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Abstract: The growing issue of salinity is a significant threat to global agriculture, affecting diverse
regions worldwide. Nitric oxide (NO) serves as an essential signal molecule in regulating pho-
tosynthetic performance under physiological and stress conditions. The present study reveals the
protective effects of different concentrations (0–300 µM) of sodium nitroprusside (SNP, a donor of NO)
on the functions of the main complexes within the photosynthetic apparatus of maize (Zea mays L.
Kerala) under salt stress (150 mM NaCl). The data showed that SNP alleviates salt-induced oxidative
stress and prevents changes in the fluidity of thylakoid membranes (Laurdan GP) and energy redis-
tribution between the two photosystems (77K chlorophyll fluorescence ratio F735/F685). Chlorophyll
fluorescence measurements demonstrated that the foliar spray with SNP under salt stress prevents
the decline of photosystem II (PSII) open reaction centers (qP) and improves their efficiency (Φexc),
thereby influencing QA

− reoxidation. The data also revealed that SNP protects the rate constants
for two pathways of QA

− reoxidation (k1 and k2) from the changes caused by NaCl treatment alone.
Additionally, there is a predominance of QA

− interaction with plastoquinone in comparison to the
recombination of electrons in QA QB

− with the oxygen-evolving complex (OEC). The analysis of
flash oxygen evolution showed that SNP treatment prevents a salt-induced 10% increase in PSII
centers in the S0 state, i.e., protects the initial S0–S1 state distribution, and the modification of the Mn
cluster in the OEC. Moreover, this study demonstrates that SNP-induced defense occurs on both the
donor and acceptor sides of the PSII, leading to the protection of overall photosystems performance
(PIABS) and efficient electron transfer from the PSII donor side to the reduction of PSI end electron
acceptors (PItotal). This study clearly shows that the optimal protection under salt stress occurs at
approximately 50–63 nmoles NO/g FW in leaves, corresponding to foliar spray with 50–150 µM SNP.

Keywords: chlorophyll fluorescence; photosystem II; oxygen-evolving complex; photosynthetic
function; membrane fluidity

1. Introduction

Numerous factors in the natural environment impact the growth and development
of plants [1]. Salinity, an abiotic factor, significantly influences crop productivity. Climate
changes are causing salinized regions to expand at a rate of 10% annually [2]. Salt stress
disrupts plant homeostasis via two mechanisms. Initially, high soil salt concentrations
hinder root water absorption [3], leading to stroma closure and reduced photosynthesis
efficiency [4]. The second phase of salt stress is triggered by harmful ions that damage the
structure and functions of cell membranes, causing growth inhibition and developmental
changes in plants [5]. These primary effects directly lead to oxidative stress, characterized
by the intense production and accumulation of reactive oxygen species (ROS, such as H2O2,
O2

•, OH, and 1O2), which harm proteins, lipids, and nucleic acids [3].
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The chloroplasts serve as the primary sites for generating ROS, a process that relies
on the interactions of light and chlorophylls. The major sites in chloroplasts that largely
produce ROS are photosystem I (PSI) and photosystem II (PSII) [6]. Increased ROS causes
oxidative injury to several photosynthetic enzymes and thylakoid membranes, which in
turn reduces CO2 uptake, slows down plant growth, and ultimately lowers crop yields. The
system for scavenging ROS comprises both enzymatic and non-enzymatic antioxidants [7].
The enzymatic antioxidants include superoxide dismutase (SOD), ascorbate peroxidase
(APX), guaiacol peroxidase (GPX), catalase (CAT), and glutathione reductase (GR). The
activity of these enzymes is essential for mitigating harmful ROS levels within cells [8].
Plants also adapt to elevated salt levels by enhancing their tissue osmotic potential by both
inorganic and organic solutes [7,9,10].

Photosynthesis, the primary source of materials and energy for plant growth and de-
velopment, is significantly affected by salinity [11,12]. This has sparked a growing interest
in enhancing photosynthetic tolerance to boost plant yields under stressful conditions [13].
When plants are exposed to salt stress, changes occur in the thylakoid membranes, key
components within the chloroplast responsible for photosynthetic light reactions. Salinity
alters the number and structural arrangement of chloroplasts, leading to an increase in
plastoglobules and a reduction in the thylakoids in granum in the leaf’s epidermal chloro-
plasts [14]. Such observations have been noted in various higher plants, including Sulla
coronaria [15], Thellungiella salsuginea [16], and Cucumis sativus [17]. Salt stress also affects
photosynthesis by altering different enzymes, leaf pigment content [18], and the structural
organization of the pigment–protein complexes in the thylakoid membranes. Changes have
been observed in the oxygen-evolving complex (OEC) [19–21], light-harvesting complex
of PSII (LHCII) [22–24], and D1 core protein of PSII [25–27]. These alterations impact the
electron transfer from QA to QB, inhibit OEC, and affect the rate of electron transport in the
thylakoid membranes [5,28–30].

Nitric oxide (NO) is a molecule with unpaired electrons, making it paramagnetic.
It possesses the capability to readily diffuse across membranes [31]. Currently, NO is
recognized as a crucial molecule that plays a role in redox signaling. It contributes to the
regulation of numerous physiological processes and plays a significant role in regulating
plant responses to abiotic stress [32,33]. Sodium nitroprusside (SNP) is a widely used NO
donor that is used to study the role of NO in plants under physiological conditions [34]
and to simulate the harmful environmental impact [35,36]. It has been shown that NO
influences seed germination, maintains water balance, regulates gene expression and
osmolyte accumulation, and enhances the activities of antioxidant enzymes in plants under
stress. Additionally, NO directly neutralizes ROS under stressful conditions [37,38].

Over the past decade, there has been considerable interest in clarifying the role of
NO in the salt tolerance of plants. NO donors can be applied to plants via spraying,
incorporation into irrigation water, or injection into leaf apoplasts [32]. The protective
role of NO, using an SNP donor under salinity, has been shown in different plants, such
as tomato [39], cucumber [40], orange [41], cotton [42], alfalfa [43], apple [44], wheat [45],
lentil [46], and sorghum [47]. Previous studies have revealed that the application of SNP
under salt stress alleviates salt-induced effects on the stomatal behavior, cell water status,
chlorophyll content, membrane damage, and membrane lipid peroxidation, and it also aids
in the accumulation of proline, phenolic compounds, and antioxidants in plants [48–50].

Nitric oxide also has a direct effect on the photosynthetic electron transport, with
binding sites within PSII. These include the non-heme iron located between the quinone
acceptors QA and QB, the Tyr YD residue, and the Mn cluster of OEC [51,52]. However,
data on the influence of NO on the photosynthetic machinery are quite contradictory. It has
been observed that the application of SNP (200–1000 µM) led to a decrease in the maximum
quantum efficiency of PSII (Fv/Fm) and the photochemical quenching (qP) in leaves of
pea and potato plants under non-stress conditions [53,54]. Previous research [55] showed
that SNP (100 µM) enhanced the maximum quantum efficiency of PSII (Fv/Fm) and the
effective quantum yield of PSII (ΦPSII) during the light-induced greening process in barley
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seedlings. It has also been shown that NO alleviated the salt-induced changes in the leaf
area, plant dry matter production, and pigment content, as well as improved the uptake
and transport of numerous macro- and micronutrients [56,57]. It has been demonstrated
that NO decreases many of the negative effects of salt stress on plant photosynthetic
machinery [58]. Nitric oxide decreased the salt-induced deactivation and breakdown of the
PSII reaction center and enhanced their performance in salt-exposed pea, bermudagrass,
soybean, and sorghum [47,58–61]. The NO-induced reduction in the harmful effects of
high salt concentrations could result from the protection of the photosynthetic pigments,
dissipation of surplus energy, increase in the photosystem II (PSII) quantum yield [52],
and enhancement of the electron flux to the acceptor side of the photosystem I (PSI) [47].
A recent investigation conducted on Kandelia obovata showed that treatment with SNP
under salt stress elevated endogenous NO levels, decreased ion toxicity, improved nutrient
homeostasis and gas exchange parameters, and stimulated the activities of antioxidant
enzymes [62].

Despite the numerous studies on the influence of NO on photosynthesis, knowledge
about its defensive effects on the photosynthetic apparatus under salt stress is insufficient.
The very harmful effect of salinity on the PSII complex is well known, which corresponds
with the inhibition of the electron transport chain. We hypothesize that investigating the
influence of SNP, as a donor of NO, at the donor and acceptor side of PSII will provide
new information about the protective effect of NO under salt stress in maize plants. In the
current research, we examined the impact of different concentrations of SNP on maize plants
(Zea mays L. Kerala) cultivated in the presence of 150 mM NaCl (severe salinity). This study
assessed the primary processes of photosynthesis (with PAM chlorophyll fluorescence and
JIP test) and the PSII photochemical activity, revealing the impact of SNP under salt stress
on the function of the photosynthetic apparatus. In addition, we measured the pigment
composition, membrane stability, and levels of oxidative stress markers. The experimental
results clearly show the protective mechanisms of SNP on the photosynthetic apparatus
and its functions at applied SNP concentrations of 50 µM and 150 µM. These findings will
contribute to offering promising information for developing strategies to increase crop
resistance in saline environments.

2. Results
2.1. Pigment Content

The effects of the SNP (25–300 µM) on the pigment composition in maize leaves
under salt stress (150 mM NaCl) are shown in Figure 1. The results demonstrate that
the treatment with NaCl decreased the amount of chlorophylls (by 40%) and carotenoids
(by 43%) (Figure 1). The simultaneous exposure of SNP and NaCl alleviated the salt-
induced reduction in the pigment content, but the amounts remained lower than those
of the control plants. The protection was better after application of 50 µM and 150 µM
SNP in comparison to the lowest (25 µM) and the highest (300 µM) concentrations of SNP
(Figure 1). The changes in the pigment composition caused a slight decrease in the Car/Chl
ratio after treatment with 150 mM NaCl alone and co-treatment with NaCl and 300 µM
SNP (Figure S1).

2.2. Stress Markers

The determination of lipid peroxidation (corresponding to MDA content) and the
amount of H2O2 was used to evaluate the protective effects of SNP in maize plants under
salt stress (150 mM NaCl) (Figure 2). Data showed that the amounts of MDA and H2O2
increased by about 64% and 62%, respectively, after treatment with 150 mM NaCl alone. The
combined treatment with SNP and NaCl reduced the content of these stress markers (MDA
and H2O2); however, these amounts were higher than the untreated plants (Figure 2a).
The protective effect of SNP is less pronounced in plants treated with a concentration
of 300 µM. The accumulation of H2O2 in leaves was also visualized histochemically by
staining with diaminobenzidine (DAB), which forms a brown precipitate with H2O2 in
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a peroxidase-catalyzed reaction [63]. Data also revealed that H2O2 accumulation was in
the whole leaf after 150 mM NaCl exposure, while SNP at concentrations of 25 to 150 µM
significantly decreased this H2O2 accumulation (Figure 2b).
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Figure 1. Impact of SNP on the amounts of chlorophylls (Chl) and carotenoids (Car) in maize
(Zea mays L. Kerala) under salt stress. The control value for the chlorophylls is 49.498 mg/g DW
and, for the carotenoids, it is 8.159 mg/g DW. The mean values (±SE) were determined from 8
measurements. Significant differences between variants at p < 0.05 are indicated by different letters
(uppercase for chlorophyll and lowercase for carotenoid levels).
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Figure 2. Effects of the SNP c on MDA and H2O2 contents under salt stress (150 mM NaCl) (a), and
visualization of the H2O2 accumulation in maize leaves by DAB staining (b). Mean values (±SE) were
determined from 8 measurements. Different letters indicate significant differences among variants at
p < 0.05 (uppercase for MDA and lowercase for H2O2).

2.3. Membrane Stability Index and Membrane Fluidity

The membrane stability index (MSI) was used as an indicator for the impact of SNP
on the membrane stability of maize leaves under salt stress. In comparison to the control,
the 150 mM NaCl treatment alone reduced MSI by about 40%. The combined treatment
with all studied SNP concentrations and NaCl increased the MSI compared to the NaCl
treatment alone (Figure 3). The smallest protective effect was observed after co-treatment
with 300 µM SNP and NaCl.
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Figure 3. Effects of t SNP on the membrane stability index (MSI) of maize leaves (Zea mays L. Kerala).
Mean values (±SE) were determined from 8 measurements. Different letters indicate significant
differences among variants at p < 0.05.

The fluidity of isolated thylakoid membranes from all variants was evaluated by
general polarization (GP) of a fluorescent lipophilic membrane dye Laurdan [64]. The
experimental results reveal that the salt stress leads to a decrease in the GP value, i.e.,
an increase in the fluidity of thylakoid membranes. The SNP application fully prevents
salt-induced changes in the membrane fluidity, as the GP values of Laurdan were similar
to the thylakoid membranes from the control plants (Table 1).

Table 1. Impact of various SNP concentrations on Laurdan GP values and the low-temperature (77 K)
fluorescence emission ratio F735/685 of isolated thylakoid membranes from leaves of maize (Zea mays
L. Kerala) grown under salt conditions (150 mM NaCl). The chlorophyll fluorescence was excited at
436 nm. Statistically significant differences at p < 0.05 are marked by different letters among the mean
values (±SE) in the corresponding column (n = 8).

Variants GP F735/685

Control 0.478 ± 0.021 a 1.25 ± 0.06 b

NaCl 0.388 ± 0.018 b 1.43 ± 0.06 a

25 SNP + NaCl 0.451 ± 0.014 a 1.28 ± 0.05 b

50 SNP + NaCl 0.485 ± 0.017 a 1.28 ± 0.10 b

150 SNP + NaCl 0.465 ± 0.016 a 1.29 ± 0.06 b

300 SNP + NaCl 0.446 ± 0.014 a 1.33 ± 0.03 b

2.4. Energy Transfer between Pigment–Protein Complexes

Chlorophyll fluorescence spectra at a low temperature of 77 K were employed to
assess the transfer of energy between pigment–protein complexes within the thylakoid
membranes. The spectra of all studied variants were characterized with bands at 685 nm
and 735 nm associated with the PSII complex and PSI complex, respectively [65]. The
ratio F735/F685 reflects the redistribution of energy between both photosystems. This ratio
increased by 14% after treatment with NaCl alone, but its values were similar to the control
after co-treatment with all studied SNP concentrations and NaCl (Table 1).

2.5. PAM Chlorophyll Fluorescence

The application of 150 mM NaCl to the maize affected several parameters of PAM chloro-
phyll fluorescence, including the quantum yield of photochemical to non-photochemical pro-
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cesses (Fv/Fo), the rate of photosynthesis (RFd), the excitation efficiency of open PSII
centers (Φexc), the photochemical quenching (qP), and the excess excitation energy (EXC)
(Figure 4). The treatment with NaCl alone led to a twofold reduction in the ratio of the
quantum yield of photochemical to non-photochemical processes (Fv/Fo) and the pho-
tochemical quenching (qP). Some decrease in the rate of photosynthesis (RFd, by 24%)
and the excitation efficiency of open PSII centers (Φexc, by 35%) was also observed. The
SNP application diminished the salt-induced decrease in the Fv/Fo, qP, Φexc, and RFd.
The values of parameters Φexc and RFd were similar to those of the untreated plants after
co-treatment with NaCl and the concentrations of SNP up to 150 µM (Figure 4). Data also
revealed that salt treatment increased the excess excitation energy (EXC) by 41% more than
the control plants. The treatment with all studied SNP decreased EXC values (Figure S2).
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Figure 4. Impact of various SNP concentrations under salinity conditions (150 mM NaCl) on the
PAM chlorophyll fluorescence parameters in maize (Zea mays L. Kerala). (a) Quantum yields of
photochemical to non-photochemical processes (Fv/Fo), and the chlorophyll fluorescence decay ratio
(RFd); (b) the excitation efficiency of open PSII centers (Φexc) and photochemical quenching (qP).
Mean values ± SE were calculated from 8 independent measurements. The different letters indicate
significant differences among variants at p < 0.05 (uppercase for Fv/Fo and Φexc, lowercase for RFd

and qP).

The dark relaxation of chlorophyll fluorescence after a saturating light pulse in dark
adapted leaves in both treated and untreated maize plants can be fitted by two components,
with the amplitude A1 (fast component) and A2 (slow component) with rate constant k1
and k2, respectively. The constant k1 decreased after treatment with 150 mM NaCl alone,
while k2 was slightly increased. After the co-treatment with SNP and NaCl, the constant k1
and k2 were similar to those of the control plants, except k2 in plants treated with 25 µM
SNP. The data revealed also that the ratio of two components (A1/A2) increases from 22%
to 33% after co-treatment with SNP concentrations up to 150 µM and NaCl compared to
the untreated plants (Table 2).
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Table 2. Influence of various SNP concentrations under salt stress (150 mM NaCl) on the rate constants
(k1 and k2) and the ratio of the amplitudes of the fast and slow components (A1/A2) of the relaxation
of chlorophyll fluorescence after saturating light pulse in dark adapted leaves of maize (Zea mays
L. Kerala). The different letters among the mean values (±SE) in the corresponding column (n = 8)
show the statistical differences at p < 0.05.

Variants k1 (s−1) k2 (s−1) A1/A2

Control 1.741 ± 0.045 a 0.085 ± 0.007 b 6.731 ± 0.230 b

150 mM NaCl 1.578 ± 0.049 b 0.107 ± 0.010 a 6.263 ± 0.221 c

25 µM SNP + NaCl 1.826 ± 0.099 a 0.104 ± 0.005 a 8.929 ± 0.341 a

50 µM SNP + NaCl 1.895 ± 0.140 a 0.090 ± 0.008 b 8.184 ± 0.321a

150 µM SNP + NaCl 1.903 ± 0.079 a 0.094 ± 0.008 b 8.392 ± 0.503 a

300 µM SNP + NaCl 1.739 ± 0.075 a 0.085 ± 0.006 b 6.974 ± 0.409 b

2.6. Chlorophyll Fluorescence Induction

Selected parameters of the chlorophyll fluorescence induction used to investigate
the effects of SNP under salt stress in maize were as follows: ψEo—efficiency of the
electron transfer further than QA

−; N—maximum turnover of QA reduction until Fm
reached (corresponding with the size of the plastoquinone pool); Vj—variable fluorescence
at the J-step (corresponding with changes in the PSII acceptor side); φPo—maximum
quantum yield for primary photochemistry; φRo—quantum yield for reduction of end
electron acceptors at the PSI acceptor side; δRo—efficiency with which an electron from
the intersystem electron carriers is transferred to reduce end electron acceptors at the PSI
acceptor side; PIABS—performance index for energy conservation from photons absorbed
by PSII to the reduction of intersystem electron acceptors; PItotal—performance index for
energy conservation from photons absorbed by PSII until the reduction of PSI end electron
acceptors; RC/DIo—the reversed parameter of DIo/RC, corresponding with dissipated
energy flux per RC; Wk—ratio of the J step to K step, corresponding with the changes in
the PSII donor side. Data showed that NaCl treatment leads to a slight increase in the
parameters Wk, Vj, and δRo, while the parameters ψEo, N, φPo, φRo, RC/DIo, PIABS, and
PItotal decreased. The effects were more pronounced for parameters Vj, RC/DIo, PIABS,
and PItotal. The foliar application of SNP under salt stress decreased the effects of NaCl on
the selected JIP parameters, as the effects were better at 50 µM and 150 µM SNP (Figure 5).

2.7. Photochemical Activity of PSII and Flash Oxygen Evolution

The assessment of the PSII-mediated electron transport, with the electron acceptor BQ
(H2O → BQ), was conducted to evaluate the photochemical activity of PSII. Data revealed
that NaCl treatment, inhibited the PSII-mediated electron transport by 36% (Figure 6). The
application of SNP alleviated the impact of NaCl on the PSII activity. This activity was the
same as in the control plants after application of concentrations of 50 µM and 150 µM SNP
(Figure 6).

The analysis of the flash-induced oxygen yields showed that the active PSII centers
in the initial S0 state (S0 % = 100 − S1) and the misses (α) increased significantly after
applying salt stress (Table 3). On the other hand, the SNP foliar application mitigated the
salt-induced alterations in these kinetic parameters (S0 and α) (Table 3). The double hits (β)
showed no statistically significant differences during all applied treatments.
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Table 3. Effects of 150 mM NaCl treatment and different SNP concentrations on the kinetic parameters
of the flash-induced oxygen yields: S0—the PSII centers in the initial reduced state (S0 % = 100 − S1)
in the darkness, misses (α), and double hits (β). Significant differences between variants at p < 0.05
are indicated by different letters.

Variants S0 (%) α (%) β (%)

Control 24.5 ± 1.3 b 20.3 ± 1.8 c 6.2 ± 1.3 a

150 mM NaCl 34.1 ± 2.7 a 28.8 ± 1.5 a 7.5 ± 1.7 a

25 SNP + NaCl 25.3 ± 1.2 b 24.3 ± 2.1 b 6.8 ± 1.4 a

50 SNP + NaCl 23.3 ± 1.7 b 25.7 ± 1.2 b 5.9 ± 1.8 a

150 SNP + NaCl 23,1 ± 1.9 b 24.3 ± 2.5 b 6.4 ± 1.7 a

300 SNP + NaCl 24.1 ± 1.4 b 25.3 ± 1.3 b 6.9 ± 1.4 a

2.8. NO Content

The data indicated that the application of NaCl led to an increase in the NO amount
by 17% when compared to the untreated plants (Figure 7). The co-treatment with SNP
under salt stress caused an additional rise in NO content depending on the applied SNP
concentration (Figure 7).
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2.9. Principal Component Analysis

Principal component analysis (PCA) revealed that the first two components explain
99.43% of the data variability (Figure S3). The control maize, positioned in the first quadrant,
shows a negative correlation with the EXC parameter describing the dissipation of excess
energy, which is located in the third quadrant. A strong positive correlation was determined
for the parameters EXC and F735/685 and the maize treated with 150 mM NaCl, located
in the lowest point of the second quadrant. A more pronounced positive correlation of
the photochemical to non-photochemical processes (Fv/Fo) (first quadrant, far from PC1
and PC2 axes) and a weaker one for the photosynthetic rate (RFd) (second quadrant near
the PC1 axis) was found with respect to the control maize in comparison to the other
plant variants (150 mM NaCl and 150 µM SNP + 150 mM NaCl), located in the second
quadrant. The variables located in the fourth quadrant are related to pigment content (Car,
Chl, Car/Chl), membrane fluidity (Laurdan GP), and photochemical activity (qP, Φexc),
and have an insignificant contribution to the changes occurring in all the maize variants,
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with a weakly pronounced positive correlation with the control maize plants and a negative
correlation with the maize treated with 150 mM NaCl alone.

3. Discussion

Despite extensive research, the precise role of NO in plant survival under adverse en-
vironmental conditions has not been fully understood, particularly regarding its defensive
function related to the operation of various pigment–protein complexes in photosynthetic
membranes. In this study, we reveal new evidence regarding the impact of SNP, acting as a
NO donor, on different components of the photosynthetic apparatus under salt stress.

Data in this study demonstrated a reduction in photosynthetic pigments (Chl and Car)
similar to previous studies on wheat, sorghum, pea, barley, and other plant species [66–71].
This negative impact on the pigments is due to an inhibition of the pigment biosynthesis
and/or an enhancement of their degradation [72]. The protective effect of 50 µM and
150 µM SNP on the photosynthetic pigments (Figure 1) may result from stimulating Chl
and Car biosynthesis observed previously [34]. Additionally, SNP could counteract the
salt-induced negative effect on their biosynthesis, which is accompanied by enhancement
of the LHCII accumulation [55,73]. The data also demonstrated that foliar spray with SNP
prevents, under salt stress, the decrease in the Car/Chl ratio at concentrations up to 150 µM
SNP (Figure S1). Considering, the important role of carotenoids as antioxidants involved
in the protection of thylakoid membranes from oxidative stress at a high salinity [74], it
could be suggested that their enhancement is also one of the protective mechanisms of SNP
under salt stress.

The enhancement of the H2O2 content (Figure 2) and other ROS species caused lipid
peroxidation and disruption of the membrane structures [75,76]. The high accumulation of
the MDA under salt stress revealed an enhancement of the lipid peroxidation (Figure 2).
In addition to the lipid peroxidation, the salt stress also leads to changes in the lipid
composition [77]. The salt-induced changes in the lipids and the proteins cause structural
changes in the thylakoid membranes, corresponding with the reduction in thylakoids in
grana regions [14,16,78], which is accompanied by a decrease in the MSI (Figure 3).

Furthermore, the observed decrease in Laurdan GP values for the thylakoid mem-
branes isolated from NaCl-treated plants compared to controls (Table 1) clearly indicates
an increase in membrane fluidity. It has been suggested that the more fluid thylakoid mem-
branes may facilitate the diffusion of the LHCII complex from PSII to PSI complexes [79,80],
which is confirmed by an increase in the fluorescence emission ratio (F735/F685) after NaCl
treatment (Table 1). Our results reveal that the application of the SNP not only decreased
the salt-induced oxidative stress (i.e., changes in the amounts of H2O2 and MDA) but also
prevented the membrane structural alterations, such as changes in the membrane fluidity
and energy transfer between both photosystems (Figure 3 and Table 1). In addition, current
data demonstrated that SNP foliar spray (at concentrations of 25 to 150 µM) alleviated
salt-induced oxidative stress to a certain extent. This reduction was evident through the
decreased amounts of H2O2 and MDA in salt-stressed leaves, thus preventing salt-induced
damage of the membranes (Figure 3).

Previous studies [7,12,17,30,81–84], as well as the data in the present study, revealed a
strong influence of salinity on the function of the photosynthetic apparatus. The analysis
of the chlorophyll fluorescence curves at room temperature demonstrated that the salt
treatment led to a decrease in the ratio of the photochemical to non-photochemical processes
(Fv/Fo), the photochemical quenching (qP), the excitation efficiency of open PSII centers
(Φexc), and the rate of photosynthesis (RFd) (Figure 4). This impact on the PSII function
is due to changes in the acceptor and donor side of the complex [30,85,86]. At the same
time, the parameter EXC showed an increase in the energy losses (Figure S2), which was
accompanied with a decrease in the efficiency of PSII under NaCl treatment alone (Figure 4).
The salt treatment also led to a decrease in the parameter RC/DIo (the reversed parameter
of the dissipated energy flux per RC, DIo/RC), showing an increase in the dissipated energy
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(Figure 5). Dissipation of the excess light corresponds with a decrease in ROS formation,
acting as a photoprotective mechanism [87].

To assess the salt-induced changes and the protective mechanisms of SNP on the PSII
acceptor side, we analyzed the chlorophyll fluorescence signals following a saturating
light pulse [88,89]. Data revealed that the alterations in the PSII functions were a result of
salt-induced impacts on both pathways of QA

− reoxidation: one involving plastoquinone
and the other via recombination of electrons in QA QB

− with oxidized S2 (or S3) states of the
OEC (Table 2). However, the influence on the QA functions decreased the efficiency of the
electron movement further than QA

− (ψEo parameter) and the probability that an electron
from the intersystem electron carriers is transferred to reduce end electron acceptors at
the PSI acceptor side (Figure 5). The performance index on the absorption base (PIABS),
commonly used to assess overall PSII performance [83,90], was strongly influenced by NaCl
(Figure 5), corresponding to the inhibition of PSII-mediated electron transport (Figure 6).
Moreover, PItotal was also reduced under salt stress, which suggests delayed performance
from the PSII electron donor side to the reduction of the PSI end electron acceptors.

In SNP-treated plants under salt stress, QA interaction with plastoquinone prevailed,
resulting in an increased A1/A2 ratio (Table 2). These changes were associated with an
increase in open PSII centers (qP) and their efficiency (Φexc), improving the photosynthetic
performance (PIABS) and performance of the electron transport reduction of the PSI end
electron acceptors along with stimulation of the photosynthesis rate (RFd) (Figures 4 and 5).
Simultaneously, there was an elevation in excess excitation energy (EXC) (Figure S2). All
these observations corresponded with the inhibition of PSII-mediated electron transport
in the presence of the exogenous acceptor BQ, after NaCl treatment alone and with full
protection, at applied concentrations of 50 µM and 150 µM SNP (Figure 6).

More detailed information regarding the influence of NaCl on the PSII donor side was
obtained by analyzing kinetic parameters of the flash-induced oxygen evolution without
exogenous acceptors, i.e., electrons are accepted from the plastoquinone (PQ) (Table 3). The
salt treatment resulted in changes in the initial S0–S1 state distribution due to an increase
in the number of active PSII centers in the most reduced S0 states (Mn2+, Mn3+, Mn4+,
Mn4+). This increase indicates a modification in the Mn4Ca cluster within the OEC [91,92].
A similar influence of salt stress on PSII centers in the initial S0 state in darkness has also
been shown in barley plants [30,93]. The observed increase in the S0 state corresponds
with an increase in the misses (α). The application of SNP under salt stress fully prevented
the salt-induced alterations in the initial S0–S1 state distribution of the PSII complexes.
Therefore, the SNP protection on the PSII donor side is most probably due to the prevention
of the salt-induced modification of the Mn4Ca cluster of OEC.

These effects of NO on the membrane integrity and function of the photosynthetic
apparatus could also result from direct neutralization of the ROS, enhancement of an-
tioxidant enzyme activities, and increased accumulation of osmolyte compounds [38].
The application of SNP protected against membrane damage, as well as the salt-induced
changes in membrane fluidity, QA reoxidation, and modification of the Mn clusters of the
OEC. By preventing the salt-induced changes in both donor and acceptor sides of PSII, the
PSII performance and overall function of the photosynthetic apparatus were improved.
The data also revealed that better protection of the thylakoid membranes is achieved at a
concentration of NO up to 63 nmoles/g FW (at 150 µM SNP).

4. Materials and Methods
4.1. Plant Growth Conditions and Treatment

The seeds of maize (Zea mays L. Kerala) were obtained from Euralis Ltd. in Lescar,
France. The plants were cultivated hydroponically in a climate chamber under controlled
conditions: 25 ◦C (daily)/22 ◦C (night) temperature, 150 µmol photons/m2 s light intensity,
a 12 h light/dark photoperiod, and 70% air humidity. Two-week-old maize plants were
foliar-sprayed with different concentrations of SNP (25 µM, 50 µM, 150 µM, and 300 µM)
24 h before the addition of 150 mM NaCl in the Hoagland solution. The solution of SNP
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can be released as free nitric oxide (NO) or NO+ and free CN− or CN radicals [53,94]. The
measurements were performed 5 days after addition of NaCl in nutrient solution. The
concentrations of NaCl and SNP are based on a preliminary study [34,47]. The following
variants were studied: control (without SNP and NaCl), NaCl (150 mM NaCl), 25 SNP +
NaCl (25 µM SNP and 150 mM NaCl), 50 SNP + NaCl (50 µM SNP and 150 mM NaCl),
150 SNP + NaCl (150 µM SNP and 150 mM NaCl), 300 SNP + NaCl (300 µM SNP and
150 mM NaCl). Two independent experiments were conducted in four replications for each
variant (four boxes with three plants in each). The measurements were made on the fully
expanded leaves.

4.2. Leaf Pigment Content

The method of Lichtenthaler (1987) was used to determine the amount of chlorophylls
and carotenoids. Leaf tissue (0.03 g) was cut into small pieces and grinded with 8 mL of
80% acetone in dark and cold. After centrifugation at 4500× g for 10 min at 0–4 ◦C, the
supernatant was measured spectrophotometrically (Specord 210 Plus, Ed. 2010, Analytik
Jena AG, Jena, Germany) at 663.2, 646.8, and 470 nm and the pigment content totals Chl
and Car were calculated using Lichtenthaler’s equations [95].

4.3. Stress Markers, Membrane Stability Index

The fully expanded leaves were taken from different variants to estimate the content of
hydrogen peroxide (H2O2) and malondialdehyde (MDA) following the procedure described
in [34]. The H2O2 and MDA amounts were calculated by recording the absorbance at
390 nm and 532 nm, respectively, using Specord 210 Plus (Edition 2010; Analytik Jena AG,
Jena, Germany), and the values are expressed as nmol per g DW.

The visualization of the H2O2 accumulation in maize leaves was performed with the
dye diaminobenzidine (DAB) because peroxidase catalyzed the reaction of DAB with H2O2
to form a brown polymer as previously described in [63]. Several fresh leaves were soaked
in DAB solution (1 mg/mL) and incubated at room temperature overnight in the dark. The
leaves were then placed in boiling ethanol (95%) to remove the background.

The membrane stability index (MSI) for maize leaves was evaluated based on the
electrolyte conductivity (EC) as described previously in [34].The MSI values were calculated
as MSI (%) = [1 − (EC1/EC2)] × 100, where EC1 and EC2 are the measured electrolyte
conductivities of the leaf sample solutions after incubation for 24 h at 20 ◦C and after boiling
for 30 min, respectively.

4.4. Thylakoid Membrane Fluidity

The fluidity of thylakoid membranes was followed by a fluorescence polarization study
with a fluorescent lipophilic dye Laurdan (6-Dodecanoyl-2-dimethylaminonaphthalene,
Sigma-Aldrich, St. Louis, MO, USA) as described previously in [64,96]. The isolated thy-
lakoid membranes with a concentration of 15 µg Chl/mL were incubated with 30 µM
Laurdan, using 1 mM stock solution dissolved in dimethyl sulfoxide, (DMSO, Sigma-
Aldrich, St. Louis, MO, USA) for 30–40 min at room temperature in the dark. The steady-
state fluorescence polarization was determined using a spectrofluorometer JASCO FP8300
(Jasco, Tokyo, Japan). Fluorescence was excited at 390 nm and registered at 460 and
515 nm with a 10 nm emission slit width using a quartz cuvette of 1 cm path length ac-
cording to [64]. The general polarization (GP) of Laurdan fluorescence was determined as
GP = (I460 − I515)/(I460 + I515), where I460 is the fluorescence intensity at 460 nm (character-
istic for tightly packed membrane lipids) and I515 is the fluorescence intensity at 515 nm
(characteristic for less tightly packed lipids). The lower GP values point to an increased
fluidity, i.e., membranes with a less ordered fluid phase [64].

4.5. Low-Temperature (77 K) Fluorescence Measurements

Low-temperature (77K) chlorophyll fluorescence emission spectra were obtained using
a spectrofluorometer (Jobin Yvon JY3, Division d’Instruments S.A., Longjumeau, France)
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equipped with a nitrogen device. The samples were quickly frozen in liquid nitrogen. The
measurements were made as in [30]. Data analysis and graphing software (Origin version
9.0, OriginLab Corporation, Northampton, MA, USA) was employed to analyze emission
spectra registered after the excitation of Chl a (at 436 nm). The spectra of all studied variants
were characterized with two fluorescence bands at 685 nm (for PSII) and 735 nm (for PSI).
The fluorescence emission ratio F735/685 was calculated. This ratio characterized the energy
redistribution between both photosystems [30,65].

4.6. Room-Temperature Chlorophyll Fluorescence

Pulse-modulated amplitude (PAM) chlorophyll fluorescence was measured on dark-
adapted (for 15 min) leaves using a fluorimeter (H.Walz, Effeltrich, Germany, model PAM
101–103). The measurements were made as in [97]. The minimal fluorescence level (Fo) was
recorded at a frequency of 1.6 kHz and a measuring light of 0.110 µmol photons/m2s PFD.
The maximal fluorescence levels for the dark-adapted state (Fm) and light-adapted state
(Fm’) were determined using saturated pulse light of 3000 photons µmol/m2s for 0.8 s. The
photosynthetic process was triggered by exposing the plants to actinic light with an inten-
sity of 150 µmol photons/m2s. The PAM chlorophyll fluorescence parameters calculated to
assess the impact of SNP under salt stress on the function of the photosynthetic apparatus
functions are as follows [98]: Fv/Fo—the ratio of photochemical to non-photochemical pro-
cesses; qP—the coefficient of photochemical quenching [98]; Φexc—the excitation efficiency
of open PSII centers [99]; and EXC—the excitation excess energy [100]. The parameter
RFd—the chlorophyll fluorescence decay ratio after saturating light pulse (3000 µmol
photons/m2s) in dark-adapted leaves—was determined as described in [84].

The additional information about the effects of SNP under salt stress on the PSII
complex gives the dark relaxation of chlorophyll fluorescence by a signal after saturating
light pulse in dark-adapted leaves. Analysis of the curves provides details about the
electron transfer from QA to plastoquinone [29]. Fluorescence signals can be fitted by
two components. The ratio of the fast (A1) and slow (A2) components (A1/A2) and rate
constants k1 and k2 were determined as in [101]. The constants k1 and k2 are related to
QA—reoxidation pathways [101].

Chlorophyll fluorescence induction curves were obtained and measured with a Handy
PEA+ device (Hansatech, Norfolk, UK), as described in [47]. The leaves were adapted in
dark for 30 min. The light pulse intensity was 3000 µmol photons/m2s. The following JIP
parameters were determined [29]: PIABS and PItotal—the performance indexes, Vj—relative
variable fluorescence at the J step, N—maximum turnovers of QA reduction until Fm was
reached, ϕPo—the maximum quantum yield of primary photochemistry, ψEo—moves an
electron into the electron transport chain beyond QA

−, RC/DIo—the reversed parameter
of DIo/RC—dissipated energy flux per RC (at t = 0), Wk—the ratio of K phase to J phase,
ϕRo—quantum yield of reduction of end electron acceptors at the PSI acceptor side, δRo—
efficiency with which/probability that an electron from the intersystem electron carriers
moves to reduce end electron acceptors at the PSI acceptor side. Fully developed leaves
(the middle area of the third and fourth leaves) were used for all fluorescence analyses.

4.7. Isolation of Thylakoid Membranes

Thylakoid membranes were isolated from leaves of maize plants as described in [102].
For measurements, the thylakoid membranes were suspended in 20 mM HEPES (pH 7.6),
0.4 M sucrose, 5 mM MgCl2, 10 mM NaCl. The Chl content in thylakoid membranes was
extracted with 80% (v/v) acetone and was assessed using Lichtenthaler’s equations [95].

4.8. Photochemical Activity of PSII

The photochemical activity of PSII was assessed for the PSII-mediated electron trans-
port as in [30]. The measurements were made on the isolated thylakoid membranes
(25 µg Chl/mL) using a Clark-type electrode (Model DW1, Hansatech, Instruments Ltd.,
Norfolk, UK). The reaction medium for PSII-mediated electron transport (H2O → BQ)
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contained 20 mM MES (pH 6.5), 0.4 M sucrose, 5 mM MgCl2, 10 mM NaCl, 0.4 mM BQ
(1,4-benzoquinone).

4.9. Oxygen Evolution Measurements

The flash-induced oxygen yields under short flash illumination by saturating (4 J)
and short (10 s) periodic flash sequences applied on the thylakoid membranes’ suspension
(150 µg Chl/mL) were determined using a polarographic oxygen rate electrode (Joliot-
type) without the addition of artificial electron acceptors as described previously [91]. The
analysis of the flash-induced oxygen yields was performed using the model of Kok [103].
According to this model, the cooperation of five oxidation states of OEC (S0–S4) in the
same PSII centers is required for the production of one oxygen molecule. In the darkness,
only the S0 and S1 states are stable. The calculations of the used parameters were made
as described in [91]: S0—percentage of active oxygen-evolving PSII centers in the most
reduced (S0) state in darkness, i.e., the initial S0–S1 state distribution (S0 + S1 = 100%),
misses (α), and double hits (β).

4.10. NO Content

The NO content was determined following the method of [104]. The leaves were
homogenized in an acetic acid buffer with low pH supplemented with zinc acetate. After
centrifugation, the supernatant was neutralized with charcoal, followed by the addition of
Griess reagent. The NO content (nmol/g FW) was determined using a calibration curve
generated with sodium nitrite as a standard.

4.11. Principal Component Analysis

Principal component analysis (PCA), a multivariate statistical method, was employed
to reduce a vast array of measured parameters into the most informative ones [105]. PCA
was utilized to explore the impact of SNP under salt stress (150 mM NaCl) on the fluo-
rescence parameters and their correlations with bio-chemical parameters. For categoriz-
ing/classifying the variations in response to salt stress and SNP application, a clustering
algorithm was implemented [106]. PCA multivariate statistical analysis was conducted,
and graphical representations of PCA were generated using Originlab 9 software for data
analysis and graphing (OriginLab Corporation, Northampton, MA, USA).

4.12. Statistical Analysis

Differences among the various t were assessed by Student’s t-test or one-way ANOVA
with post hoc Tukey’s test. The mean values (n = 8) were considered statistically significant
at least for p < 0.05.

5. Conclusions

In summary, the data in the present study revealed the protection of thylakoid mem-
branes in maize after foliar spray with SNP under salt stress. The protection is due to a
decrease in the stress markers (H2O2 and MDA) preventing the salt-induced changes in
membrane fluidity and energy transfer between the pigment–protein complexes within the
photosynthetic apparatus. The effects of SNP were accompanied by an increase in the PSII
open reaction center and tier efficiency, as well as the prevention of salt-induced alterations
on both the donor and acceptor sides of PSII. The data demonstrated that co-treatment
with SNP and NaCl leads to a decrease in salt-induced changes in the rate constants of
two pathways of QA reoxidation: one involving plastoquinone and the other involving
recombination on QAQB- with oxidized S2 (or S3) states of the OEC. Moreover, the ap-
plication of SNP under salt stress predominantly favors reoxidation through interaction
with plastoquinone. The application of the SNP also prevented the modification of the Mn
clusters of the OEC at high salt concentrations and improved the oxygen-evolving activity.
The data also revealed that SNP provided better protection under salt stress at concentra-
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tions between 50 µM and 150 µM or an amount of NO equivalent to 50–63 nmoles/g FW
in leaves.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13101312/s1, Figure S1. Impact of SNP on the total
chlorophyll-to-carotenoid ratio of maize (Zea mays L. Kerala) under salt stress. Figure S2. Effects
of different SNP levels on excess excitation energy (EXC) in the leaves of one maize variety (Zea
mays L. Kerala) during salt stress. Figure S3. Principal component analysis (PCA) shows variation in
the selected parameters after treatment with NaCl alone and co-treatment SNP and NaCl. Table S1.
Variable contributions (loadings) for the principal component analysis model in Figure S1.
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