Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi (Ocimum sanctum L.)
Abstract
:1. Introduction
2. Results
2.1. Effects of the Tulsi Leaf Extract on the Browning of Leaf Explants
2.2. Effects of Tulsi Leaf Extract on In Vitro Regeneration of N. tabacum
2.3. Histology of Shoot Organogenesis and Somatic Embryogenesis
2.4. Effects of Tulsi Leaf Extract on the Indoleamine Pathway
2.4.1. Whole Leaf vs. Leaf Disc on Day 0
2.4.2. Indoleamines in Tulsi Leaf Extract
2.4.3. Effects of Tulsi Leaf Extract during Culture Duration
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Tulsi Leaf Extract Preparation
4.2. N. tabacum Culture Establishment and Leaf Explant Culture
4.3. Histology of Shoot Organogenesis and Somatic Embryogenesis
4.4. Detection and Quantification of Indoleamine Metabolites
4.4.1. Sample Collection and Extraction
4.4.2. Separation and Quantification of Metabolites
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brekhman, I.I.; Dardymov, I.V. New Substances of Plant Origin Which Increase Nonspecific Resistance. Annu. Rev. Pharmacol. 1969, 9, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Meerson, F.Z. Adaptation, Stress, and Prophylaxis, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-61730-0. [Google Scholar]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal Versus. J. Nephropharmacology 2015, 4, 27–30. [Google Scholar]
- Kaur, P.; Robin; Makanjuola, V.O.; Arora, R.; Singh, B.; Arora, S. Immunopotentiating Significance of Conventionally Used Plant Adaptogens as Modulators in Biochemical and Molecular Signalling Pathways in Cell Mediated Processes. Biomed. Pharmacother. 2017, 95, 1815–1829. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Garg, M.; Prajapati, P.; Singh, P.K.; Chopra, R.; Kumari, A.; Mittal, A. Adaptogenic Property of Asparagus racemosus: Future Trends and Prospects. Heliyon 2023, 9, e14932. [Google Scholar] [CrossRef] [PubMed]
- Wiegant, F.A.C.; Surinova, S.; Ytsma, E.; Langelaar-Makkinje, M.; Wikman, G.; Post, J.A. Plant Adaptogens Increase Lifespan and Stress Resistance in C. elegans. Biogerontology 2009, 10, 27–42. [Google Scholar] [CrossRef]
- Wagner, H.; Nörr, H.; Winterhoff, H. Plant Adaptogens. Phytomedicine 1994, 1, 63–76. [Google Scholar] [CrossRef]
- Vinod, P.S.; Shivakumar, H.; Vinod Lecturer, P.S. A Current Status of Adaptogens: Natural Remedy to Stress. Asian Pac. J. Trop. Dis. 2012, 2, S480–S490. [Google Scholar]
- Liao, L.Y.; He, Y.F.; Li, L.; Meng, H.; Dong, Y.M.; Yi, F.; Xiao, P.G. A Preliminary Review of Studies on Adaptogens: Comparison of Their Bioactivity in TCM with That of Ginseng-like Herbs Used Worldwide. Chin. Med. 2018, 13, 57. [Google Scholar] [CrossRef]
- Cohen, M.M. Tulsi—Ocimum sanctum: A Herb for All Reasons. J. Ayurveda Integr. Med. 2014, 5, 251–259. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow. Mol. Aspects Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Nadkarni, K.M. Dr. K.M. Nadkarni’s Indian Material Medica: With Ayurvedic, Unani-Tibbi, Siddha, Allopathic, Homeopathic, Naturopathic & Home Remedies, Appendicces& Indexes; Popular Prakashan: Bombay, India, 1976; pp. 587–1080. [Google Scholar]
- Ma, R.; Gomez-Cadenas, A. In Vitro Tissue Culture, a Tool for the Study and Breeding of Plants Subjected to Abiotic Stress Conditions. In Recent Advances in Plant In Vitro Culture; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and Biotic Stress Combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Neves, C.S.; Gomes, S.S.L.; dos Santos, T.R.; de Almeida, M.M.; de Souza, Y.O.; Garcia, R.M.G.; Otoni, W.C.; Chedier, L.M.; Raposo, N.R.B.; Viccini, L.F.; et al. “Brazilian Ginseng” (Pfaffia glomerata Spreng. Pedersen, Amaranthaceae) Methanolic Extract: Cytogenotoxicity in Animal and Plant Assays. S. Afr. J. Bot. 2016, 106, 174–180. [Google Scholar] [CrossRef]
- De Klerk, G.J. Stress in Plants Cultured in Vitro. Propag. Ornam. Plants 2007, 7, 129–137. [Google Scholar]
- Wang, C.; Ma, H.; Zhu, W.; Zhang, J.; Zhao, X.; Li, X. Seedling-Derived Leaf and Root Tip as Alternative Explants for Callus Induction and Plant Regeneration in Maize. Physiol. Plant. 2021, 172, 1570–1581. [Google Scholar] [CrossRef] [PubMed]
- Spinoso-Castillo, J.L.; Bello-Bello, J.J. In Vitro Stress-Mediated Somatic Embryogenesis in Plants. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2022; pp. 223–235. [Google Scholar]
- Huang, H.; Ullah, F.; Zhou, D.; Yi, M.; Zhao, Y.; Terzaghi, W.B. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Ahmad, A.; Rasheed, N.; Gupta, P.; Singh, S.; Siripurapu, K.B.; Ashraf, G.M.; Kumar, R.; Chand, K.; Maurya, R.; Banu, N.; et al. Novel Ocimumoside A and B as Anti-Stress Agents: Modulation of Brain Monoamines and Antioxidant Systems in Chronic Unpredictable Stress Model in Rats. Phytomedicine 2012, 19, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Yadav, D.K.; Siripurapu, K.B.; Palit, G.; Maurya, R. Constituents of Ocimum sanctum with Antistress Activity. J. Nat. Prod. 2007, 70, 1410–1416. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Yasunaga, A.; Li, I.T.S.; Murch, S.J.; Saxena, P.K. Direct Visualization of Location and Uptake of Applied Melatonin and Serotonin in Living Tissues and Their Redistribution in Plants in Response to Thermal Stress. J. Pineal Res. 2019, 66, e12527. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Shukla, M.R.; Singh, A.S.; Murch, S.J.; Saxena, P.K. Melatonin and Serotonin: Mediators in the Symphony of Plant Morphogenesis. J. Pineal Res. 2018, 64, e12452. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Saxena, P. Auxin Driven Indoleamine Biosynthesis and the Role of Tryptophan as an Inductive Signal in Hypericum perforatum (L.). PLoS ONE 2019, 14, e0223878. [Google Scholar] [CrossRef]
- Commisso, M.; Negri, S.; Gecchele, E.; Fazion, E.; Pontoriero, C.; Avesani, L.; Guzzo, F. Indolamine Accumulation and TDC/T5H Expression Profiles Reveal the Complex and Dynamic Regulation of Serotonin Biosynthesis in Tomato (Solanum lycopersicum L.). Front. Plant Sci. 2022, 13, 975434. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kang, K.; Park, S.; Back, K. Conversion of 5-Hydroxytryptophan into Serotonin by Tryptophan Decarboxylase in Plants, Escherichia coli, and Yeast. Biosci. Biotechnol. Biochem. 2008, 72, 2456–2458. [Google Scholar] [CrossRef]
- Murch, S.J.; KrishnaRaj, S.; Saxena, P.K. Tryptophan Is a Precursor for Melatonin and Serotonin Biosynthesis in in Vitro Regenerated St. John’s Wort (Hypericum perforatum L. Cv. Anthos) Plants. Plant Cell Rep. 2000, 19, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Lee, K.; Back, K. Knockout of Arabidopsis Serotonin N-Acetyltransferase-2 Reduces Melatonin Levels and Delays Flowering. Biomolecules 2019, 9, 712. [Google Scholar] [CrossRef] [PubMed]
- Back, K.; Tan, D.X.; Reiter, R.J. Melatonin Biosynthesis in Plants: Multiple Pathways Catalyze Tryptophan to Melatonin in the Cytoplasm or Chloroplasts. J. Pineal Res. 2016, 61, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Ayyanath, M.-M.; Shukla, M.R.; Sriskantharajah, K.; Hezema, Y.S.; Saxena, P.K. Stable Indoleamines Attenuate Stress—A Novel Paradigm in Tryptophan Metabolism in Plants. J. Pineal Res. 2023, 76, e12938. [Google Scholar] [CrossRef]
- Back, K. Melatonin Metabolism, Signaling and Possible Roles in Plants. Plant J. 2021; 105, 376–391. [Google Scholar] [CrossRef]
- Zhao, H.; Su, T.; Huo, L.; Wei, H.; Jiang, Y.; Xu, L.; Ma, F. Unveiling the Mechanism of Melatonin Impacts on Maize Seedling Growth: Sugar Metabolism as a Case. J. Pineal Res. 2015, 59, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Bera, T. Somatic Embryogenesis and Organogenesis; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780128024980. [Google Scholar]
- Shivananjappa, M.; Joshi, M. Aqueous Extract of Tulsi (Ocimum sanctum) Enhances Endogenous Antioxidant Defenses of Human Hepatoma Cell Line (HepG2). J. Herbs Spices Med. Plants 2012, 18, 331–348. [Google Scholar] [CrossRef]
- Panda, V.S.; Naik, S.R. Evaluation of Cardioprotective Activity of Ginkgo biloba and Ocimum sanctum in Rodents. Altern. Med. Rev. 2009, 14, 161–171. [Google Scholar]
- Rout, G.R.; Samantaray, S.; Das, P. In Vitro Manipulation and Propagation of Medicinal Plants. Biotechnol. Adv. 2000, 18, 91–120. [Google Scholar] [CrossRef]
- Shilpa, K.; Selvakkumar, C.; Senthil, A.K.; Lakshmi, B.S. In Vitro Root Culture of Ocimum Sanctum L. and Evaluation of Its Free Radical Scavenging Activity. Plant Cell. Tissue Organ Cult. 2010, 101, 105–109. [Google Scholar] [CrossRef]
- Manjudevi, M.; Thirugnanasampandan; RVishnupriya, B.; Gogul Ramnath, M. In Vitro Propagation of Ocimum Sanctum L., Ocimum Canum Sims., and Ocimum Tenuiflorum L., and Evaluation of Antioxidant, MMP-9 down Regulation of Eugenol and Camphor. South African J. Bot. 2022, 151, 208–217. [Google Scholar] [CrossRef]
- Lukmanul Hakkim, F.; Gowri Shankar, C.; Girija, S. Chemical Composition and Antioxidant Property of Holy Basil (Ocimum Sanctum L.) Leaves, Stems, and Inflorescence and Their in Vitro Callus Cultures. J. Agric. Food Chem. 2007, 55, 9109–9117. [Google Scholar] [CrossRef] [PubMed]
- Zavattieri, M.A.; Frederico, A.M.; Lima, M.; Sabino, R.; Arnholdt-Schmitt, B. Induction of Somatic Embryogenesis as an Example of Stress-Related Plant Reactions. Electron. J. Biotechnol. 2010, 13, 1–9. [Google Scholar] [CrossRef]
- Gill, R.; Saxena, P.K. Somatic Embryogenesis in Nicotiana tabacum L.: Induction by Thidiazuron of Direct Embryo Differentiation from Cultured Leaf Discs. Plant Cell Rep. 1993, 12, 154–159. [Google Scholar] [CrossRef]
- Horstman, A.; Bemer, M.; Boutilier, K. A Transcriptional View on Somatic Embryogenesis. Regeneration 2017, 4, 201–216. [Google Scholar] [CrossRef] [PubMed]
- El Sherif, F. Aloe Vera Leaf Extract as a Potential Growth Enhancer for Populus Trees Grown under in Vitro Conditions. Am. J. Plant Biol. 2017, 2, 101–105. [Google Scholar] [CrossRef]
- Vinoth, S.; Gurusaravanan, P.; Jayabalan, N. Optimization of Somatic Embryogenesis Protocol in Lycopersicon esculentum L. Using Plant Growth Regulators and Seaweed Extracts. J. Appl. Phycol. 2014, 26, 1527–1537. [Google Scholar] [CrossRef]
- Zhou, W.; Tan, R.; Xu, C.; Lai, Y.; Chen, D.; Li, L. Gibberellic Acid Inhibits Browning, Enzyme Activity and Gene Expression of Phenylalanine Ammonia-Lyase in Phalaenopsis Leaf Explants. Genes Genomes Genom 2009, 3, 68–71. [Google Scholar]
- Liu, C.P.; Yang, L.; Shen, H.L. Proteomic Analysis of Immature Fraxinus mandshurica Cotyledon Tissues during Somatic Embryogenesis: Effects of Explant Browning on Somatic Embryogenesis. Int. J. Mol. Sci. 2015, 16, 13692–13713. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Fernández-Lorenzo, J.L.; Shen, H.; Yang, L. Reactive Oxygen Species, Nitric Oxide and Plant Cell Death Associated with Caspase-like Protease Activity during Somatic Embryogenesis in Fraxinus mandshurica. J. For. Res. 2022, 33, 1005–1017. [Google Scholar] [CrossRef]
- Bajwa, V.S.; Shukla, M.R.; Sherif, S.M.; Murch, S.J.; Saxena, P.K. Role of Melatonin in Alleviating Cold Stress in Arabidopsis thaliana. J. Pineal Res. 2014, 56, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Shukla, M.R.; Bajwa, V.S.; Freixas-Coutin, J.A.; Saxena, P.K. Salt Stress in Arabidopsis thaliana Seedlings: Role of Indoleamines in Stress Alleviation. Melatonin Res. 2021, 4, 70–83. [Google Scholar] [CrossRef]
- Negri, S.; Commisso, M.; Avesani, L.; Guzzo, F. The Case of Tryptamine and Serotonin in Plants: A Mysterious Precursor for an Illustrious Metabolite. J. Exp. Bot. 2021, 72, 5336–5355. [Google Scholar] [CrossRef] [PubMed]
- Byeon, Y.; Tan, D.X.; Reiter, R.J.; Back, K. Predominance of 2-Hydroxymelatonin over Melatonin in Plants. J. Pineal Res. 2015, 59, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Back, K. 2-Hydroxymelatonin Promotes the Resistance of Rice Plant to Multiple Simultaneous Abiotic Stresses (Combined Cold and Drought). J. Pineal Res. 2016, 61, 303–316. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, P.; Wang, R.; Sun, L.; Ju, Q.; Xu, J. Comparative Physiological Responses and Transcriptome Analysis Reveal the Roles of Melatonin and Serotonin in Regulating Growth and Metabolism in Arabidopsis. BMC Plant Biol. 2018, 18, 362. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, H.; Chen, D.; Hao, G. Genetic and Evolutionary Dissection of Melatonin Response Signaling Facilitates the Regulation of Plant Growth and Stress Responses. J. Pineal Res. 2023, 74, e12850. [Google Scholar] [CrossRef]
- Ma, K.; Xu, R.; Zhao, Y.; Han, L.; Xu, Y.; Li, L.; Wang, J.; Li, N. Walnut N-Acetylserotonin Methyltransferase Gene Family Genome-Wide Identification and Diverse Functions Characterization During Flower Bud Development. Front. Plant Sci. 2022, 13, 861043. [Google Scholar] [CrossRef]
- Menhas, S.; Yang, X.; Hayat, K.; Aftab, T.; Bundschuh, J.; Arnao, M.B.; Zhou, Y.; Zhou, P. Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. J. Plant Growth Regul. 2022, 41, 922–935. [Google Scholar] [CrossRef]
- Tan, D.-X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef] [PubMed]
- Diamante, M.S.; Borges, C.V.; da Silva, M.B.; Minatel, I.O.; Corrêa, C.R.; Gomez, H.A.G.; Lima, G.P.P. Bioactive Amines Screening in Four Genotypes of Thermally Processed Cauliflower. Antioxidants 2019, 8, 311. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.A.; Fellows, L.E. Occurrence of 5-Hydroxy-L-Tryptophan as a Acetate and Other Carboxylic Acids as Precursors of Ethylene THE Fungus Penwillium digitatum, Which Is the Common. Nature 1966, 30, 529. [Google Scholar] [CrossRef] [PubMed]
- Chowdhry, C.N.; Tyagi, A.K.; Maheshwari, N.; Maheshwari, S.C. Effect of L-Proline and L-Tryptophan on Somatic Embryogenesis and Plantlet Regeneration of Rice (Oryza sativa L. Cv. Pusa 169). Plant Cell Tissue Organ Cult. 1993, 32, 357–361. [Google Scholar] [CrossRef]
- Talaat, I.M.; Bekheta, M.A.; Mahgoub, M.H. Physiological Response of Periwinkle Plants (Catharanthus roseus L.) to Tryptophan and Putrescine. Int. J. Agric. Biol. 2005, 7, 210–213. [Google Scholar]
- Murch, S.J.; Campbell, S.S.B.; Saxena, P.K. The Role of Serotonin and Melatonin in Plant Morphogenesis: Regulation of Auxin-Induced Root Organogenesis in in Vitro-Cultured Explants of St. John’s Wort (Hypericum perforatum L.). Vitr. Cell. Dev. Biol.—Plant 2001, 37, 786–793. [Google Scholar] [CrossRef]
- Kousara, S.; Anjuma, S.N.; Jaleela, F.; Khana, J.; Naseema, S. Biomedical Significance of Tryptamine: A Review. J. Pharmacovigil. 2017, 5, 239. [Google Scholar] [CrossRef]
- Quittenden, L.J.; Davies, N.W.; Smith, J.A.; Molesworth, P.P.; Tivendale, N.D.; Ross, J.J. Auxin Biosynthesis in Pea: Characterization of the Tryptamine Pathway. Plant Physiol. 2009, 151, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Jadaun, J.S.; Kushwaha, A.K.; Sangwan, N.S.; Narnoliya, L.K.; Mishra, S.; Sangwan, R.S. WRKY1-Mediated Regulation of Tryptophan Decarboxylase in Tryptamine Generation for Withanamide Production in Withania somnifera (Ashwagandha). Plant Cell Rep. 2020, 39, 1443–1465. [Google Scholar] [CrossRef]
- Gagnon, Z.E.; Dingman, S.; Thomas, R.N. Fluorine-Tagged 5-Hydroxytryptophan to Investigate Amino Acid Metabolism In Vivo. J. Amino Acids 2010, 2010, 265069. [Google Scholar] [CrossRef]
- Maffei, M.E. 5-Hydroxytryptophan (5-Htp): Natural Occurrence, Analysis, Biosynthesis, Biotechnology, Physiology and Toxicology. Int. J. Mol. Sci. 2021, 22, 181. [Google Scholar] [CrossRef] [PubMed]
- Erland, L.A.E.; Murch, S.J.; Reiter, R.J.; Saxena, P.K. A New Balancing Act: The Many Roles of Melatonin and Serotonin in Plant Growth and Development. Plant Signal. Behav. 2015, 10, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Akula, R.; Mukherjee, S. New Insights on Neurotransmitters Signaling Mechanisms in Plants. Plant Signal. Behav. 2020, 15, 1737450. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, J.; Jiang, J.; Stavrovskaya, I.G.; Li, M.; Li, W.; Wu, Q.; Zhang, X.; Luo, C.; Zhou, S.; et al. N-Acetyl-Serotonin Offers Neuroprotection through Inhibiting Mitochondrial Death Pathways and Autophagic Activation in Experimental Models of Ischemic Injury. J. Neurosci. 2014, 34, 2967–2978. [Google Scholar] [CrossRef] [PubMed]
- Wölfler, A.; Abuja, P.M.; Schauenstein, K.; Liebmann, P.M. N-Acetylserotonin Is a Better Extra- and Intracellular Antioxidant than Melatonin. FEBS Lett. 1999, 449, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Byeon, Y.; Back, K. Low Melatonin Production by Suppression of Either Serotonin N-Acetyltransferase or N-Acetylserotonin Methyltransferase in Rice Causes Seedling Growth Retardation with Yield Penalty, Abiotic Stress Susceptibility, and Enhanced Coleoptile Growth under Anoxi. J. Pineal Res. 2016, 60, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Mukherjee, S.; Baluska, F.; Bhatla, S.C. Regulatory Roles of Serotonin and Melatonin in Abiotic Stress Tolerance in Plants. Plant Signal. Behav. 2015, 10, e1049788. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, A.; Giridhar, P.; Jobin, M.; Paulose, C.S.; Ravishankar, G.A. Indoleamines and Calcium Enhance Somatic Embryogenesis in Coffea canephora P Ex Fr. Plant Cell Tissue Organ Cult. 2012, 108, 267–278. [Google Scholar] [CrossRef]
- Lee, H.-J.; Back, K. 2-Hydroxymelatonin Confers Tolerance against Combined Cold and Drought Stress in Tobacco, Tomato, and Cucumber as a Potent Anti-Stress Compound in the Evolution of Land Plants. Melatonin Res. 2019, 2, 35–46. [Google Scholar] [CrossRef]
- Pérez-González, A.; Galano, A.; Alvarez-Idaboy, J.R.; Tan, D.X.; Reiter, R.J. Radical-Trapping and Preventive Antioxidant Effects of 2-Hydroxymelatonin and 4-Hydroxymelatonin: Contributions to the Melatonin Protection against Oxidative Stress. Biochim. Biophys. Acta—Gen. Subj. 2017, 1861, 2206–2217. [Google Scholar] [CrossRef]
- Tan, D.; Manchester, L.C.; Di Mascio, P.; Martinez, G.R.; Prado, F.M.; Reiter, R.J. Novel Rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and Its Precursor Melatonin in Water Hyacinth: Importance for Phytoremediation. FASEB J. 2007, 21, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Zawadzka, A.; Czarnocki, Z.; Reiter, R.J.; Back, K. Molecular Cloning of Melatonin 3-Hydroxylase and Its Production of Cyclic 3-Hydroxymelatonin in Rice (Oryza sativa). J. Pineal Res. 2016, 61, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Shukla, M.R.; Kibler, A.; Turi, C.E.; Erland, L.A.E.; Alan Sullivan, J.; Murch, S.J.; Saxena, P.K. Selection and Micropropagation of an Elite Melatonin Rich Tulsi (Ocimum sanctum L.) Germplasm Line. Agronomy 2021, 11, 207. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Yin, Z.F.; Zhao, B.; Bi, W.L.; Chen, L.; Wang, Q.C. Direct Shoot Regeneration from Basal Leaf Segments of Lilium and Assessment of Genetic Stability in Regenerants by ISSR and AFLP Markers. Vitr. Cell. Dev. Biol.—Plant 2013, 49, 333–342. [Google Scholar] [CrossRef]
- Ayyanath, M.M.; Shukla, M.R.; Saxena, P.K. Indoleamines Impart Abiotic Stress Tolerance and Improve Reproductive Traits in Hazelnuts. Plants 2023, 12, 1233. [Google Scholar] [CrossRef]
- Yalçın, S.; Şükran Okudan, E.; Karakaş, Ö.; Önem, A.N.; Sözgen Başkan, K. Identification and Quantification of Some Phytohormones in Seaweeds Using UPLC-MS/MS. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 475–484. [Google Scholar] [CrossRef]
Treatment | Average Number of Regenerants per Explant | Average Number of Shoots Greater than 1 cm per Explant | Average Number of Embryo-like Structures |
---|---|---|---|
Control | 6.14 ± 0.5 b | 6.14 ± 0.5 b | 0 b |
Tulsi leaf extract (20%) | 13.07 ± 0.5 a | 12.05 ± 0.5 a | 1.53 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vongnhay, V.; Shukla, M.R.; Ayyanath, M.-M.; Sriskantharajah, K.; Saxena, P.K. Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi (Ocimum sanctum L.). Plants 2024, 13, 1370. https://doi.org/10.3390/plants13101370
Vongnhay V, Shukla MR, Ayyanath M-M, Sriskantharajah K, Saxena PK. Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi (Ocimum sanctum L.). Plants. 2024; 13(10):1370. https://doi.org/10.3390/plants13101370
Chicago/Turabian StyleVongnhay, Vanessa, Mukund R. Shukla, Murali-Mohan Ayyanath, Karthika Sriskantharajah, and Praveen K. Saxena. 2024. "Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi (Ocimum sanctum L.)" Plants 13, no. 10: 1370. https://doi.org/10.3390/plants13101370
APA StyleVongnhay, V., Shukla, M. R., Ayyanath, M. -M., Sriskantharajah, K., & Saxena, P. K. (2024). Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi (Ocimum sanctum L.). Plants, 13(10), 1370. https://doi.org/10.3390/plants13101370