 2590–2596. [Google Scholar]
- Rolon, A.S.; Maltchik, L. Environmental Factors as Predictors of Aquatic Macrophyte Richness and Composition in Wetlands of Southern Brazil. Hydrobiologia 2006, 556, 221–231. [Google Scholar] [CrossRef]
- Barko, J.W.; Adams, M.S.; Clesceri, N.L. Environmental Factors and Their Consideration in the Management of Submersed Aquatic Vegetation: A Review. J. Aquat. Plant Manag. 1986, 24, 1–10. [Google Scholar]
- Wang, T.; Fang, L.; Wang, C.; Liu, C.; Yu, D.; Li, H. Water Depth Rather than Substrate Heterogeneity Affects the Clonal Performance of the Stoloniferous Submerged Plant, Vallisneria spiralis L. Flora Morphol. Distrib. Funct. Ecol. Plants 2022, 287, 151995. [Google Scholar] [CrossRef]
- Zhou, N.; Hu, W.; Deng, J.; Zhu, J.; Xu, W.; Liu, X. The Effects of Water Depth on the Growth and Reproduction of Potamogeton Crispus in an In Situ Experiment. J. Plant Ecol. 2016, 10, rtw048. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Q.; Xu, Y.S.; Yu, F.H. Effects of Water Level Fluctuation on the Growth of Submerged Macrophyte Communities. Flora 2016, 223, 83–89. [Google Scholar] [CrossRef]
- Middelboe, A.L.; Markager, S. Depth Limits and Minimum Light Requirements of Freshwater Macrophytes. Freshw. Biol. 1997, 37, 553–568. [Google Scholar] [CrossRef]
- Sand-Jensen, K. Epiphyte Shading: Its Role in Resulting Depth Distribution of Submerged Aquatic Macrophytes. Folia Geobot. Phytotaxon. 1990, 25, 315–320. [Google Scholar] [CrossRef]
- Laugaste, R.; Reunanen, M. The Composition and Density of Epiphyton on Some Macrophyte Species in the Partly Meromictic Lake Verevi. Hydrobiologia 2005, 547, 137–150. [Google Scholar] [CrossRef]
- Weisner, S.E.B.; Strand, J.A.; Sandsten, H. Mechanisms Regulating Abundance of Submerged Vegetation in Shallow Eutrophic Lakes. Oecologia 1997, 109, 592–599. [Google Scholar] [CrossRef]
- Jo, I.S.; Han, D.U.; Yong, J.C.; Lee, E.J. Effects of Light, Temperature, and Water Depth on Growth of a Rare Aquatic Plant, Ranunculus Kadzusensis. J. Plant Biol. 2010, 53, 88–93. [Google Scholar] [CrossRef]
- Li, F.L.; Bao, W.K. New Insights into Leaf and Fine-Root Trait Relationships: Implications of Resource Acquisition among 23 Xerophytic Woody Species. Ecol. Evol. 2015, 5, 5344–5351. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, H.; Chu, S.; Wong, M.H. Dynamic Remediation Test of Polluted River Water by Eco-Tank System. Environ. Technol. 2013, 34, 553–558. [Google Scholar] [CrossRef]
- Wersal, R.M.; Madsen, J.D. Comparative Effects of Water Level Variations on Growth Characteristics of Myriophyllum aquaticum. Weed Res. 2011, 51, 386–393. [Google Scholar] [CrossRef]
- Zhen, W.; Zhang, X.; Guan, B.; Yin, C.; Yu, J.; Jeppesen, E.; Zhao, X.; Liu, Z. Stocking of Herbivorous Fish in Eutrophic Shallow Clear-Water Lakes to Reduce Standing Height of Submerged Macrophytes While Maintaining Their Biomass. Ecol. Eng. 2018, 113, 61–64. [Google Scholar] [CrossRef]
- Gonzales Sagrario, M.A.; Jeppesen, E.; Gomà, J.; Søndergaard, M.; Jensen, J.P.; Lauridsen, T.; Landkildehus, F. Does High Nitrogen Loading Prevent Clear-Water Conditions in Shallow Lakes at Moderately High Phosphorus Concentrations? Freshw. Biol. 2005, 50, 27–41. [Google Scholar] [CrossRef]
- Trochine, C.; Guerrieri, M.E.; Liboriussen, L.; Lauridsen, T.L.; Jeppesen, E. Effects of Nutrient Loading, Temperature Regime and Grazing Pressure on Nutrient Limitation of Periphyton in Experimental Ponds. Freshw. Biol. 2014, 59, 905–917. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Attenuation of Light in Natural Waters. Mar. Freshw. Res. 1977, 28, 497–508. [Google Scholar] [CrossRef]
- Lorenzen, C.J. Determination of Chlorophyll and Pheopigments: Spectrophotometric Equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- Gran, G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 1952, 77, 945–947. [Google Scholar] [CrossRef]
- Grace, J.B. The Adaptive Significance of Clonal Reproduction in Angiosperms: An Aquatic Perspective. Aquat. Bot. 1993, 44, 159–180. [Google Scholar] [CrossRef]
- Barrett, S.C.H.; Eckert, C.G.; Husband, B.C. Evolutionary Processes in Aquatic Plant Populations. Aquat. Bot. 1993, 44, 105–145. [Google Scholar] [CrossRef]
- Wolfer, S.R.; Straile, D. Spatio-Temporal Dynamics and Plasticity of Clonal Architecture in Potamogeton perfoliatus. Aquat. Bot. 2004, 78, 307–318. [Google Scholar] [CrossRef]
Sampling Day | Temp (°C) | AP mmHg | DO mg L−1 | C µS cm−1 | TDSs mg L−1 | pH | Kd m−1 | Alk mmol L−1 | PhyChla mg L−1 | TN mg L−1 | TP μg L−1 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 25.60 ± 0.30 | 753 ± 0 | 5.72 ± 0.50 | 282 ± 13 | 207 ± 15 | 7.60 ± 0.05 | 1.20 ± 0.23 | 2.08 ± 0.10 | 14 ± 3.20 | 0.83 ± 0.27 | 60.40 ± 6.20 |
29 | 20.20 ± 0.30 | 761 ± 0.10 | 8.36 ± 1.20 | 331 ± 15 | 237 ± 11 | 8.60 ± 0.01 | 1.20 ± 0.14 | 1.52 ± 0.07 | 2.50 ± 0.30 | 5.18 ± 4.60 | 733 ± 326 |
50 | 17.80 ± 1.90 | 767 ± 0 | 12.52 ± 1.87 | 284 ± 15 | 215 ± 19 | 9.30 ± 0.41 | 1.60 ± 0.30 | 1.54 ± 0.23 | 2.80 ± 0.70 | 1.02 ± 0.72 | 91 ± 50 |
Life Form | Species Name | Leaf Length | Plant Height | Biomass | |||
---|---|---|---|---|---|---|---|
w | Sig. | w | Sig. | w | Sig. | ||
Emergent | Hydrocotyle vulgaris | 7.5 | NS | 6 | NS | 4 | NS |
Submerged | Cabomba caroliniana | 0 | NS | 3 | NS | 2 | NS |
Emergent Submerged | Myriophyllum aquaticum | 9 | * | 9 | * | 9 | * |
Myriophyllum aquaticum | 6 | NS | 6 | NS | 6 | NS | |
Submerged | Hydrilla verticillata | 0 | NS | 0 | * | 3 | NS |
Najas guadalupensis | 4.5 | NS | 6 | NS | 14 | NS | |
Vallisneria denseserrulata | 7 | NS | 3 | NS | 4 | NS | |
Emergent | Rotala rotundifolia | 3 | NS | 9 | NS | 3 | NS |
Emergent | Ludwigia ovalis | 1 | NS | 2 | NS | 0 | NS |
Ludwigia peploides subsp. stipulacea | 5 | NS | 12 | NS | 20 | * | |
Submerged | Potamogeton lucens | 18 | NS | 16 | NS | 14 | NS |
Potamogeton maackianus | 4.5 | NS | 4 | NS | 6 | NS | |
Potamogeton wrightii | 8 | NS | 2 | NS | 3 | NS | |
Emergent | Potamogeton wrightii | 12 | NS | 2 | NS | 8 | NS |
Submerged | Hygrophila salicifolia | 0 | NS | 1 | NS | 1.5 | NS |
Emergent | Limnophila indica | 4 | NS | 1 | NS | 0 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ndirangu, L.; Li, W.; Pan, J.; Cao, Y.; Jeppesen, E. Response of Functional Traits of Aquatic Plants to Water Depth Changes under Short-Term Eutrophic Clear-Water Conditions: A Mesocosm Study. Plants 2024, 13, 1310. https://doi.org/10.3390/plants13101310
Liu Y, Ndirangu L, Li W, Pan J, Cao Y, Jeppesen E. Response of Functional Traits of Aquatic Plants to Water Depth Changes under Short-Term Eutrophic Clear-Water Conditions: A Mesocosm Study. Plants. 2024; 13(10):1310. https://doi.org/10.3390/plants13101310
Chicago/Turabian StyleLiu, Yang, Leah Ndirangu, Wei Li, Junfeng Pan, Yu Cao, and Erik Jeppesen. 2024. "Response of Functional Traits of Aquatic Plants to Water Depth Changes under Short-Term Eutrophic Clear-Water Conditions: A Mesocosm Study" Plants 13, no. 10: 1310. https://doi.org/10.3390/plants13101310
APA StyleLiu, Y., Ndirangu, L., Li, W., Pan, J., Cao, Y., & Jeppesen, E. (2024). Response of Functional Traits of Aquatic Plants to Water Depth Changes under Short-Term Eutrophic Clear-Water Conditions: A Mesocosm Study. Plants, 13(10), 1310. https://doi.org/10.3390/plants13101310