An Appraisal of Nonmicrobial Biostimulants’ Impact on the Productivity and Mineral Content of Wild Rocket (Diplotaxis tenuifolia (L.) DC.) Cultivated under Organic Conditions
Abstract
:1. Introduction
2. Results
2.1. Marketable Yield, Biometric Components, and Climatic Trends inside the Greenhouse
2.2. Mineral Content of Wild Rocket Leaves
3. Discussion
4. Materials and Methods
4.1. Growth Conditions and Plant Material
4.2. Application of Biostimulants and Experimental Design
4.3. Harvest and Biometric Parameters
4.4. Determination of Mineral Profile and Total Nitrogen
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonera, A.; Svanes, E.; Bugge, A.B.; Hatlebakk, M.M.; Prexl, K.-M.; Ueland, Ø. Moving consumers along the innovation adoption curve: A new approach to accelerate the shift toward a more sustainable diet. Sustainability 2021, 13, 4477. [Google Scholar] [CrossRef]
- Lonnie, M.; Johnstone, A. The public health rationale for promoting plant protein as an important part of a sustainable and healthy diet. Nutr. Bull. 2020, 45, 281–293. [Google Scholar] [CrossRef]
- Bantis, F.; Kaponas, C.; Charalambous, C.; Koukounaras, A. Strategic successive harvesting of rocket and spinach baby leaves enhanced their quality and production efficiency. Agriculture 2021, 11, 465. [Google Scholar] [CrossRef]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; Buren, L.V.; Wagner, E.; Wiseman, S.; Put, F.V.D.; Dacombe, C.; Rice-Evans, C.A. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 2002, 36, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Spence, C. Gastrophysics: Nudging consumers toward eating more leafy (salad) greens. Food Qual. Prefer. 2020, 80, 103800. [Google Scholar] [CrossRef]
- Storz, M.A.; Müller, A.; Lombardo, M. Diet and consumer behavior in US Vegetarians: A national health and nutrition examination survey (NHANES) data report. Int. J. Environ. Res. Public Health 2021, 19, 67. [Google Scholar] [CrossRef] [PubMed]
- Chisari, M.; Todaro, A.; Barbagallo, R.N.; Spagna, G. Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. cv. Duende). Food Chem. 2010, 119, 1502–1506. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I.C. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; Saez-Tovar, J.; Martinez-Sabater, E.; Gruda, N.S.; Egea-Gilabert, C. Promising composts as growing media for the production of baby leaf lettuce in a floating system. Agronomy 2020, 10, 1540. [Google Scholar] [CrossRef]
- Giordano, M.; El-Nakhel, C.; Caruso, G.; Cozzolino, E.; De Pascale, S.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Stand-alone and combinatorial effects of plant-based biostimulants on the production and leaf quality of perennial wall rocket. Plants 2020, 9, 922. [Google Scholar] [CrossRef]
- Candido, V.; Boari, F.; Cantore, V.; Castronuovo, D.; Denora, M.; Sergio, L.; Todorovic, M.; Schiattone, M.I. Interactive effect of water regime, nitrogen rate and biostimulant application on physiological and biochemical traits of wild rocket. Agric. Water Manag. 2023, 277, 108075. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, A.; Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. J. Agric. Food Chem. 2008, 56, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- Weightman, R.; Huckle, A.; Roques, S.; Ginsburg, D.; Dyer, C. Factors influencing tissue nitrate concentration in field-grown wild rocket (Diplotaxis tenuifolia) in southern England. Food Addit. Contam. Part A 2012, 29, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Di Mola, I.; Petropoulos, S.A.; Ottaiano, L.; Cozzolino, E.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Bioactive Compounds, Antioxidant Activity, and Mineral Content of Wild Rocket (Diplotaxis tenuifolia L.) Leaves as Affected by Saline Stress and Biostimulant Application. Appl. Sci. 2023, 13, 1569. [Google Scholar] [CrossRef]
- Schiattone, M.; Viggiani, R.; Di Venere, D.; Sergio, L.; Cantore, V.; Todorovic, M.; Perniola, M.; Candido, V. Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Sci. Hortic. 2018, 229, 182–192. [Google Scholar] [CrossRef]
- Muhie, S.H. Plant Biostimulants in Organic Horticulture: A Review. J. Plant Growth Regul. 2023, 42, 2698–2710. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V.; Li, Y. The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Guignard, M.S.; Leitch, A.R.; Acquisti, C.; Eizaguirre, C.; Elser, J.J.; Hessen, D.O.; Jeyasingh, P.D.; Neiman, M.; Richardson, A.E.; Soltis, P.S. Impacts of nitrogen and phosphorus: From genomes to natural ecosystems and agriculture. Front. Ecol. Evol. 2017, 5, 70. [Google Scholar] [CrossRef]
- Trewavas, A. Urban myths of organic farming. Nature 2001, 410, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Povero, G.; Mejia, J.F.; Di Tommaso, D.; Piaggesi, A.; Warrior, P. A systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Geelen, D. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Puglia, D.; Pezzolla, D.; Gigliotti, G.; Torre, L.; Bartucca, M.L.; Del Buono, D. The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability 2021, 13, 2710. [Google Scholar] [CrossRef]
- Johnson, R.; Joel, J.M.; Puthur, J.T. Biostimulants: The futuristic sustainable approach for alleviating crop productivity and abiotic stress tolerance. J. Plant Growth Regul. 2024, 43, 659–674. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- Malorni, L.; Cozzolino, R.; Magri, A.; Zampella, L.; Petriccione, M. Influence of Plant-Based Biostimulant (BORTAN) on Qualitative and Aromatic Traits of Rocket Salad (Diplotaxis tenuifolia L.). Plants 2023, 12, 730. [Google Scholar] [CrossRef] [PubMed]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Petropoulos, S.A.; Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Rouphael, Y.; Mori, M. Biostimulants of Different Origins Increase Mineral Content and Yield of Wild Rocket While Reducing Nitrate Content through Successive Harvests. Horticulturae 2023, 9, 580. [Google Scholar] [CrossRef]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Parrella, G.; Giorgini, M.; Nicoletti, R. Crop systems, quality and protection of Diplotaxis tenuifolia. Agriculture 2018, 8, 55. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.M.; Ashour, M.; Sakai, N.; Zhang, L.; Hassanien, H.A.; Gaber, A.; Ammar, G. Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (Cucumis sativus). Agriculture 2021, 11, 320. [Google Scholar] [CrossRef]
- Mannino, G.; Campobenedetto, C.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules 2020, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef]
- Admane, N.; Cavallo, G.; Hadjila, C.; Cavalluzzi, M.M.; Rotondo, N.P.; Salerno, A.; Cannillo, J.; Difonzo, G.; Caponio, F.; Ippolito, A. Biostimulant formulations and moringa oleifera extracts to improve yield, quality, and storability of hydroponic lettuce. Molecules 2023, 28, 373. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Zhang, J.; Kirby, C.W.; Ji, X.; Locke, S.J.; Critchley, A.T.; Prithiviraj, B. Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem. 2011, 124, 195–202. [Google Scholar] [CrossRef]
- Górka, B.; Lipok, J.; Wieczorek, P.P. Biologically active organic compounds, especially plant promoters, in algae extracts and their potential application in plant cultivation. Mar. Algae Extr. Process. Prod. Appl. 2015, 37, 659–680. [Google Scholar]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef]
- Celiktopuz, E.; Kapur, B.; Sarıdas, M.A.; Kargı, S.P. Response of strawberry fruit and leaf nutrient concentrations to the application of irrigation levels and a biostimulant. J. Plant Nutr. 2021, 44, 153–165. [Google Scholar] [CrossRef]
- Mosa, W.F.; Sas-Paszt, L.; Głuszek, S.; Górnik, K.; Anjum, M.A.; Saleh, A.A.; Abada, H.S.; Awad, R.M. Effect of some biostimulants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple. Horticulturae 2022, 9, 32. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Deka, S.; Borah, P.; Bania, R.; Das, S.; Deb, P.K. Pharmacology of Potassium Channels. In Frontiers in Pharmacology of Neurotransmitters; Springer: Singapore, 2020; pp. 635–681. [Google Scholar]
- Petropoulos, S.A.; Chatzieustratiou, E.; Constantopoulou, E.; Kapotis, G. Yield and quality of lettuce and rocket grown in floating culture system. Not. Bot. Horti Agrobot. 2016, 44, 603–612. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; El-Nakhel, C.; Rippa, M.; Mormile, P.; Corrado, G.; Rouphael, Y.; Mori, M. Assessment of yield and nitrate content of wall rocket grown under diffuse-light-or clear-plastic films and subjected to different nitrogen fertilization levels and biostimulant application. Horticulturae 2022, 8, 138. [Google Scholar] [CrossRef]
- Sifola, M.I.; Di Mola, I.; Ottaiano, L.; Cozzolino, E.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Assessment of yield and nitrate content of wild rocket grown under salinity and subjected to biostimulant application. Ital. J. Agron. 2023, 18. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Ferrante, A. Borage extracts affect wild rocket quality and influence nitrate and carbon metabolism. Physiol. Mol. Biol. Plants 2020, 26, 649–660. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Serio, F.; Todaro, E. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 1999, 79, 1882–1888. [Google Scholar] [CrossRef]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 2017, 8, 300. [Google Scholar] [CrossRef]
- Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environ. Exp. Bot. 2018, 153, 63–71. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Toscano, S.; Ferrante, A.; Branca, F.; Romano, D. Enhancing the quality of two species of baby leaves sprayed with Moringa leaf extract as biostimulant. Agronomy 2021, 11, 1399. [Google Scholar] [CrossRef]
Harvest I | Harvest II | Harvest III | |
---|---|---|---|
Temperature (°C) | 13.99 | 14.99 | 15.70 |
Relative Humidity (%) | 74.96 | 69.06 | 65.92 |
PPFD (µmol m−2 s−1) | 252.60 | 398.50 | 600.53 |
Control | PE | PH | SWE | p Value | sig | F-Value | |
---|---|---|---|---|---|---|---|
Harvest I | |||||||
Yield (g m−2) | 994.80 ± 11.29 b | 1216.60 ± 33.01 a | 1243.92 ± 28.77 a | 1145.85 ± 34.68 a | 0.001 | *** | 15.34 |
Dry biomass (g m−2) | 109.96 ± 1.56 b | 132.00 ± 5.51 a | 133.22 ± 1.94 a | 122.84 ± 4.88 ab | 0.010 | ** | 7.65 |
Dry matter (%) | 10.881 ± 0.2 | 10.87 ± 0.09 | 10.73 ± 0.17 | 10.72 ± 0.22 | 0.862 | ns | 0.25 |
Harvest II | |||||||
Yield (g m−2) | 1560.55 ± 36.20 c | 2052.89 ± 75.32 ab | 2234.35 ± 17.85 a | 1856.98 ± 69.83 b | 0.000 | *** | 27.31 |
Dry biomass (g m−2) | 162.18 ± 8.72 b | 197.97 ± 7.36 ab | 211.40 ± 0.97 a | 179.42 ± 13.65 ab | 0.021 | * | 5.83 |
Dry matter (%) | 9.83 ± 0.32 | 9.69 ± 0.37 | 9.40 ± 0.17 | 9.89 ± 0.40 | 0.728 | ns | 0.44 |
Harvest III | |||||||
Yield (g m−2) | 919.71 ± 35.48 b | 1151.70 ± 18.24 a | 1112.02 ± 18.61 a | 1045.01 ± 33.42 a | 0.002 | ** | 13.53 |
Dry biomass (g m−2) | 123.81 ± 3.60 | 115.82 ± 7.19 | 121.62 ± 1.96 | 117.00 ± 1.84 | 0.530 | ns | 0.79 |
Dry matter (%) | 12.27 ± 0.16 | 12.00 ± 0.50 | 11.64 ± 0.19 | 11.98 ± 0.68 | 0.789 | ns | 0.35 |
Control | PE | PH | SWE | p Value | Sig | F-Value | |
---|---|---|---|---|---|---|---|
Harvest I | |||||||
Nitrate (mg kg−1 fw) | 7014.04 ± 134.12 ab | 6743.76 ± 94.86 ab | 7386.43 ± 245.15 a | 6528.70 ± 196.61 b | 0.04 | * | 4.35 |
Total N (g kg−1 dw) | 5.55 ± 0.05 | 5.62 ± 0.04 | 5.50 ± 0.08 | 5.65 ± 0.06 | 0.35 | ns | 1.27 |
K (g kg−1 dw) | 45.67 ± 2.81 | 50.30 ± 0.89 | 52.63 ± 3.36 | 49.30 ± 1.09 | 0.27 | ns | 1.58 |
Mg (g kg−1 dw) | 4.39 ± 0.11 b | 4.72 ± 0.06 ab | 4.96 ± 0.05 a | 4.80 ± 0.08 a | 0.01 | ** | 8.32 |
Ca (g kg−1 dw) | 20.52 ± 1.03 | 22.77 ± 1.80 | 23.00 ± 1.77 | 24.58 ± 0.56 | 0.30 | ns | 1.44 |
P (g kg−1 dw) | 1.94 ± 0.02 | 1.95 ± 0.08 | 2.18 ± 0.10 | 1.95 ± 0.03 | 0.11 | ns | 2.84 |
S (g kg−1 dw) | 6.35 ± 0.12 b | 7.01 ± 0.16 ab | 6.34 ± 0.14 b | 7.32 ± 0.25 a | 0.01 | ** | 7.97 |
Harvest II | |||||||
Nitrate (mg kg−1 fw) | 5522.12 ± 88.49 ab | 5343.25 ± 214.78 b | 6095.78 ± 124.64 a | 5239.018 ± 118.68 b | 0.01 | * | 6.988 |
Total N (g kg−1 dw) | 5.43 ± 0.18 | 5.39 ± 0.01 | 5.75 ± 0.23 | 5.21 ± 0.16 | 0.24 | ns | 1.723 |
K (g kg−1 dw) | 44.15 ± 1.64 b | 50.88 ± 1.93 a | 50.01 ± 1.35 ab | 46.43 ± 0.70 ab | 0.04 | * | 4.504 |
Mg (g kg−1 dw) | 4.01 ± 0.05 b | 4.81 ± 0.20 a | 4.94 ± 0.13 a | 4.53 ± 0.19 ab | 0.02 | * | 6.407 |
Ca (g kg−1 dw) | 16.70 ± 0.70 | 19.25 ± 1.26 | 20.34 ± 0.86 | 18.84 ± 0.58 | 0.10 | ns | 2.932 |
P (g kg−1 dw) | 2.51 ± 0.09 b | 2.92 ± 0.05 ab | 2.98 ± 0.16 a | 2.86 ± 0.04 ab | 0.04 | * | 4.373 |
S (g kg−1 dw) | 7.10 ± 0.06 | 8.13 ± 0.24 | 7.49 ± 0.38 | 7.94 ± 0.29 | 0.10 | ns | 2.907 |
Harvest III | |||||||
Nitrate (mg kg−1 fw) | 4605.63 ± 48.73 | 4421.54 ± 228.61 | 4801.12 ± 108.39 | 4498.96 ± 65.06 | 0.28 | ns | 1.533 |
Total N (g kg−1 dw) | 5.34 ± 0.20 | 5.14 ± 0.03 | 5.39 ± 0.06 | 5.21 ± 0.26 | 0.72 | ns | 0.459 |
K (g kg−1 dw) | 40.44 ± 1.33 | 42.82 ± 4.15 | 47.09 ± 1.63 | 40.88 ± 1.19 | 0.31 | ns | 1.419 |
Mg (g kg−1 dw) | 4.05 ± 0.12 | 4.53 ± 0.10 | 4.24 ± 0.21 | 4.50 ± 0.09 | 0.12 | ns | 2.678 |
Ca (g kg−1 dw) | 13.43 ± 1.08 | 12.75 ± 0.71 | 13.12 ± 0.52 | 12.16 ± 0.56 | 0.68 | ns | 0.522 |
P (g kg−1 dw) | 1.98 ± 0.08 | 1.91 ± 0.11 | 2.12 ± 0.08 | 2.06 ± 0.09 | 0.49 | ns | 0.873 |
S (g kg−1 dw) | 7.12 ± 0.40 | 7.16 ± 0.47 | 7.29 ± 0.43 | 7.16 ± 0.21 | 0.99 | ns | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciriello, M.; Campana, E.; Colla, G.; Rouphael, Y. An Appraisal of Nonmicrobial Biostimulants’ Impact on the Productivity and Mineral Content of Wild Rocket (Diplotaxis tenuifolia (L.) DC.) Cultivated under Organic Conditions. Plants 2024, 13, 1326. https://doi.org/10.3390/plants13101326
Ciriello M, Campana E, Colla G, Rouphael Y. An Appraisal of Nonmicrobial Biostimulants’ Impact on the Productivity and Mineral Content of Wild Rocket (Diplotaxis tenuifolia (L.) DC.) Cultivated under Organic Conditions. Plants. 2024; 13(10):1326. https://doi.org/10.3390/plants13101326
Chicago/Turabian StyleCiriello, Michele, Emanuela Campana, Giuseppe Colla, and Youssef Rouphael. 2024. "An Appraisal of Nonmicrobial Biostimulants’ Impact on the Productivity and Mineral Content of Wild Rocket (Diplotaxis tenuifolia (L.) DC.) Cultivated under Organic Conditions" Plants 13, no. 10: 1326. https://doi.org/10.3390/plants13101326
APA StyleCiriello, M., Campana, E., Colla, G., & Rouphael, Y. (2024). An Appraisal of Nonmicrobial Biostimulants’ Impact on the Productivity and Mineral Content of Wild Rocket (Diplotaxis tenuifolia (L.) DC.) Cultivated under Organic Conditions. Plants, 13(10), 1326. https://doi.org/10.3390/plants13101326